
ar
X

iv
:2

10
2.

03
26

9v
2

 [
cs

.D
B

]
 2

6
Fe

b
20

21

A Framework for Federated SPARQL�ery Processing over
Heterogeneous Linked Data Fragments

Lars Heling
lars.heling@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Maribel Acosta
maribel.acosta@rub.de
Ruhr-University Bochum

Bochum, Germany

ABSTRACT

Linked Data Fragments (LDFs) refer to Web interfaces that allow
for accessing and querying Knowledge Graphs on the Web. These
interfaces, such as SPARQL endpoints or Triple Pattern Fragment
servers, differ in the SPARQL expressions they can evaluate and the
metadata they provide. Client-side query processing approaches
have been proposed and are tailored to evaluate queries over in-
dividual interfaces. Moreover, federated query processing has fo-
cused on federations with a single type of LDF interface, typically
SPARQLendpoints. In this work,we address the challenges of SPARQL
query processing over federations with heterogeneous LDF inter-
faces. To this end, we formalize the concept of federations of Linked
Data Fragment and propose a framework for federated querying
over heterogeneous federations with different LDF interfaces. The
framework comprises query decomposition, query planning, and
physical operators adapted to the particularities of different LDF in-
terfaces. Further, we propose an approach for each component of
our framework and evaluate them in an experimental study on the
well-known FedBench benchmark. The results show a substantial
improvement in performance achieved by devising these interface-
aware approaches exploiting the capabilities of heterogeneous in-
terfaces in federations.

1 INTRODUCTION

The increasing number and size of Knowledge Graphs published
as Linked Data led to the development of different interfaces to
support querying Knowledge Graphs on the Web [7, 12, 15, 27].
These interfaces mainly differ in their expressivity, server availabil-
ity, and client cost as shown in Figure 1. The Linked Data Fragment
(LDF) framework provides a uniform way to describe these inter-
faces regarding their querying expressivity and the metadata they
provide [13, 27]. The query expressivity of these interfaces ranges
from triple patterns in Triple Pattern Fragment (TPF) servers to
the full fragment of SPARQL in SPARQL endpoints. To support
efficient querying, these developments also drove the research in
the area of client-side SPARQL query processing tailored to the
individual interfaces [3, 16, 26]. Therefore, most of the existing ap-
proaches focus on querying data from a single dataset or through a
federation of sources with the same interfaces. However, the prob-
lem of evaluating SPARQL queries over heterogeneous federations
of such LDF interfaces has not gained much attention thus far. To
devise efficient querying plans in this scenario, it is not sufficient
to combine and fuse existing solutions because the capabilities and
limitations of the interfaces have to be taken into account alto-
gether. An effective solution, thus, requires to re-define the notions
of the main tasks of federated engines – i.e query decomposition,

Linked Data Fragments
High Client Cost

High Availability

Low Expressivity

Low Client Cost
Low Availability

High Expressivity

Data Dump

Triple Pattern

Fragment (TPF)

Bindings-restricted Triple

Pattern Fragment (BRTPF) SPARQL Endpoint (EP)

Figure 1: Linked Data Fragment Spectrum (based on [27]).

planning, and execution – to integrate the different capabilities of
the interfaces in a single query plan.

In this work, we formalize federations of LDF interfaces and pro-
pose a framework that serves as a foundation for devising efficient
solutions for querying heterogeneous federations. At the core of
the framework, we present novel concepts for query decomposi-
tion, planning, and execution in heterogeneous federations. These
components include the definitions of (i) interface-compliant sub-
expressions and the semantics of their evaluation, (ii) interface-
aware query planning, and (iii) polymorphic physical operators
that implement different execution strategies according to the con-
tacted interfaces. To accompany our theoretical contributions, we
propose simple yet novel approaches to query heterogeneous LDF
federations. Each approach addresses the particularities of the in-
terfaces and is designed to reduce the query execution times and
the load on the members of the federations. Our results show the
effectiveness of our framework and illustrate how leveraging the
interfaces’ capabilities in a single plan can substantially improve
query execution. In summary, the contributions of this work are

• a general definition of Linked Data Fragment (LDF) federations,
• a framework for querying heterogeneous LDF federations ad-
dressing query decomposition, planning, and physical operators,

• a practical solution for each component of the framework, and
• an experimental evaluation of a prototypical implementation of
the solutions on heterogeneous federations.

The remainder of this work is structured as follows. Section 2 presents
a motivating example, and in Section 3, we present our definition
of federations of LDFs. Our framework is presented in Section 4
and evaluated in Section 5. We discuss related work in Section 6
and conclude our work in Section 7.

2 MOTIVATING EXAMPLE

As a motivating example, consider the query to get American Pres-

idents, the political party they are a member of as well as their pre-

decessors and successors shown in Listing 1.

http://arxiv.org/abs/2102.03269v2

arXiv Preprint, 2021 Heling and Acosta

Listing 1: Example query. Prefixes as in http://prefix.cc

SELECT ∗WHERE {
?x wdt:P39 wd:Q11696 . # C?1
?x wdt:P102 ?party . # C?2
?y owl:sameAs ?x . # C?3
?y dbo:predecessor ?predecessor . # C?4
?y dbo:successor ?successor . } # C?5

Let us assume, we want to evaluate the query over a federation
that consists of the SPARQL endpoint of Wikidata1 and the Triple
Pattern Fragment (TPF) server [27] ofDBpedia2. TheWikidata end-
point provides solutions to triple patterns C?1, C?2, C?3 and the DB-
pedia TPF server to C?3, C?4, and C?5. As the members of the feder-
ation implement different Linked Data Fragment (LDF) interfaces,
we denote such a federation heterogeneous. In this example, we are
not able to apply an existing query decomposition approach from
query processing over SPARQL endpoint federations, as these ap-
proaches do not consider the capabilities of the LDF interfaces. For
instance, FedX [24] would group triple patterns C?4 and C?5 into a
subquery which is not compliant with the DBpedia TPF interface.
On the contrary, a naive decomposition that evaluates the query
on the triple pattern level at the relevant sources would be compli-

ant with the interfaces in the federation, since they are all able to
evaluate triple patterns. However, such a decomposition leads to
inefficient query plans on SPARQL endpoints as they produce an
excessive number of requests on the server and thus, lead to long
execution times. In our example, this approach would fail to eval-
uate the subexpression (C?1 And C?2) at the Wikidata endpoint.
Their individual evaluation at the endpoint leads to an overhead in
requests and intermediate results transferred that could be avoided.
The example illustrates the challenges that arise in heterogeneous
federations and motivates our research to address those challenges.
In this work, we propose a framework that is tailored to leverage
the capabilities of the different interfaces in heterogeneous feder-
ations. Based on this framework, our implementation reduces the
number of requests by almost 25% leading to a tenfold decrease
in query execution time over the naive approach for the example
query.

3 FEDERATIONS OF LINKED DATA
FRAGMENT SERVICES

Following existing works [13, 27], we introduce a formalization
of Linked Data Fragment (LDF) interfaces based on the SPARQL
expressions they are able to evaluate and the metadata they pro-
vide. Verborgh et al. [27] define a Linked Data Fragment (LDF) for
an RDF graph � as a tuple consisting of a URI, a selector func-
tion, a set of RDF triples that are the result of applying the selec-
tor function over � , metadata in the form of a set of RDF triples,
and a set of hypermedia controls. Based on this work, Hartig et al.
[13] propose a formal framework for comparing LDF interfaces in
terms of expressiveness, complexity, and performance when eval-
uating SPARQL queries over different interfaces. The concept of
LDF interfaces by Hartig et al. comprises the following: i) a no-
tion of a server language to differentiate between different capabil-
ities of LDF interfaces, and ii) an evaluation function in which an
LDF interface provides a set of SPARQL solution mappings upon

1https://query.wikidata.org/sparql
2http://fragments.dbpedia.org/2016-04/en

a request. We adapt the server language definition from [13] to be
based on the SPARQL expressions an LDF interface can evaluate.
Therefore, we first revise the SPARQL expressions considered in
the literature.

