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Cognition in the wild...

attention/gaze

active perception/working
memory

action plans/decisions/
sequences

goal orientation
motor control
background knowledge

learning from experience




=> implied properties of the underlying
neural processes

B graded state
B continuous time

B continuous/intermittent link
to the sensory and motor
surfaces

B from which discrete events
and categorical behavior
emerge

in closed loop

=> states must be stable




Embodiment hypothesis

B all cognition is like soccer
playing = has the properties
of embodied cognition

B => there is no particular
boundary up to which
cognition is embodied and
beyond which it is
computational/symbolic




Five things needed to generate behavior

B sensors
B motors

® linked by a
nervous system

® linked physically
by a body

® an appropriately
structured
environment
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Emergent behavior: this
is a dynamics

® feedforward nervous system

M + closed loop through
environment

B => (behavioral) dynamics
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Emergent cognition
from neural
dynamics

B mental decisions,
working memory..
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What is “activation’?

B activation is an abstraction of the
state of neurons, defined relative
to sigmoidal threshold function

B low levels of activation are not transmitted
(to other neural systems, to motor
systems)

B high levels of activation are transmitted g(u)

M threshold at zero (by definition)




Activation dynamics

® activation evolves in continuous time

M no evidence for a discretization of time, for spike timing to
matter for behavior



Neural dynamics

Bstationary state=fixed point= constant solution

Bstable fixed point: nearby solutions converge to the

fixed point=attractor
A du/dt = f(u)

vector-field

resting
level

—u(t) = —ult)+h  (h<0)




Neural dynamics

mattractor structures ensemble of solutions=flow

A du/dt = f(u)

vector-field

resting |
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Neuronal dynamics

A du/dt

kut,s
-)»

Einputs=contributions to T N

the rate of change resting hIs

level, h
B positive: excitatory
A input, s

M negative: inhibitory u(t)

B => shifts the attractor
g(u(v)
Mactivation tracks this [/ et
. oo : >
shift (stability) [ resting level, h

Tu(t) = —u(t) + h + inputs(t)



Neuronal dynamics with self-excitation

v

M single activation variable with self-
excitation

B representing a small population with
excitatory coupling

tu(t) = — u(t) + h + s(t) + ¢ o(u(t))



Neuronal dynamics with self-excitation
A du/dt

resting
level, h




Stability from neural dynamics

M autonomous activation from interaction

B (1) = — u(t) + h + input(?)

M detection instability
B working memory

M reverse detection
instability

+ o(u(?))

A du/dt
A input strength
> U
N A
™ <
resting -
Ievel, h “Off” “On”

stable states




Neuronal dynamics with competition

v oy

B two activation variables with
reciprocal inhibitory coupling

B representing two small
populations that are
inhibitorily coupled

tu (1) = — u(t) + h + 5,(t) — cyr0(uy(1))
TUy(1) = — uy(1) + h + 5,(f) — ¢y 0(u; (1))



Neuronal dynamics with competition

v oy

B Coupling: the rate of change
of one activation variable
depends on the level of
activation of the other
activation variable

l coupling
tu (1) = — u (1) + h + 51(t) — cyr0(uy(1))
TUy(1) = — Uy(1) + h + 5,(t) — ¢y 0(u; (7))



Neuronal dynamics with competition

=>biased competition

before input is presented after input is presented
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_input from the

N eu r'a_l | sensory surface
fields

dimension

4 4 4 Y VY VY 4
4 activation
field
dimension
>

B for control, link to the sensory and
motor surfaces

B => activation fields (DNF)

A activation
field, u(r)

motor
dimension,

Adr/dt

>

| motor
state, r




Example motion perception:
space of possible percepts

/ motion
\ direction
O

vertical position

P

horizontal position




Example: movement planning:
space of possible actions

A activation

movement
amplitude

movement
direction




Distribution of Population Activation (DPA)

Distribution of population activation =
2. tuning curve * current firing rate

neurons
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Dynamic of neural fields

