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attention/gaze

active perception/working 
memory

action plans/decisions/ 
sequences

goal orientation

motor control 

background knowledge

learning from experience

Cognition in the wild…



=> implied properties of the underlying 
neural processes 

graded state 

continuous time 

continuous/intermittent link 
to the sensory and motor 
surfaces 

from which discrete events 
and categorical behavior 
emerge

in closed loop

=> states must be stable



Embodiment hypothesis

all cognition is like soccer 
playing = has the properties 
of embodied cognition

=> there is no particular 
boundary up to which 
cognition is embodied and 
beyond which it is 
computational/symbolic



Five things needed to generate behavior 

source structured
environment

intensity

activation

wheel
motion

activation

sensory
system

body

nervous
system

motor
system

intensity

sensors

motors

linked by a 
nervous system

linked physically 
by a body

an appropriately 
structured 
environment



Emergent behavior: this 
is a dynamics

feedforward nervous system

+ closed loop through 
environment

=> (behavioral) dynamics

heading
direction

heading
direction

differences in 
intensity
left-right

intensity

heading
direction

turning rate
of vehicle

differences in 
intensity
left-right

source

differences in 
turning rate 
left-right wheel



mental decisions, 
working memory..

Emergent cognition 
from neural 
dynamics

source1

dimension

activation

source2



What is “activation”?

activation is an abstraction of the 
state of neurons, defined relative 
to sigmoidal threshold function

low levels of activation are not transmitted 
(to other neural systems, to motor 
systems)

high levels of activation are transmitted 

threshold at zero (by definition)
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Activation dynamics

activation evolves in continuous time

no evidence for a discretization of time, for spike timing to 
matter for behavior



Neural dynamics
stationary state=fixed point= constant solution

stable fixed point: nearby solutions converge to the 
fixed point=attractor

du(t)

dt
= u̇(t) = �u(t) + h (h < 0)
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X
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YHFWRU�ILHOG



Neural dynamics

attractor structures ensemble of solutions=flow

⌧ u̇(t) = �u(t) + h
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Neuronal dynamics

inputs=contributions to 
the rate of change

positive: excitatory

negative: inhibitory

=> shifts the attractor

activation tracks this 
shift (stability)

⌧ u̇(t) = �u(t) + h + inputs(t)

u

h+s

input, s

resting
level, h 

du/dt

time, t

u(t)

resting level, h

g(u(t))

input, s



Neuronal dynamics with self-excitation

single activation variable with self-
excitation

representing a small population with 
excitatory coupling 

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))



⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal dynamics with self-excitation

u 

du/dt 

resting
level, h
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Stability from neural dynamics

autonomous activation from interaction 

·u(t) = − u(t) + h + input(t) + σ(u(t))

u 

du/dt 

resting
level, h

input strength

“on”“off”
stable states

detection instability

working memory

reverse detection 
instability 



Neuronal dynamics with competition

two activation variables with 
reciprocal inhibitory coupling

representing two small 
populations that are 
inhibitorily coupled

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))



Neuronal dynamics with competition

Coupling: the rate of change 
of one activation variable 
depends on the level of 
activation of the other 
activation variable

coupling

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))



Neuronal dynamics with competition
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Neural 
fields

for control, link to the sensory and 
motor surfaces 

=> activation fields (DNF)

motor 
dimension, r

activation
field, u(r)

motor
state, r

dr/dt

activation
field

dimension

input from the
sensory surface

dimension



Example motion perception: 
space of possible percepts 

activation

motion directionhorizontalposition
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Example: movement planning: 
space of possible actions

movement
direction

movement
amplitude

activation

movem
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direct
ion

movement
amplitude

0



Distribution of Population Activation (DPA)
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Dynamic of neural fields

peaks as attractors

detection instability

working memory

selection

τ ·u(x, t) = − u(x, t) + h + s(x, t)
����
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+∫ dx′ w(x − x′ ) g(u(x′ , t))
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Attractors and their instabilities