Let the sets of RDF terms* , �, and ! be pairwise disjoint sets of
URIs, blank nodes, and Literals, and+ be a set of variables disjoint
from * , �, and !. A triple (B, ?, >) ∈ (* ∪ �) ×* × (* ∪ � ∪ !) is
called an RDF triple. A set of RDF triples is an RDF graph� and the
universe of RDF graphs is denoted as G. Following the notation by
Peréz et al. [18] and Schmidt et al. [23], SPARQL expressions are
constructed using the operators And, Union, Optional, Filter,
and Values and can be defined recursively as follows.

Definition 3.1 (SPARQL Expression). A SPARQL expression is an
expression that is recursively defined as follows.

(1) A triple pattern C? ∈ (* ∪+) × (* ∪+) × (* ∪ ! ∪+) is a
SPARQL expression [18],

(2) if %1 and %2 are SPARQL expressions, then the expressions
(%1 And %2), (%1 Union %2) and (%1 Optional %2) are
SPARQL expressions (conjunctive expression, union expres-

sion, optional expression) [18],
(3) if % is a SPARQL expression and ' is a SPARQL filter condi-

tion, then the expression % Filter ' is a SPARQL expression
(filter expression) [18],

(4) if % is a SPARQL expression and � is a SPARQL values dat-
ablock, the expression % Values � is a SPARQL expression
(values expression), and

(5) if % is SPARQL expression and (⊂ + is a set of variables, the
expression Select((%) is an expression (select query) [23].

Furthermore, we denote the universe of SPARQL expressions as
P and E0AB (%) ⊂ + as the set of variables in the expression % . We
can define the interface languages of different LDF interfaces by
means of the fragment of SPARQL expressions they can evaluate.

Definition 3.2 (Interface Language). Let L be the universe of in-
terface languages, an interface language ! ∈ L is the fragment of
SPARQL expressions that an interface can evaluate.

Moreover,we denote% ∈ ! if a SPARQLexpression % is a SPARQL
expression that is part of an interface language !. Common inter-
face languages can, thus, be defined in the following way.

• !CoreSparql: Any SPARQL expression defined in Def. 3.1.
• !Bgp: Conjunctive expressions: (%1 And %2) where %1 and
%2 are either conjunctive expressions or triple patterns,

• !Tp: Triple patterns.
• !Tp+Values: Triple patterns and values expressions of the
form % Values � , where % is a triple pattern.

The definition of interface languages based on SPARQL expression
also allows for defining containment relations between the differ-
ent languages according to their expressiveness.

Definition 3.3 (Interface Language Containment). Let !1 and !2
be two interface languages, we say that !1 is contained in !2, if all
SPARQL expressions in !1 are also in !2:

!1 ⊆ !2, if ∀% ∈ !1 ⇒ % ∈ !2 .

For example, we can state the following containment relations
for the previously introduced languages: !Tp ⊆ !BGP ⊆ !CoreSparql,

http://prefix.cc
http://fragments.dbpedia.org/2016-04/en

A Framework for Federated SPARQL �ery Processing over Heterogeneous Linked Data Fragments arXiv Preprint, 2021

or !Tp ⊆ !Tp+Values. With this formalism, we can define the lan-
guages of common LDF interfaces and compare them according to
their expressiveness. Triple Pattern Fragment (TPF) servers sup-
port querying triple patterns (!Tp) [27], bindings-restricted TPF
server support triple patterns and Values expressions (!Tp+Values)
[12], and SPARQL endpoint support any expression (!CoreSparql).

To complement the definition of LDF interfaces, we introduce
the concept of interface metadata. For a SPARQL expression % , an
interface may provide interface-specific metadata" (%) describing
the data obtained from the RDF graph. The interface metadata may
range from simple statistics such as the number of expected re-
sults to more elaborate metadata describing statistics, provenance,
and licensing information. Similar to [27], we assume the meta-
data provided for a given expression % to be an RDF graph, that is
" : P → G. Examples for common interface metadata are:

• SPARQL endpoints"Ep:" (%) = ∅, ∀% ∈ !CoreSparql,
• Triple Pattern Fragments "Tpf:" (%) is an RDF graph that
contains an estimate of the number of triples that match the
expression % , ∀% ∈ !Tp,

• Bindings-restricted Triple Pattern Fragments"brTpf:" (%)
is an RDF graph that contains an estimate of the number of
triples that match the expression % , ∀% ∈ !Tp+Values.

Besides enabling a more fine-grained distinction between LDF in-
terfaces, the metadata may impact the potential querying strate-
gies employed by a client. Finally, combining interface language
and metadata, we define a Linked Data Fragment interface as fol-
lows.

Definition 3.4 (Linked Data Fragment Interface). A Linked Data
Fragment interface is a 2-tuple 5 = (!5 , "5), where

• !5 ∈ L, the interface language,
• "5 : P → G, the interface metadata for an expression % .

Conceptually, we distinguish LDF interfaces which define the
interface language and metadata, and LDF services, which are Web
servers that implement a specific interface.

Definition 3.5 (Linked Data Fragment Service). A Linked Data
Fragment service 2 ∈ * is a Web service that supports the eval-
uation of SPARQL expressions and provides metadata according
to the LDF interface 8=C (2) = (!2 , "2) that it implements.

We reuse the function 4? : * → G [6] that maps an LDF service
to the RDF graph 4? (2) available at the service. The evaluation of
a SPARQL expression % over an LDF service 2 is then given as

J%K2 :=

{

J%K4? (2) , if % ∈ !2 .

∅, otherwise.
(1)

Note the difference in the subscript 2 and 4? (2) to distinguish
between solution mappings produced by an LDF service J·K2 re-
garding its interface language and the solution mappings for eval-
uating any expression over the graph available at the LDF service
J·K4? (2) . Combining these previous definitions, we define the con-
cept of federations of LDF services as follows.

Definition 3.6 (Federation of Linked Data Fragment Services). A
Federation of Linked Data Fragment services is a 3-tuple � = (�, 8=C, 4?),
where

• � = {21, . . . , 2=} ⊂ * , a set of URIs for LDF services,

• 8=C , a function that maps an LDF service to its interface,
• 4? , a function that maps each LDF service to the graph avail-
able at that service.

Federations in which all LDF services implement the same LDF
interfaces are calledhomogeneous, and heterogeneous otherwise. For
practical reasons, in the remainder of this work, we just consider
graphs in the federation without blank nodes and focus on fed-
erations in which all members are at least able to evaluate triple
patterns of any form: !TP ⊆ !2 , ∀2 ∈ � . 3

Example 3.7. We can define the federation from our motivating
example as �4G = ({21, 22}, 8=C, 4?) with 21 = wikidata:sparql1 ,
22 = dbpedia:tpf2 , 8=C (21) = (!CoreSparql, "Ep), 8=C (22) = (!Tp,
"Tpf), 4? (21) = �,8:830C0 and 4? (22) = ���?4380.

Following the notation by Acosta et al. [2], we denote the evalu-
ation of a SPARQL expression over a federation of LDF interfaces
� as J·K� and define the semantics in the following way.

Definition 3.8 (Set Semantics of SPARQL Query Processing over

LDF Service Federations). Given a SPARQL expression % and a fed-
eration � = (�,8=C, 4?), the result set of evaluating % over � is
given as

J%K� := J%K� , with� =

⋃

∀2∈�

4? (2)

4 FEDERATED QUERY PROCESSING OVER
HETEROGENEOUS FEDERATIONS

In the presence of heterogeneous LDF service federations, novel
challenges arise that cannot be addressed by existing approaches.
Therefore, we propose a framework for heterogeneous federations
to address the central components of federated query processing:
(§4.1) query decomposition, (§4.2) query planning, and (§4.3) phys-
ical operators. Furthermore, for each component of the framework,
we propose an approach aiming to obtain efficient query plans.

4.1 Query Decomposition

The goal of query decomposition is grouping the query into subex-
pressions such that the evaluation of the subexpressions over the
members of the federation minimizes execution time while ensur-
ing that all expected answers are produced. Existing decomposi-
tion approaches assume that all federation members are able to
evaluate any SPARQLexpression. Since this assumption is not valid
in heterogeneous federations, we propose interface-compliant query
decompositions and their evaluation over such federations.

