Summary, conclusions and the theoretical commitments

Gregor Schöner gregor.schoener@ini.rub.de

Cognition in the wild...

- attention/gaze
- active perception/working memory
- action plans/decisions/ sequences
- goal orientation
- motor control
- background knowledge
- learning from experience

=> implied properties of the underlying neural processes

graded state

- continuous time
- continuous/intermittent link to the sensory and motor surfaces
- from which discrete events and categorical behavior emerge
- in closed loop
 - => states must be stable

Embodiment hypothesis

- all cognition is like soccer playing = has the properties of embodied cognition
- => there is no particular boundary up to which cognition is embodied and beyond which it is computational/symbolic

Five things needed to generate behavior

motors

- linked by a nervous system
- linked physically by a body
- an appropriately structured environment

Emergent behavior: this is a dynamics

feedforward nervous system

- + closed loop through environment
- => (behavioral) dynamics

Emergent cognition from neural dynamics

mental decisions, working memory..

What is "activation"?

- activation is an abstraction of the state of neurons, defined relative to sigmoidal threshold function
 - Iow levels of activation are not transmitted (to other neural systems, to motor systems)
 - high levels of activation are transmitted
 - threshold at zero (by definition)

Activation dynamics

activation evolves in continuous time

no evidence for a discretization of time, for spike timing to matter for behavior

Neural dynamics

stationary state=fixed point= constant solution

stable fixed point: nearby solutions converge to the fixed point=attractor

Neural dynamics

attractor structures ensemble of solutions=flow

Neuronal dynamics

$$\tau \dot{u}(t) = -u(t) + h + \text{ inputs}(t)$$

Neuronal dynamics with self-excitation

single activation variable with selfexcitation

representing a small population with excitatory coupling

 $\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$

Neuronal dynamics with self-excitation

 $\tau \dot{u}(t) = -u(t) + h + S(t) + c\sigma(u(t))$

Stability from neural dynamics

autonomous activation from interaction

$$\dot{u}(t) = -u(t) + h + \operatorname{input}(t) + \sigma(u(t))$$

Neuronal dynamics with competition

- two activation variables with reciprocal inhibitory coupling
- representing two small populations that are inhibitorily coupled

$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$$

$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$$

Neuronal dynamics with competition

Coupling: the rate of change of one activation variable depends on the level of activation of the other activation variable

coupling

 $\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$ $\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$

Neuronal dynamics with competition =>biased competition

after input is presented

Example motion perception: space of possible percepts

Example: movement planning: space of possible actions

Distribution of Population Activation (DPA)

Distribution of population activation = $\sum_{\text{neurons}} \text{tuning curve * current firing rate}$

Dynamic of neural fields

- peaks as attractors
- detection instability
- working memory
- selection

$$\tau \dot{u}(x,t) = -u(x,t) + h + s(x,t)$$

$$+ \int dx' w(x - x') g(u(x', t))$$

Attractors and their instabilities

- input driven solution (subthreshold)
- self-stabilized solution (peak, supra-threshold)
- selection / selection instability
- working memory / memory instability
- boost-driven detection instability

reverse detection instability

Noise is critical near instabilities

The detection instability stabilizes decisions

threshold piercing

detection instability

The detection instability leads to the emergence of events

the detection instability explains how a time-continuous neuronal dynamics may create macroscopic events at discrete moments in time

stabilizing selection decisions

reaction time (RT) paradigm

metric effect

[from Schöner, Kopecz, Erlhagen, 1997]

predict faster response times for metrically close than for metrically far choices Time course of selection decisions: Behavioral evidence for the graded and continuous evolution of decision

> timed movement initiation paradigm

[Ghez and colleagues, 1988 to 1990's]

infer width of preshape peaks in field

[Ghez et al 1997]

The memory trace

activation leaves a trace that may influence the activation dynamics later... in a simplest form of learning, the "bias " term of NN

Powerful in DFT because the detection instability may amplify the induced into peaks of activation

visual working memory

- has limited capacity
 - based on the number of objects...

about 4

probed by change detection, free recall

100 ms

500 ms Cued

12

6

6

6

[Luck,Vogel, 1997]

Change detection

the standard probe of working memory

Same/Different

[Johnson, et al. 2009]

3 layer model

[Thelen, et al., BBS (2001)]

[Dinveva, Schöner, Dev. Science 2007]

DFT of infant perseverative reaching

that is because reaches to B on A trials leave memory trace at B

[Dinveva, Schöner, Dev. Science 2007]

From neural to behavioral dynamics

From neural to behavioral dynamics

New functions from higherdimensional fields

- visual search:
- any action / thought directed at an object
- requires bring the object into the attentional foreground...

[Tekülve, 2020]

color cue

New functio dimensi

- visual search:
- any action / thought directed at an object
- requires bring the object into the attentional foreground...

[Tekülve, 2020]

New functio dimensi

- visual search:
- any action / thought directed at an object
- requires bring the object into the attentional foreground...

New functions from higherdimensional fields

peaks at intersections of ridges: bind two dimensions

[Slides adapted from Sebastian Schneegans,

see Schneegans, Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP, 2015]

New functions from higher-dimensional fields: coordinate transforms

Relational thinking

Perceptual grounding = bringing the target object into the attentional foreground

[Lipinski, Sandamirskaya, Schöner 2009 ... Richter, Lins, Schöner, *Topics* 2017] "red to the left of green"

"red to the left of green"

Sequential behaviors or mental acts

behaviors/mental states are attractors

that resist change...

to induce change in sequential behavior/ thinking: induce an instability

Conclusion

the CoS organizes the transition away from on ongoing behavior/mental state

based on a signal from perception or from an inner state of a neural architecture that is predicted to be indicative of successful completion of the behavior/ mental act

What skills do you learn?

academic skills

read and understand scientific texts

write technical texts, using mathematical concepts and illustrations

What skills do you learn?

mathematical skills

conceptual understanding of dynamical systems

capacity to read differential equations and illustrate them

perform "mental simulation" of differential equations

use numerical simulation to test ideas about an equation

What skills do you learn?

interdisciplinary skills

handle concepts from a different discipline

handle things that you don't understand

sharpen sense of what you understand and what not