input driven solution (sub-
threshold) 

self-stabilized solution 
(peak, supra-threshold)

selection / selection 
instability 

working memory / memory 
instability 

boost-driven detection 
instability

detection 
instability

reverse
detection 
instability

Noise is critical
near instabilities



The detection instability stabilizes 
decisions

threshold piercing detection instability
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The detection instability leads to 
the emergence of events

the detection instability explains 
how a time-continuous neuronal 
dynamics may create 
macroscopic events at discrete 
moments in time time, t

u(t)

detection 
instability

reverse
detection 
instability



stabilizing selection decisions



reaction time (RT) paradigm

time

imperative 
signal=
go signal

response

RT

task set



metric effect

predict faster response 
times for metrically close 
than for metrically far 
choices

� �� �� ��� ���

��� ��� ��� ��� ��� ��� ���
��

��

�

�

�

WLPH

SU
HV
KD
SH
G�
QH
XU
DO
�IL
HO
G�

PRYHPHQW�GLUHFWLRQ

SH
DN
�OH
YH
O�R
I�D
FW
LY
DW
LR
Q

ZLGH

QDUURZ

>IURP�6FK|QHU��.RSHF]��(UOKDJHQ������@

IDVWHU

VORZHU



Time course of selection decisions: 
Behavioral evidence for the graded and 

continuous evolution of decision

XMQI
QSZI�SR��XL�XS�XSRI

MQTIVEXMZI�WXMQYPYW

MQTSWIH�76�MRXIVZEP

timed movement 
initiation paradigm

[Ghez and colleagues, 1988 to 1990’s]



place with minimal changes in the hand paths. Table 1
shows the means and standard errors of curvature and
linearity indices (see Materials and methods) across sub-
jects (n = 5) for predictable targets and for each time in-
terval for unpredictable targets. Small increases in curva-
ture of 1°–2° and reductions in linearity occur among
movements initiated between 80 and 200 ms after target
presentation. However, all values are well within the
range of normal values for linearity in reaching move-
ments (e.g. Atkeson and Hollerbach 1985; Georgopoulos
1988a, b; Georgopoulos and Massey 1988; Gordon et al.
1994b). Moreover, as can be noted among the hand paths
illustrated in Fig. 5, change in direction associated with
curvature did not appreciably reduce the directional error
at the end point. Similarly, the improvement in accuracy
was not achieved through variations in movement time.

Those data will, however, be considered in greater detail
below when the systematic effects of target separation on
movement time are described (see Fig. 10).

Threshold target separation
for discrete directional specification

Figure 7 shows the distributions of initial movement di-
rections in one subject at five target separations and
smoothed for clarity. Data from the same three succes-
sive S-R time interval bins used in earlier figures are
shown in different line types. For the 30° degree target
separation, at S-R intervals ≤ 80 ms (dotted line and his-
togram to show effect of smoothing) initial directions are
distributed unimodally around the midpoint of the range

224

Fig. 7 Experiment 2. Distribu-
tions of movement directions at
the time of peak acceleration in
one subject for five target sepa-
rations. In each plot, distribu-
tions were fitted with a smooth
line using a cosine function
(Chambers et al. 1983). The ar-
rows on the x-axis point to the
required direction for each tar-
get separation. In the top plot,
the actual histogram for re-
sponses with S-R intervals
≤ 80 ms is displayed to demon-
strate the relationship of the fit-
ted line to the actual distribu-
tion. On the right side of each
plot, the actual target locations
are displayed for reference &/fig.c:

[Ghez et al 1997]

infer width of 
preshape peaks 
in field



activation leaves a trace that may influence the 
activation dynamics later…  in a simplest form of 
learning, the “bias ” term of NN 