Given a given SPARQL query % and a federation � = (�, 8=C, 4?),
query decomposition aims to group a query into subexpressions
such that they can be answered by the relevant sources in the fed-
eration. The first step to achieve this goal is source selection. That
is, select the relevant sources A (C?8) for all triple patterns C?8 in
% , with A (C?8) = {2 ∈ � | JC?8K4? (2) ≠ ∅}. Because we require
all LDF services to at least evaluate triple patterns of any form
(!TP ⊆ !2 , ∀2 ∈ �), in principle, the relevant sources can be se-
lected by evaluating each triple pattern at each service. Typically,
the capabilities of the services allowmore efficient source selection

3This means that we do not include data dumps, even though they are also considered
Linked Data Fragments in other works [13, 27].

arXiv Preprint, 2021 Heling and Acosta

strategy implementations, such as Ask queries for SPARQL end-
points, leveraging the metadata (u, void:triples, 2=C) ∈ " (C?8)
for TPF and brTPF servers, or using pre-computed data catalogues.

Once the relevant sources are identified, the query engine de-
composes the query into subexpressions to be evaluated at the ser-
vices in the federations. If there exists a triple pattern C? in a basic
graph pattern (BGP) % with no relevant source A (C?) = ∅, the eval-
uation of % over the federation is the empty set. In the following,
we focus on query decompositions for BGPs where all triple pat-
terns have at least one relevant source. For simplicity, we extend
notation and consider a BGP % = (C?1 And . . . And C?=) also as a
set of = triple patterns: % = {C?1, . . . , C?=}.

Definition 4.1 (Query Decomposition). Given a BGP % and an
LDF service federation � = (�, 8=C, 4?), a query decomposition
� (%, �) = {31, . . . , 3<} is a set of tuples 38 = ((�8 , (8) where

• (�8 is a subexpression of % , and
• (8 ⊆ � a non-empty the subset of services over which (�8
is evaluated, such that

⋃

8=1,...,=
(�8 = % .

Because the query decomposition as such does not consider the
interface language of the services, it is possible that for a valid
query decomposition �: ∃38 ∈ � : ∃2 ∈ (8 : (�8 ∉ !2 . Consider-
ing the query from our motivating example, a valid decomposition
would be� (%, �) = {((C?1And C?2), {21}), ((C?3 And C?4 And C?5), {22})},
even though 22 is a TPF server that can only evaluate triple pat-
terns. Therefore, we introduce an evaluation function \ for the
interface-compliant evaluation of SPARQL expressions.

Definition 4.2 (Interface-compliant Evaluation of an Expression).

Given a BGP % and an LDF service 2 ∈ * , the interface-compliant
evaluation of % over 2 is given as follows.

\2 (%) :=

{
J%K2 if % ∈ !2 . (2)

J%1K2 ⊲⊳ . . . ⊲⊳ J%; K2 otherwise. (3)

For some %1, . . . , %; with % = (%1 And . . . And %;) in Equation
(3), such that the following conditions hold:

• Equivalence: \2 (%) ≡ J%K4? (2)
• Compliance: %8 ∈ !2 , ∀%8 in {%1 . . . %; }

The intuition of the interface-compliant evaluation is as follows.
If the BGP % is in the language of the service, then % can be eval-
uated directly at the service. Otherwise, the original expression %

is split into subexpressions, such that each subexpression is in the
language of the service. As a result, joining the solutions of evalu-
ating the individual subexpressions at the service yields the same
solutions as evaluating % over the graph of the service 4? (2).We de-
note the number of subexpressions in the interface-compliant eval-
uation as |\2 (%) |. A compliant evaluation of(� = (C?3 And C?4 And C?5)
from our previous example at the DBpedia TPF server 22 would be
\2 ((�) = JC?3K22 ⊲⊳ JC?4K22 ⊲⊳ JC?5K22 . With this notion, we define
the interface-compliant evaluation of a query decomposition.

Definition 4.3 (Interface-compliant Evaluation of a Query Decom-

position). Given a query decomposition� (%, �) for the BGP % and
federation � , the evaluation of % following the query decomposi-
tion \� (%,�) (%) is given as the conjunction (⋈) of the subexpres-
sions (�8 evaluated at all (∪) services in (8 :

\� (%,�) (%) := ⋈((�8 ,(8) ∈� (%,�) (∪2 9 ∈(8 \2 9 ((�8))

After defining query decompositions and the evaluation of such
decompositions that is compliant with the interfaces of the LDF
services in the federations, the problem of finding a suitable query
decomposition for a given query arises. The common goal of query
decomposition approaches is finding a decomposition that yields
complete answers according to the assumed semantics, while the
cost of executing the decomposition by the query engine is mini-
mized [10, 28]. However, these approaches do not explicitly mea-
sure the expected answer completeness of query decompositions.
For instance, in [28] the answer completeness is encoded implic-
itly in the query decomposition cost by considering the number of
non-selected endpoints: if fewer relevant endpoints are contacted
according to a decomposition, its cost is higher and vice versa. Ex-
tending existing approaches, we propose the concept of query de-
composition density as a measure to estimate and compare the ex-
pected answer completeness of different decompositions. In con-
trast to [28], our densitymeasure not only considers the non-selected
endpoints but also how triple patterns are grouped into subexpres-
sions that are evaluated jointly at the services.

Query Decomposition Density. The query decomposition density
is a proxy for the expected answer completeness of a decomposi-
tion. We define density as a relative measure with respect to a de-
composition that guarantees answer completeness, i.e., the atomic

decomposition. The atomic decomposition evaluates every single
triple pattern in a subexpression at all relevant sources and thus,
guarantees answer completeness.

Definition 4.4 (Atomic Decomposition). Given a federation � =

({21, . . . , 2: }, 8=C, 4?) and a BGP % = (C?1 And . . .And C?=), the
atomic decomposition is given as

�∗ (%, �) = {(C?1, A (C?1)), . . . , (C?=, A (C?=)}.

Lemma 4.5. The evaluation of % following �∗ (%, �) yields com-

plete answers, that is:

\�∗ (%,�) (%) = J%K� (4)

Proof. We provide a direct proof by assuming the left-hand
side in Eq. (4). Since we require all services to be able to evalu-
ate triple patterns and �∗ is composed of triple patterns only, the
evaluation of �∗ (%, �) is given by Def. 4.2 and Def. 4.3 as

\�∗ (%,�) (%) := ⋈((�8 ,(8) ∈�∗ (%,�) (∪2 9 ∈(8 J(�8K2 9) (5)

with (�8 = C?8 . By Def. 4.4, (8 corresponds to the relevant sources
of C?8 , which is given by A (C?8) = {A81, . . . , A8<}. Next, we expand
the Eq. (5) with (8 in the following way.

(JC?1KA11 ∪ · · · ∪ JC?1KA1;) ⊲⊳ . . . ⊲⊳ (JC?=KA=1 ∪ · · · ∪ JC?=KA=>) (6)

Next, we show that we can evaluate all triples patterns at all
sources (relevant and non-relevant). By definition, we have that
the evaluation of a triple pattern over a non-relevant source is the
empty set: JC?8K2 = ∅, ∀2 ∉ A (C?8). Further, since (JC?8KA8 9 ∪ ∅) =
JC?8KA8 9 , we can expand Eq. (6) to

(JC?1K21 ∪ · · · ∪ JC?1K2:) ⊲⊳ . . . ⊲⊳ (JC?=K21 ∪ · · · ∪ JC?=K2:) (7)

A Framework for Federated SPARQL �ery Processing over Heterogeneous Linked Data Fragments arXiv Preprint, 2021

According to Eq. (1) and the fact that triple patterns are in the
interface language of all services, we have JC?8K2 9 = JC?8K4? (2 9)
and can rewrite Eq. (7) as

(JC?1K4? (21) ∪ · · ·∪JC?1K4? (2:)) ⊲⊳ . . . ⊲⊳ (JC?=K4? (21) ∪ · · ·∪JC?=K4? (2:)) (8)

Because we assume set semantics, the following equality holds4

(JC?8K4? (21) ∪ · · · ∪ JC?8K4? (2:)) = JC?8K ⋃

2∈�
4? (2) (9)

With Eq. (9) we can reformulate Eq. (8) as

JC?1K ⋃

2∈�
4? (2) ⊲⊳ . . . ⊲⊳ JC?=K ⋃

2∈�
4? (2) (10)

and according to Def. 3.8 and Definition 4 in [23], we have the
following equality:

JC?1K ⋃

2∈�
4? (2) ⊲⊳ . . . ⊲⊳ JC?=K ⋃

2∈�
4? (2)

= JC?1K� ⊲⊳ . . . ⊲⊳ JC?=K�

= JC?1 And . . . And C?=K�

= J%K�
�

Another type of structure that preserves completeness are ex-
clusive groups [24], which are subexpressions of a query that can
only be answered by a single source. They are defined as follows.