M peaks as attractors
M detection instability
B working memory

M selection
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Attractors and their instabilities

threshold)

M input driven solution (sub-
l instability instability

reverse
detection detection
M self-stabilized solution
(peak, supra-threshold)

M selection / selection
instability

B working memory / memory

instability Noise is critical

B boost-driven detection near instabilities
instability
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The detection instability leads to
the emergence of events

Bthe detection instability explains
how a time-continuous neuronal
dynamics may create
macroscopic events at discrete
moments in time

u(t)
reverse
detection e
instability ,,‘«—*“”M‘W
{f"f time, t
detection

instability



stabilizing selection decisions
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[Wilimzig, Schoner, 2006]

X 7 200



reaction time (RT) paradigm

Imperative
signal=
go signal

response

task set

time

RT




metric effect
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Time course of selection decisions:
Behavioral evidence for the graded and
continuous evolution of decision

timed movement
initiation paradigm

imperative stimulus

‘(— imposed SR interval
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[Ghez and colleagues, 1988 to 1990’s]



Binfer width of

preshape peaks
in field

[Ghez et al 1997]
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The memory trace

M activation leaves a trace that may influence the
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visual working
memory

® has limited capacity

® based on the number
of objects...

®about 4

®probed by change
detection, free recall

[Luck,Vogel, 1997]
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Change detection

® the standard probe of

working memory g B

Delay

Memory Array

(500 ms)

(1)

Test Array

B (until

response)

Same/Different

[Johnson, et al. 2009]



3 layer model

sensory input

@ memory
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activation field

A location

\

B location

\t\ [Thelen, et al., BBS (2001)]

task specific preshape
input input  nput

[Dinveva, Schoner, Dev. Science 2007]



DFT of infant perseverative reaching

spontaneous

correct on B!

mthat is because
reaches to B on A
trials leave memor
trace at B

‘ A6 Bl B
Al A2 A3 A4 A5 6 timeltrials

[Dinveva, Schoner, Dev. Science 2007]



From neural to behavioral dynamics

2 do/dt

attractor

v

vehicle



From neural to behavioral dynamics

specified value no value specified

1 activation 1 activation
field field
dimension dimension
> >
L dx/dt . dx/dt
X X
 ————————————

f dx x g(u(x,1))
|dx’ g(u(x', 0)
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New functions from higher-
dimensional fields

B visual search:

® any action /
thought directed at

an object

B requires bring the
object into the

attentional
foreground...

[ Tekulve, 2020]
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New functions from higher-
dimensional fields

visual scene
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New functions from higher-dimensional

| gazelﬁeld

fields: coordinate transforms
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Relational thinking

“red to the left of green”

® Perceptual grounding = target _reference
bringing the target object

into the attentional
foreground

[Lipinski, Sandamirskaya, Schoner 2009 BT T R e
... Richter, Lins, Schoner, Topics 2017] BT LRl e R



[Richter,
Lins,
Schoner,
ToPiC
(2017)]
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Sequential behaviors or mental acts

® behaviors/mental states are attractors
® that resist change...

®to induce change in sequential behavior/
thinking: induce an instability



Conclusion

®the CoS organizes the transition away from on ongoing
behavior/mental state

® based on a signal from perception or from an inner
state of a neural architecture that is predicted to be
indicative of successful completion of the behavior/
mental act

A intention / Acm

dimension X of satisfaction
>
prediction

dimension y
>

]

» neural state

|
|
bmmmmm - ¥» motor-world-sensor state ---!






What skills do you learn?

M academic skills

B read and understand scientific texts

B write technical texts, using mathematical concepts and
illustrations



What skills do you learn?

B mathematical skills

B conceptual understanding of dynamical systems
B capacity to read differential equations and illustrate them
B perform “mental simulation” of differential equations

B use numerical simulation to test ideas about an equation



What skills do you learn?

Binterdisciplinary skills

B handle concepts from a different discipline
B handle things that you don’t understand

B sharpen sense of what you understand and what not



O
... any fun!?