The memory trace

0
20

40
60

80
5

10
15

 20
0

20

0
20

40
60

80
5

10
15

0
0.2
0.4

memory
trace

dimension

activation

time

dimension

time

powerful in DFT 
because the 
detection instability 
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induced into peaks 
of activation



has limited capacity

based on the number 
of objects… 

about 4

probed by change 
detection, free recall 

[Luck, Vogel, 1997]

visual working 
memory
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observers were instructed to look for an orientation change. In the
third and critical condition, either colour or orientation could vary,
and the observers were required to remember both features of each
object. In this last condition, accurate performance with a set size of
four objects would require the observer to retain eight features (four
colours and four orientations), whereas only four features would be
required for accurate performance in the simple feature conditions.
Performance was essentially identical for the feature and conjunc-
tion conditions despite the greater total number of features that had
to be retained in the conjunction condition (Fig. 1c). This indicates
that visual working memory stores integrated object percepts rather
than individual features, just as verbal working memory can store
higher-order ‘chunks’15. This is also analogous to findings from
visual attention experiments, which have shown that attention is
directed to entire objects rather than to individual features and that,
consequently, two features of a given object can be reported as
accurately as a single feature16.

Because the stimulus arrays shown in Fig. 1c always varied in
both colour and orientation, it is possible that the subjects were
unable to avoid encoding both features even when only one feature
was relevant. To rule out this potential explanation of the similar
results obtained for the feature and conjunction conditions, a
second version of this experiment was conducted in which the
irrelevant feature dimension was held constant in the single-feature
conditions (all of the rectangles were black when the subjects
were required to remember orientation and all were vertical
when the subjects were required to remember colour). The results
were virtually identical to those shown in Fig. 1c, with statistically
indistinguishable performance in the feature and conjunction
conditions.

To extend these findings, we conducted an experiment in which

the objects were defined by a conjunction of four features: colour,
orientation, size and the presence or absence of a gap. Performance
was just as good in this quadruple conjunction condition as it was in
the individual feature conditions (Fig. 1d), indicating that 16
features distributed across 4 objects can be retained as accurately
as 4 features distributed across 4 objects.

The surprisingly good performance for conjunctions could be
explained by the use of separate, independent memory systems for
each feature type rather than the storage of integrated object
representations. To rule out this possibility, we examined colour–
colour conjunctions in which each object consisted of a large square
of one colour and a small inner square of a different colour.
Observers were just as accurate with these colour–colour conjunc-
tions as they were with either the large outer squares or the small
inner squares presented alone (Fig. 1e). Thus, eight colours dis-
tributed across four objects can be retained as accurately as four
colours distributed across four objects. Because both features of
each object consisted of colours, the high accuracy observed in the
conjunction condition cannot be explained by the existence of
independent memory systems for different features.

These results indicate that integrated object percepts are stored in
visual working memory, leading to a large capacity for retaining
individual features as long as the features are confined to a small
number of objects. Although there may be limits on the number of
features that can be linked together in a single object representation,
our results indicate that at least four features can be joined in this
manner with no cost in terms of storage capacity.

The present findings have important implications for both the
nature of the input to, as well as the contents of, visual working
memory. Specifically, studies of selective attention indicate that
attentional processes are used to combine the features of an object
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Figure 1 Example stimulus arrays (not drawn to scale) and performance on the

sequential comparison task. All set size effects shown here were statistically

significant at the P , 0:001 level (ANOVA). No other effects approached the

P , 0:05 level of significance. a, Performance with and without a verbal load for

simple colour stimuli. b, Comparison of 100-ms and 500-ms sample durations for

simple colour stimuli (with a verbal load and no cue box). Also shown is the

performance in a similar experiment with a cue box that indicated the one item

that might have changed colour (100-ms sample duration and no verbal load).

c, Comparison of performance when the observers were instructed to detect a

colour change, an orientation change or a change in either feature (conjunction

task). d, Comparison of performance for each of four simple features and the

conjunction of all four features. e, Comparison of performance for colour–colour

conjunctions versus the individual large and small squares.