Definition 4.6 (Exclusive Group). Given a federation � = (�,8=C, 4?),
a BGP - is called an exclusive group, if for all triple patterns C?8 ∈
- there exists only one relevant source 2- ∈ � :

- = {C?8 | A (C?8) = {2- }}

We represent query decompositions by decomposition graphs

and compute the relative density with respect to the decomposi-
tion graph of the atomic decomposition �∗ (%, �) as a measure of
completeness. More edges in the graph of a given decomposition
yield a higher density and, thus, expected answer completeness.

Definition 4.7 (Query Decomposition Graph). Let � (%, �) be a
query decomposition for the BGP % and federation � = (�, 8=C, 4?).
The decomposition graph�� (%,�) = (+ , �) of � (%, �) is:

The set of vertices + = {C?8 ∈ %} ∪ {A (C?8) | ∀C?8 ∈ %},
The set of edges � ⊆ + ×+ are given by the following rules.

Rule I Add an edge between a triple pattern C?8 ∈ % and a
relevant source A8 9 ∈ A (C?8), if C?8 is part of a subexpres-
sion (� that is evaluated at A8 9 : ∃((�, () ∈ � (%, �) with
C?8 ∈ (� ∧ A8 9 ∈ (.

Rule II Add an edge between two triple patterns C?8 and C? 9 , if
they do not co-occur in a subexpression (� in�: (C?8 , C? 9) ∈
�, if � (� ∈ � (%, �) : C?8 ∈ (� ∧ C? 9 ∈ (�.

4We prove this equality by contradiction. Consider � =
⋃

2∈� 4? (2) . Assume that
there exists a solution mapping ` s.t. ` ∈ (JC?8K4? (21) ∪ · · · ∪ JC?8K4? (2:)) and

` ∉ JC?8K� . This means that the evaluation of a subexpression over some source,
e.g. JC?8K4? (2 9) , is producing additional answers w.r.t. the evaluation over the union

of all RDF graphs. This could only happen if 4? (2 9) * � , however, this contradicts
the definition of � . Now assume that ` ∈ JC?8K� but ` ∉ (JC?8K4? (21) ∪ · · · ∪
JC?8K4? (2:)) . Without loss of generality, assume that ` was produced frommatching

an RDF triple C ∈ � s.t. C ∉ 4? (2) for all services 2 ∈ � in the federation. This is
again a contradiction with the definition of� .

Rule III Add an edge between two triple patterns C?8 and C? 9 , if
they are part of the same exclusive group- : (C?8 , C? 9) ∈
�, if C?8 ∈ - ∧ C? 9 ∈ - .

Rule IV Add an edge between all triple patterns, if the decompo-
sition is composed of just a single subexpression to be
evaluated at one source : � (%, �) = {((�, ()} ∧ |(| = 1.

The rules for adding edges to the graph are designed in such a
way that the maximum number of edges is present for the decom-
position graph of the atomic decomposition ��∗ (%,�) = (+ ∗, �∗).
This is because each triple pattern is connected to each relevant
source (Rule I) and there is an edge between each pair of triple
patterns (Rule II). If a decomposition contacts fewer sources, the
decomposition graph will have fewer edges according to Rule I.
Further, if more triple patterns are grouped together into subex-
pressions in a query decomposition, its graph will also have fewer
edges according to Rule II. The rationale of this rule is that group-
ing triple patterns could potentially miss solution mappings that
are only produced by joining data from two different sources. The
remaining rules are introduced to handle the following exceptions.
Rule III handles exclusive groups: triple patterns of exclusive groups
can be grouped into a single subexpression without negatively im-
pacting the answers completeness. Finally, Rule IV handles the fol-
lowing cases: if the decomposition only has a single subexpression
that is evaluated at a single source, it does not have an impact on
the completeness how these triple patterns are grouped into subex-
pressions of the decomposition. In contrast to Rule III, in Rule IV
even though (� is just evaluated at a single source, (� does not
need to be an exclusive group and can have other relevant sources
that are not in (. By these rules, we can measure the density of a
decomposition graph relative to the maximum number of possible
edges as given by the atomic decomposition graph.

Definition 4.8 (Density of a Query Decomposition). Given a query
decomposition � (%, �) and the corresponding graph �� (%,�) =

(+ , �), the density 34=B8C~ (� (%, �)) is computed as:

34=B8C~ (� (%, �)) =
|� |

|�∗ |
∈ [0, 1] .

Theorem 4.9. The evaluation of a query decomposition � (%, �)
over a federation � yields complete answers, if 34=B8C~ (� (%, �)) = 1:

34=B8C~ (� (%, �)) = 1 =⇒ \� (%,�) (%) = J%K� (11)

Proof. We prove the implication in Eq. (11) by contradiction.
We assume 34=B8C~ (� (%, �)) = 1 and \� (%,�) (%) ≠ J%K� . Accord-
ing to Def. 4.8, 34=B8C~ (� (%, �)) = 1 holds only if the decomposi-
tion graph of � (%, �) has the same number of edges as the decom-
position graph of the atomic decomposition: |� | = |�∗ |. Following
Def. 4.4 and Def. 4.7, in �∗ there is an edge between each triple pat-
tern and its relevant sources (Rule I) and an edge between every
pair of triple patterns (Rule II). The maximum number of edges is

|�∗ | =
∑

C?8 ∈%

A (C?8)

︸ ︷︷ ︸

Rule I

+ 0.5 · |% | · (|% | − 1)

︸ ︷︷ ︸

Rule II

.

Since we prove completeness, we focus on the case when a de-
composition yields fewer answers: \� (%,�) (%) ⊂ J%K� . This can
occur in two cases:

arXiv Preprint, 2021 Heling and Acosta

Case 1: A part of the query is not evaluated at a relevant source.
Without loss of generality, consider that a triple pattern
C?8 ∈ % is not evaluated at a relevant source 2 9 and JC?8K2 9
contributes to the answers of % . In this case, the decompo-
sition graph �� (%,�) does not have an edge (C?8 , 2 9) ac-
cording to Rule I and, therefore, |� | < |�∗ |. This contra-
dicts the assumption that 34=B8C~ (� (%, �)) = 1.

Case 2: Triple patterns with several relevant sources are grouped
into subexpressions. Consider the solution mapping ` ∈
J%K� , with ` = {`1 ∪ `2 | `1 ∈ JC?1K21 ∧ `2 ∈ JC?2K22 , `1 ∼
`2}, and without loss of generality assume that A (C?1) =
A (C?2) = {21, 22}. Such a solutionmapping ` does not exist
in \� (%,�) (%) in the case that the two triple patterns are
evaluated jointly at the source 21 and 22, that is

((C?1 And C?2), {21, 22}) ∈ � (%, �)

In this case, the edge (C?1, C?2) does not exist in � accord-
ing to Rule II but the edge exists in �∗ because

(C?1, {21, 22}), (C?2, {21, 22}) ∈ �∗ (%, �)

Therefore, we have |� | < |�∗ | which contradicts the as-
sumption that 34=B8C~ (� (%, �)) = 1.

�

We can prove that a decomposition density of 1 implies answer
completeness, however, the inverse (i.e., 34=B8C~ (� (%, �)) = 1 ⇐=

\� (%,�) (%) = J%K�) cannot be guaranteed. For example, there
might be a triple pattern C?1 with two relevant sources 21 and 22
with just source 21 contributing to the final answers. A decompo-
sition � (%, �) where C?1 is not evaluated at 22 might still yield
complete answers but 34=B8C~ (� (%, �)) < 1 according to Rule I.
Therefore, the decomposition density is a measure for the expected
completeness based on the assumptions that answer completeness
is negatively affected while i) contacting fewer relevant sources,
and ii) grouping triple patterns that can be evaluated at several
sources into subexpressions. Estimating the true completenessmore
accurately would require additional information on the data pro-
vided by the LDF services than just the relevant sources. Such ad-
ditional information could be used to improve the effectiveness of
our measure, for example by weighting the edges in the decom-
position graph according to their importance. However, such an
extension is out of the scope of this work.

Example 4.10. Let us consider the BGP % = (C?1 And C?2 And

C?3 And C?4) from the SPARQL query of the motivating example
in Section 2 and the federation �4G = ({21, 22}, 8=C, 4?). The rele-
vant sources are A (C?1) = {21}, A (C?2) = {21}, A (C?3) = {21, 22},
A (C?4) = {22}. The atomic query decomposition is �∗ (%, �) =

{(C?1, {21}), (C?2, {21}), (C?3, {21, 22}), (C?4, {22})} and the corre-
sponding graph is shown in Fig. 2a. In % , the triple patterns C?1 and
C?2 form an exclusive group, as they are both only answerable by
service 21. Therefore, we can combine them in a single subexpres-
sion without reducing the expected completeness in �1 (%, �) =

{((C?1 And C?2), {21}), (C?3, {21, 22}), (C?4, {21})}. The correspond-
ing graph shown in Fig. 2b is identical to��∗ (%,�) and thus its ex-

pected completeness is 34=B8C~ (�1(%, �)) =
11
11 = 1. Alternatively,

we can choose to evaluate C?3 only at service 22 with �2 (%, �) =

{((C?1 And C?2), {21}) ((C?3 And C?4), {22})} (Fig. 2c) or evalu-
ate C?3 at service 21 with �3 (%, �) = {((C?1 And C?2 And C?3),
{21}), (C?4, {22})} (Fig. 2d). Since both corresponding decomposi-
tion graphs have fewer edges than the graph of��∗ (%,�) , we expect
fewer answers because: 34=B8C~ (�∗(%, �)) > 34=B8C~ (�2(%, �)) >
34=B8C~ (�3(%, �)).

Query Decomposition Cost. The example illustrates how query de-
compositions can have different levels of expected completeness.
Ideally, one would always choose the atomic query decomposition
to guarantee complete answers. However, there are also costs as-
sociated with the evaluation of a decomposition that are induced
by the amount of transferred data for intermediate results during
query execution as well as the number of services that need to
be contacted. In federations of SPARQL endpoints, both goals are
achieved by i) decomposing the query into as few subexpressions
as possible, and ii) reducing the number of endpoints contacted by
selecting just those sources which are likely to contribute to the
final answer of the query. In contrast, when facing heterogeneous
federations of LDF services, the languages of the LDF services need
to be considered as well. The reason is that the interface-compliant
evaluation might yield additional costs in cases when subexpres-
sions cannot be evaluated by a service as a whole. There might
be several interface-compliant evaluations for an expression be-
cause the original expression could be split in different ways into
subexpressions that can be evaluated by the service. We denote an
interface-compliant evaluation of an expression % with the mini-
mal number of subexpressions as \∗2 (%), which is the evaluation
of % that requires separating the expression into the fewest subex-
pression to be interface-compliant. Note that |\∗2 (%) | = 1, if % ∈ !2 .

We propose a lower bound for query decomposition cost that
considers the number of services contacted and the number of
subexpressions in an interface-compliant evaluation of the decom-
position. In particular, this lower bound combines: (1) The number
of sources |(| to be contacted per subexpression. (2) The number of
additional subexpressions (|\∗2 ((�) | − 1) required for an interface–
compliant evaluation for each subexpression and all corresponding
sources.

Definition 4.11 (Cost of a Query Decomposition). The cost of eval-
uating a query decomposition � (%, �) is given by

2>BC (� (%, �)) =
∑

((�,() ∈� (%,�)

|(|+
∑

((�,() ∈� (%,�)∧∀2∈(

(|\∗2 ((�) |−1).

Note that the proposed query decomposition cost provides a
lower bound for evaluating a decomposition while computing the
exact cost requires knowledge about the technical configurations
of the services in the federation. For instance, obtaining solutions
from TPF servers might require several requests for paginating the
results, while a single request might suffice on a SPARQL endpoint.

Example 4.12. Let us consider the decomposition�2 (%, �) from
Example 4.10 and the subexpression (�1 = (C?1 And C?2 And C?3)
to be evaluated at source (1 = {21}. In contrast to its density, the
cost of evaluating �2 (%, �) depends on the LDF interface 21 imple-
ments. If 21 is a SPARQLendpoint, i.e. 8=C (21) = (!CoreSparql, "Ep),
the evaluation J(�1K21 is interface-compliant and thus |\∗21 ((�1) | =
1. However, if 21 is a TPF server, i.e. 8=C (21) = (!Tp, "Tpf), the
interface-compliant evaluation of (�1 would require evaluating

A Framework for Federated SPARQL �ery Processing over Heterogeneous Linked Data Fragments arXiv Preprint, 2021

(a) Graph��∗ (%,�) (b) Graph��1 (%,�) (c) Graph��2 (%,�) (d) Graph��3 (%,�)

Figure 2: Query decomposition graphs for decompositions from Example 4.10. The rules for adding edges are indicated in

green.

the triple patterns individually with\∗21 ((�1) = JC?1K21 ⊲⊳ JC?2K21 ⊲⊳
JC?3K21 and thus |\∗21 ((�1) | = 3. Hence, the evaluation at the TPF
server requires two additional subexpressions to be evaluated. This
may lead to higher execution costs as there are potentially more
intermediate results to be transferred and the service needs to be
contacted at least two additional times.

Finally, we can combine both the density and cost of a query de-
composition into the query decomposition problem which aims to
obtain a query decomposition that maximizes the expected answer
completeness while minimizing the execution cost.

Definition 4.13 (Query Decomposition Problem). Given a BGP %

and a federation � = (�, 8=C, 4?), the query decomposition prob-
lem is finding a query decomposition � (%, �) that minimizes the
execution cost while maximizing its density:

� (%, �) = argmax34=B8C~ (� (%, �)) ∧ argmin 2>BC (� (%, �))

Note that this problem is a multi-objective optimization prob-
lem, where there might not be a single best solution but rather a
set of optimal trade-off solutions, i.e. Pareto-optimal solutions.

Example 4.14. Consider two alternative example federationswhich
differ in the LDF interfaces of their services 21 and 22:

�1 = ({21, 22}, 8=C, 4?) with 8=C (21) = 8=C (22) =
(!CoreSparql, "Ep).
�2 = ({21, 22}, 8=C, 4?) with 8=C (21) = (!Tp, "Tpf) and 8=C (22) =
(!CoreSparql, "Ep).

The density and cost for the query decompositions are given in the
following table, where the best values are indicated in bold.