Change detection

the standard probe of 
working memory 

[Johnson, et al. 2009]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simmering and Perone Capacity development

In our view, capacity in the classic sense (e.g., the “slots”
metaphor) does not work. In the laboratory, we derive capacity
estimates that are the emergent product of multiple, highly com-
plex, coupled cognitive and behavioral systems operating within
the task context. If we want to understand why capacity estimates
appear limited and why they differ across individuals, develop-
ment, and task contexts we must understand the dynamics of these
systems (i.e., how the components of a system interact through
time). We illustrate this claim below by reviewing two case studies
from our own work. Our proposal stands in contrast to the histor-
ical approach to understanding capacity and its development. For
instance, Cowan et al. (2010) emphasized the role of processing
(e.g., strategy) in explaining cross-task performance differences,
while contending that storage remains relatively constant across
tasks. Though we agree that both processing and storage must be
considered to understand performance across tasks, we disagree
with both the characterization of storage as a separable component
of the system as well as the notion that storage is constant across
tasks. In our view, storage capacity cannot be “tapped.” Storage is
a process in and of itself that cannot be considered in isolation
from the processes that contribute to (e.g., encoding, chunking)
and operate upon (e.g., rehearsal, retrieval) stored information.

Below, we present two case studies illustrating how a systems
approach can be applied to WM capacity development. These
studies have tested specific predictions derived from the imple-
mentation of visual WM into a computational model, which allows
for direct testing of how changes in a given set of processes may
simulate developmental improvements in performance. These
examples demonstrate how the specific details of the behavioral
tasks designed to measure WM capacity influence the processes by
which WM representations are formed and used in service of the
tasks,and reveal that capacity may vary within the same participants

depending on the manner in which information is presented and
capacity is measured. Importantly, we do not consider these differ-
ences across tasks to be “noise” in our estimates, but rather believe
this cross-task variation informs our understanding of how this
dynamic cognitive and behavioral system operates and develops.

CASE STUDY 1: INFANT VISUAL WORKING MEMORY
Our first case study centers on a series of neural network sim-
ulations reported by Perone et al. (2011). Perone et al. showed
that a single, complex system can produce remarkable variation
in performance across contexts. More specifically, they tested the
prediction that a single neuro-dynamical systems model of infant
looking and memory could produce variation in infants’ capacity
estimates across task conditions. They simulated infants’ perfor-
mance in a change preference task designed by Ross-Sheehy et al.
(2003) to estimate visual WM capacity. Figure 1A shows this task,
in which infants viewed two displays of colored squares blinking
on and off in synchrony. On a “no-change” display, all of the colors
remained the same with each blink/delay. On a “change” display,
one randomly selected color changed to a new color. Infants’ look-
ing time to the two displays was compared, and a robust preference
for the change display was interpreted as memory for the number
of items per display (i.e., set size). Across set sizes, Ross-Sheehy
et al. found that 6-month-olds showed a robust change prefer-
ence only at set size one, whereas 10-month-olds showed change

A B

FIGURE 1 | Schematic illustrations of tasks used to assess visual

working memory in (A) infants versus (B) children and adults; both

present examples of set size three.

preferences up to set size four. They concluded that infants’ visual
WM capacity increases from one to four items between 6 and
10 months.

Perone et al. (2011) simulated infants’ performance in this task
using a model of infant looking and memory. The model con-
sists of a neurocognitive system that encodes object details (e.g.,
color) and a fixation system that is biased to sustain looking during
encoding. Encoding leads to WM formation of the colors in the
displays; once a robust WM is formed, inhibition biases the sys-
tem to look away from remembered items and explore items that
may be novel. The model exhibited a change preference through
recognition of the items on the no-change display and detection
of novelty on the change display. This preference emerged through
real-time interactions between looking, encoding, and WM forma-
tion. Critically, Perone et al. found that a preference for the change
display did not require memory for all items in the display, that is,
the model exhibited a higher capacity estimate (measured through
looking time) than the number of items maintained in WM.