�1 �2

�∗ �1 �2 �3 �∗ �1 �2 �3
∑

|(| 5 4 2 2 5 4 2 2
∑

(|\ ∗
2 ((&) | − 1) 0 0 0 0 0 1 1 2

2>BC 5 4 2 2 5 5 3 4

2><? 1 1 9
11

8
11 1 1 9

11
8
11

The decomposition cost in the example shows how both the
number of subexpressions and the number of sources they are eval-
uated at (

∑

|(|) aswell as the capabilities of the interface
∑

(|\∗2 ((�) |−

1) have an impact on the overall cost. Further, it shows the trade-
off between the two conflicting objectives density and cost. In both
federations, the decompositions that yield the highest density also
have the highest cost and vice versa. Approaches to solving the
query decomposition problem need to determine solutions that
yield a suitable (depending on the use case) trade-off between the
number of answers and execution cost. According to Def. 4.8, two
main factors impact on the density. First, the triple patterns should
be evaluated at as many relevant sources as possible (Rule I). Sec-
ond, the more fine-grained the subexpressions for triple patterns
that have several relevant sources in common, the higher the den-
sity (Rule II). Similarly, the costs of decompositions originate from
twomain aspects. First, contacting fewer sourceswith larger subex-
pressions will reduce costs and, second, decomposing the query
into subexpressions that are interface-compliant will reduce the
cost. One way of pruning sources without affecting answer com-
pleteness is to determine the relevant sources that do not contribute
to the final answers of the query [20]. However, this can be very
challenging for queries with triple patterns that contain terms from
common ontologies (e.g., RDF/S, OWL), as they can be answered
by many of the sources in the federation. For this purpose, some
approaches rely on pre-computed statistics/catalogues [17, 20, 21]
and/or the query capabilities of SPARQL endpoints, such as Ask
queries [28].We propose a query decomposition approach that can
be combined with a heuristic-based source pruning method and
can be applied for any heterogeneous federation.

QueryDecompositionApproach.We propose an approach that
does not rely on specific statistics about the members and has two
central goals: (1) maximize the density by evaluating all triple pat-
terns at the relevant sources that contribute to the final answers,
and (2) reduce the execution cost by obtaining subexpressions that
leverage the capabilities of the services as much as possible. Fur-
thermore, we add an optional source pruning step to further de-
crease cost by reducing the number of sources contacted. The de-
composer is outlined in Algorithm 1. Its inputs are a BGP % and a
federation � = (�, 8=C, 4?). First, the algorithm creates the atomic
decomposition by iterating over each triple patterns C? in % , de-
termines the set of relevant sources as (, and adds (C?, () to the
decomposition � (Line 2 - Line 5). Next, the relevant sources per
triple pattern can be pruned in Line 6. This pruning step is not

arXiv Preprint, 2021 Heling and Acosta

(a) Join Ordering and Union Expres-
sions

(b) Interface-compliant subquery plans (c) Place Physical Operators

Figure 3: Query planning steps for the query decomposition�4 (%, �4G) = {((C?1 And C?2), {21}), (C?3, {21, 22}), ((C?4 And C?5), {22}).

Algorithm 1: Interface-aware Query Decomposer

Input: BGP P = {C?1, . . . , C?= }, Federation � = (�, 8=C, 4?)
1 � = ∅
2 for C? ∈ % do
3 (= relevantSources (C?)
4 � = � ∪ {(C?, () }
5 end

6 � = pruneSources(�)
7 do
8 D?30C43 = �0;B4

9 for ∀((�8 , (8), ((� 9 , (9) ∈ � ∧ (�8 ≠ (� 9 do
10 if |E0AB ((�8) ∩ E0AB ((� 9) | > 0
11 ∧|(8 ∪ (9 | = 1
12 ∧((�8 And (� 9) ∈ !2 , ∀2 ∈ (8 then
13 � = � \ { ((�8 , (8), ((� 9 , (9) }
14 � = � ∪ {(((�8 And (� 9), (8) }
15 D?30C43 =)AD4

16 break

17 end

18 while D?30C43

19 return �

required, however, it allows for reducing the decomposition cost
by i) reducing the number of sources to be contacted, and ii) al-
lowing to group more triple patterns into subexpressions in the
following steps. The source pruning approach is interchangeable
and we detail our source pruning heuristic in the next paragraph.
After pruning the sources, the algorithm tries to merge as many
subexpressions in the decomposition � as possible. All possible
combinations of subexpressions ((�8 , (8) and ((� 9 , (9) are consid-
ered and merged if they fulfill the following three conditions:

Condition I Both subexpressions have variables in common:
|E0AB ((�8) ∩ E0AB ((� 9) | > 0. (Line 10)

Condition II Both subexpressions have exactly one source in com-
mon: |(8 ∪ (9 | = 1. (Line 11)

Condition III The common source 2 can evaluate the conjunction
of both expressions: ((�8 And (� 9) ∈ !2 . (Line 12)

If two subexpressions fulfill all conditions, the individual subex-
pressions are removed from the decomposition � and their con-
junction is added to � . This process is repeated until no more
subexpressions can be merged (D?30C43 = �0;B4). A central prop-
erty of the query decomposition generated by the algorithm is the
fact that the evaluation of all subexpressions is compliant with all
corresponding sources. That is, ∀((�, () ∈ � (%, �) : ∀2 ∈ (:
\2 ((�) = J(�K2 . As a result, the interface-compliant evaluation
(Def. 4.3) of all decomposition generate by Algorithm 1 is given as

\� (%,�) (%) := ⋈((�8 ,(8) ∈� (%,�) (∪2 9 ∈(8 JJJ(�8 KKK2 9).

Note that this property does not require the query planner to find
the subexpression minimizing evaluation \∗2 ((�8).

Source PruningApproach.Wepropose a heuristic that leverages
the atomic decomposition graph��∗ (%,�) = (+ ∗, �∗) and does not
rely on data statistics. Our approach iterates over the source ver-
tices 28 ∈ + ∗ by non-increasing out-degree (i.e. starting with the
most popular source). For each triple pattern C? 9 connected to 28
((28 , C? 9) ∈ �∗), the edges to all other sources are removed for
C? 9 : �∗ = �∗ \ {(2:, C? 9) ∈ �∗ | ∀2: ≠ 28 }. In addition, the rel-
evant sources for triple patterns with the same common subject
are not pruned to maximize completeness. The rationale for this is
the observation that RDF datasets typically follow entity-centric
descriptions, where the URI of an entity appears in the subject of
triples in the authoritative dataset. For example, triples with sub-
ject dbr:Berlin are all part of the DBpedia dataset.

4.2 Query Planner

The main tasks of the query planner are finding an efficient logical
plan and placing physical operators such that the execution time
of the query plan is minimized. For both tasks, common cost-based
query planners leverage statistics on the data of themembers in the
federation. In heterogeneous federations, however, the query plan-
ning approaches cannot always rely on the same level of statistics
from all sources and need to be adjusted to the statistics available
at the individual sources. For instance, obtaining fine-grained sta-
tistics might require access to the entire dataset of a source for effi-
cient computation [14] or require the services to be able to execute
complex SPARQL expressions, such as aggregate queries. Further-
more, in the case that the interface language of an LDF service does
not support the evaluation of a subexpression from the decomposi-
tion, the planner needs to obtain an efficient subplan for evaluating
the subexpression over that service. In this section, we first discuss
the steps necessary to obtain efficient query plans, and thereafter,
we propose a query planner for query decompositions that respects
the interface restrictions in heterogeneous federations.

Join Ordering with Union Expressions. The query planner deter-
mines a join ordering for the subexpressions in a decomposition
that minimizes the number of intermediate results. The challenge
lies in estimating the size of intermediate results from subexpres-
sions and joins. This is particularly difficult in heterogeneous inter-
faces due to two factors. First, the methods to estimate cardinali-
ties depend on the interface languages and themetadata supported
by the interfaces. For example, determining the cardinality of a
subexpression comprised of two triple patterns could be achieved

A Framework for Federated SPARQL �ery Processing over Heterogeneous Linked Data Fragments arXiv Preprint, 2021

by a Count query if the interface, e.g. a SPARQL endpoint, sup-
ports the evaluation of such expressions. However, this could be
an expensive operation on the server and thus time-consuming for
the client. Moreover for other interfaces, such as TPF servers, this
would not be possible and the cardinality would need to be esti-
mated according to the metadata of the triple patterns. If available,
statistical data on the data distribution could be used alternatively
to estimate the number of intermediate results [8, 21]. Second, fed-
erated plans comprise union operators to combine data from al-
ternative relevant sources. In this case, estimating the number of
intermediate results from a union operator that will contribute to
a join is more difficult due to the different data distributions in
each source. Therefore, the planner must devise appropriate join
orderings in the presence of unions from different sources. Fig. 3a
shows a join ordering with unions for a query decomposition from
the query and federation of our motivating example: �4 (%, �4G) =
{((C?1 And C?2), {21}), (C?3, {21, 22}), ((C?4 And C?5), {22}).

Interface-compliant Subexpression Plans. If a decomposer does not
provide decompositions inwhich the subexpressions (� are interface-
compliant, the query planner additionally needs to find subplans
that evaluate the subexpression in an interface-compliant manner.
In those cases, the query planner needs to break down (� into
subexpressions that minimize the cost of the interface-compliant
evaluation \∗2 ((�). Since the resulting interface-compliant evalua-
tion consists of several joins, the query planner also needs to de-
termine the join ordering for \∗2 ((�). For example, if the service is
a TPF server, this would require first splitting the subexpression
into its individual triple patterns and thereafter, finding an appro-
priate join ordering. The latter could rely on existing query plan-
ning approaches for TPF servers [3, 27]. Fig. 3b shows the interface-
compliant evaluation for J(C?4 And C?5)K22 over the DBpedia TPF
server (22) for decomposition �4 (%, �4G). The evaluation is given
by \∗22 (C?4 And C?5) = JC?4K22 ⊲⊳ JC?5K22 and it introduces an addi-
tional join operation in the query plan.

Placing Physical Operators. Finally, the query planner selects phys-
ical operators to obtain an executable physical query plan. This in-
cludes placing access operators that retrieve the solutionmappings
from the services as well as physical join and union operators to
process the intermediate results. The access operators transform
the subexpressions into requests that can be processed by the cor-
responding LDF services. Ideally, the access operators leverage the
querying capabilities of the interfaces such that the results are ob-
tained efficiently. For example, traditional federated query engines
for SPARQL endpoints require only access operators that adhere
to the SPARQL protocol to get solution mappings from the end-
points. In heterogeneous federations, however, appropriate access
operators for each LDF interface in the federation need to be im-
plemented and placed accordingly by the planner. Moreover, phys-
ical join operators that implement different join strategies, such
as symmetric hash join or bind join, need to be placed effectively
as they incur different costs. Finally, the planner needs to place
the appropriate physical union operators in the plan that respects
the semantics of the query language. Fig. 3c shows an example of
a physical plan for decomposition �4 (%, �4G), where service 21 is
a Wikidata SPARQL endpoint and service 22 a the DBpedia TPF
server.

Algorithm 2: Query Planning Algorithm

Input: Decomposition � (%, �) = { ((�1, (), . . . , ((�= , (=) }
1 List !
2 for ((�8 , (8) ∈ � (%, �) do
3 20A38 = estimateCardinality((�8 , (8)
4 !.0??4=3 (((�8, (8 , 20A38))
5 end

6 ! = sort(!, 20A38) // Sort ! by non-decreasing 20A38
7 31 = !.64C (0)
8 !.A4<>E4 (0)
9)1 = AccessPlan(31)

10 while |! | > 0 do
11 32 = !.64C (0)
12 for 8 = 1; 8 < |! |; 8 + + do
13 ((�8 , (8 , 20A38) = !.64C (8)
14 if |E0AB ()1) ∩ E0AB ((�8) | > 0 then
15 32 = ((�8 , (8 , 20A38)
16 !.A4<>E4 (8)
17 break

18 end

19)2 = AccessPlan(32)
20 $ = getPhysicalOperator()1,)2)
21)1 = JoinPlan()1,)2,$)
22 end

23 return)1

Query Planning Approach. We now present a heuristic-based
query planner for heterogeneous federations. In particular, it relies
on decomposition obtained by Algorithm 1. First, we present the
overall planning approach and, thereafter, we present details of our
prototypical implementation. The query planner is outlined in Al-
gorithm 2. It starts by estimating the cardinality of each subexpres-
sion in the decomposition (Line 3) and creates a list ! in which the
subexpressions are sorted by non-decreasing cardinality (Line 6).
The query planner starts building the query plan with the subex-
pression 31 with the lowest cardinality and creates the correspond-
ing access plan)1 (Line 9)5. It iterates over the remaining subex-
pressions in ! and determines the next subexpression to join)1
with. This is either a remaining subexpression with the lowest car-
dinality and a common variable (Line 15) or if there is no join re-
maining in the BGP, it is the subexpression with the lowest car-
dinality (Line 11). Once the subexpression 32 is selected, the ac-
cess plan)2 for 32 is created (Line 19) and the appropriate phys-
ical join operator $ is determined (Line 20). Finally,)1 becomes
the JoinPlan of)1 and)2 (Line 21). When ! is empty, the final
plan)1 is returned (Line 23). After presenting the generic plan-
ning approach, we now provide details on the specific steps in our
prototypical implementation. The current implementation focuses
on the three well-known LDF interfaces: Triple Pattern Fragments
(TPF), Bindings-Restricted Triple Pattern Fragments (brTPF), and
SPARQL endpoints. Further, it relies on the properties of decom-
positions generated by our interface-aware query decomposer pre-
sented in Algorithm 1. That is, each subexpression (�8 is interface-
compliant for all sources in (8 . For each service 2 ∈ (8 , estimateCardinality
(Line 3) obtains the estimated cardinality 20A328 for the subexpres-
sion (�8 at the service 2 in line with the interface language and the
metadata of 2 . As evaluating (�8 at several sources reflects a union
operation, it then sums up those individual cardinalities to obtain

5The access plan for 38 = ((�8 , (8) refers to the union of evaluating subexpression
(�8 at each source in (8 .

arXiv Preprint, 2021 Heling and Acosta

the total cardinality of (�8 at all sources: 20A38 =
∑

2∈(8 20A3
2
8 . If

(�8 is a triple pattern and the source is a brTPF or a TPF server,
we request the triple pattern and use the void:count in the meta-
data as the cardinality estimation. If (�8 is a BGP or a triple pat-
tern and the source is a SPARQL endpoint, we use a Count query
to estimate the cardinality. Further, we estimate the join cardinal-
ity of two subexpressions (�8 and (� 9 as the minimum of their
cardinalities. Next, we implement appropriate access operators for
all three interfaces. Since all subexpressions are compliant with
the interface, we do not need to first obtain an interface-compliant
evaluation in the AccessPlans. Finally, we determine the physical
join operator according to the estimated number of requests to ex-
ecute the join. We distinguish between two different common join
strategies: symmetric hash join and bind join. The reason to use
the number of requests to determine the join strategy is two-fold:
i) the number of requests directly have an effect on the execution
time, and ii) fewer requests lead to a reduced load on the services
in the federation. Thus, we compare the number of requests neces-
sary when placing a bind join or a symmetric hash join and choose
the operator that yields fewer requests. The request estimations de-
pend on the implementation of the physical join operator, which
we detail in the following section.

4.3 Physical Operators

The heterogeneity of LDF interfaces in a federation introduces chal-
lenges but also opens opportunities for implementing novel phys-
ical operators. Access operators to retrieve answers from LDF ser-
vices need to be implemented in efficient ways reducing the load
on the LDF services and the time for obtaining results to improve
query execution time. For instance, TPF servers have a page size

configuration that limits the number of answers that are returned
upon a requested triple pattern. Additionally,many public SPARQL
endpoints are configured with fair use policies that can lead to zero
or incomplete query results [25]. Consequently, implementations
of access operators for SPARQL endpoints should not overload the
SPARQL endpoints and adhere to the usage policies. Yet, physical
join operators can be designed to simultaneously handle different
LDF interfaces and follow different join strategies depending on
the capabilities of the underlying services. We call these kinds of
operators polymorphic and present a novel Polymorphic Bind Join
tailored to TPF, brTPF, and SPARQL interfaces.