This example highlights how multiple processes working
together give rise to behavioral estimates of capacity. Critically,
the challenge remains to understand how such processes give rise
to variation in performance like that shown in Tables 1–4. Within
systems approaches, such variation is viewed as a signature of a
system that organizes in real-time in response to the current task
context. Perone et al. (2011) illustrated this concept by simulat-
ing a second experiment by Ross-Sheehy et al. (2003) in which
they removed the delay to insure that young infants’ performance
reflected a limitation in memory, not perception or attention.
Indeed, young infants exhibited change preferences for set sizes up
to three in this condition. This manipulation changed the task in
two important ways. First, “blinks” on the change and no-change
displays were no longer present, that is, there were no transient
onsets within each presentation of the items. Second, it introduced
a “flicker” associated only with the changing item on the change
display. Perone et al. showed that these minor manipulations dra-
matically influenced looking behavior. In the DNF model, looking
and memory are reciprocally coupled components of a larger cog-
nitive and behavioral system. Manipulations of looking influenced

Frontiers in Psychology | Developmental Psychology January 2013 | Volume 3 | Article 567 | 12
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that is because 
reaches to B on A 
trials leave memory 
trace at B

spontaneous
error correct on B!

DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]



From neural to behavioral dynamics
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From neural to behavioral dynamics
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New functions from higher-
dimensional fields

visual search: 

any action / 
thought directed at 
an object 

requires bring the 
object into the 
attentional 
foreground… 

[Tekülve, 2020]
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New functions from higher-
dimensional fields

peaks at intersections of 
ridges: bind two dimensions

Ridge Intersections
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[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP, 2015]



New functions from higher-dimensional 
fields: coordinate transformsDNF Mechanism for Reference Frame Transformation
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Relational thinking

Perceptual grounding =  
bringing the target object 
into the attentional 
foreground

“red to the left of green”

target reference

[Lipinski, Sandamirskaya, Schöner 2009
… Richter, Lins, Schöner, Topics 2017]



into the reference and target field and enable these fields to track moving objects even if
spatial attention is currently focused elsewhere.

3.2. Attention

The core of the attentional system consists of two three-dimensional attention fields.
They are defined over the same dimensions as the two perception fields, but their activa-
tion remains below threshold unless additional input arrives from a feature attention field
or a spatial attention field.

Fig. 2. Architecture with activation snapshots while it is generating a phrase about a video. Fields are shown
as color-coded activation patterns; for three-dimensional fields, two-dimensional slices are shown. Node acti-
vation is denoted in opacity-coded circles. Spatial templates are illustrated as color-coded weight patterns
(bottom left). Excitatory synaptic connections are denoted by lines with arrowheads, inhibitory connections
by lines ending in circles. Transformations to and from polar coordinates are marked with a “T.” Steerable
neural mappings are denoted as diamonds.
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green

left

red

“red to the left of green”



Sequential behaviors or mental acts

behaviors/mental states are attractors

that resist change…

to induce change in sequential behavior/
thinking: induce an instability 



Conclusion
the CoS organizes the transition away from on ongoing 
behavior/mental state 

based on a signal from perception or from an inner 
state of a neural architecture that is predicted to be 
indicative of successful completion of the behavior/
mental act
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What skills do you learn?

academic skills
read and understand scientific texts 

write technical texts, using mathematical concepts and 
illustrations 



What skills do you learn?

mathematical skills
conceptual understanding of dynamical systems

capacity to read differential equations and illustrate them 

perform “mental simulation” of differential equations

use numerical simulation to test ideas about an equation



What skills do you learn?

interdisciplinary skills
handle concepts from a different discipline

handle things that you don’t understand 

sharpen sense of what you understand and what not 



… any fun? 