Polymorphic Bind Join. The Polymorphic Bind Join (PBJ) imple-
ments a Nested Loop Join algorithm that is able to adjust its join
strategy according to the LDF interface. It simultaneously executes
a tuple- and block-based nested loop join according to the sup-
ported interface language. Our current implementation supports
the languages !Tp, !Tp+Values and !CoreSparql. By leveraging the
capabilities of each service, PBJ reduces the number of requests
when accessing more capable sources using the block-based ap-
proach. In particular, PBJ is designed for cases where the inner re-
lation is either an access operator or the union of access operators.
For each LDF interface 5 , a block size � 5 is defined. During the exe-
cution, the operator keeps a reservoir per service that is filled by tu-
ples from the outer relation. When the reservoir reaches the block
size � 5 of the corresponding LDF interface, the bindings from the

reservoir are requested at the services. For example, when query-
ing a TPF server in a nested loop join, each solutionmapping of the
outer relation is used to instantiate and resolve the triple pattern of
the inner relation, hence, �Tpf = 1. However, as the interface lan-
guages of brTPF servers and SPARQL endpoints support SPARQL
values expressions, the PBJ changes its operation accordingly by
requesting a triple pattern or a subexpression with several bind-
ings. The number of bindings that can be sent to a brTPF server
�brTpf depends on the server configuration [12]. For SPARQL end-
points, �Ep is not limited, yet too many values may lead to long
runtimes at the endpoint and potentially incomplete results.6

The proposed query planner selects a Symmetric Hash Join (SHJ)
or Polymorphic Bind Join (PBJ) in getPhysicalOperator (Line 20)
depending on the estimated number of requests. The number of re-
quests to execute the SHJ or PBJ depends on the sub-plans)1 and
)2. If)1 is an AccessPlan, the number of requests to obtain the
tuples of)1 are determined by its cardinality 20A3)1 and the inter-
faces over which)1 is evaluated. Otherwise, if)1 is a JoinPlan, no
additional requests are necessary to obtain the tuples for)1. For the
first case, the requests '022 ()1) depend on the maximum number
of tuples that can be obtained per requests from the corresponding
LDF service, which we denote as"0GEp ,"0GbrTpf, and "0GTpf .

7

'022 ())=
∑

2∈(∧
8=C (2)=Ep

⌈
20A32

)
"0GEp

⌉

+
∑

2∈(∧
8=C (2)=brTpf

⌈
20A32

)
"0GbrTpf

⌉

+
∑

2∈(∧
8=C (2)=Tpf

⌈
20A32

)
"0GTpf

⌉

As a result, we can compute the number of request for the SHJ as
the sum of the requests for the two sub-plans:

'(� � ()1,)2) = '022 ()1) + '022 ()2)

For the PBJ, we need to determine the number of requests that
need to be performed in the inner relation '18=3 ()1,)2) , which
depends on the cardinality 20A3)1 of the outer relation)1 and the
block sizes for the services in the inner relation:

'18=3 ()1,)2)=
∑

2∈(2∧
8=C (2)=Ep

⌈
20A3)1
�Ep

⌉

+
∑

2∈(2∧
8=C (2)=brTpf

⌈
20A3)1
�brTpf

⌉

+
∑

2∈(2∧
8=C (2)=Tpf

⌈
20A3)1
�Tpf

⌉

The overall number of requests for the PBJ is

'%�� ()1,)2) = '022 ()1) + '18=3 ()1,)2).

5 EXPERIMENTAL EVALUATION

Weevaluate a prototypical implementation of the interface-compliant
query decomposer, query planner, and polymorphic bind join. The
goal is to investigate the impact of the components on the per-
formance when querying heterogeneous federations of LDF inter-
faces.

Datasets and Queries.We use the well-known FedBench bench-
mark [22] which is comprised of 9 datasets and tailored to assess
the performance of federated SPARQL querying strategies. We use
a total of 25 queries from Cross Domain (CD1-7), Life Science (LS1-
7) and Linked Data (LD1-11) in our evaluation.

6In our implementation, we set �brTpf = 30 and �Ep = 50, to reduce the requests
while not overloading the endpoint.
7In our implementation, we set "0GbrTpf = 100 [12] and "0GTpf = 100 [27], and
"0GEp = 10000 (most common value reported at https://sparqles.ai.wu.ac.at/).

https://sparqles.ai.wu.ac.at/

A Framework for Federated SPARQL �ery Processing over Heterogeneous Linked Data Fragments arXiv Preprint, 2021

(a) Fed-I (b) Fed-II

Figure 4: Average runtimes [s] (log-scale) and total number of requests (log-scale) for each query and both federations.

Table 1: Heterogeneous Federations: Fed-I, Fed-II. SPARQL

endpoints indicated in bold and brTPF servers in italic.

DBpedia NYTimes LinkedMDB Jamendo GeoNames SWDF KEGG Drugbank ChEBI

Fed-I Sparql brTpf brTpf Tpf Sparql Tpf brTpf Tpf Sparql

Fed-II Tpf brTpf brTpf Sparql Tpf Sparql brTpf Sparql Tpf

Federations. We evaluate our approach on two heterogeneous
federations Fed-I and Fed-II shown in Table 1 to study the perfor-
mance in different scenarios. The central difference between the
federations is that in Fed-I the three largest datasets are accessible
via SPARQL endpoints while in Fed-II they are accessible via TPF
servers. The other datasets are accessible via TPF or brTPF servers.

Implementation.We implemented a prototypical federated query
engine for heterogeneous federations that implements the proposed
query planner, decomposer, source pruning (PS), and polymorphic
bind join (PBJ) operator. Our implementation is based on CROP [?
] and implemented in Python 2.7.13. As Baseline, we use execute
the query plans from our query planner for the atomic decomposi-
tions. The decomposer, source pruning, and PBJ are disabled in the
Baseline. Note that, while Comunica [26] can query heterogeneous
interfaces, its performance is currently not competitive as it does
not implement query decomposition, source pruning, or polymor-
phic join operators. Therefore, we do not consider Comunica in our
evaluation. We use the Server.js v2.2.38 and original Java brTPF
server implementation [12] to deploy the TPF and brTPF servers
with HDT [?] backends. We used Virtuoso v07.20.3229with the de-
fault virtuoso.ini (cf. supplemental material). All LDF services
and the client were executed on a single Debian Jessie server (2x16
core Intel(R) Xeon(R) E5-2670 2.60GHz CPU; 256GB RAM) to avoid
network latency. The timeoutwas set to 900 seconds. After awarm-
up run, the queries were executed five times. The source code, ex-
perimental results, and additional material are provided in the sup-
plemental material of this submission.

8https://github.com/LinkedDataFragments/Server.js

Table 2: Average total runtime
∑

A , number of requests
∑

A4@., and answers
∑

0=B.per run aswell as themeandecom-

position completeness 2><? and decomposition cost 2>BC9.

∑

A
∑

A4@.
∑

0=B. 2><? 2>BC

F
e
d
-I

Baseline 1337.87 54452 13534 1.0 1.0
Decomposer 1274.15 53958 13534 1.0 0.95
Decomposer+PS 93.66 9645 13171 0.77 0.55
Decomposer+PS+PBJ 54.69 7271 13171 0.77 0.55

F
e
d
-I
I Baseline 433.37 57671 13578 1.0 1.0

Decomposer 425.15 57662 13578 1.0 0.9
Decomposer+PS 116.45 9040 13171 0.77 0.53
Decomposer+PS+PBJ 69.38 6121 13171 0.77 0.53

Metrics. We evaluated the performance by the following metrics:
(i) Runtime: Elapsed time spent by the engine evaluating a query. (ii)Num-

ber of Requests: Total number of requests submitted to the LDF
services during the query execution. (iii) Number of Answers: To-
tal number of answers produced. (iv) Diefficiency: Continuous effi-
ciency as the answers are produced over time [5].

5.1 Experimental Results

We start providing an overview of the performance of the differ-
ent components. In Fig. 4a and Fig. 4b the mean runtimes and
number of requests are shown per query for Fed-I and Fed-II. The
values are also summarized in Table 2. Considering the impact of
the individual components, the results show that enabling the de-
composer without pruning the sources and no PBJ (Decomposer),
only provides a slight improvement in the runtime over the Base-
line, even though all queries yield the same number of requests
or less. This is because, without source pruning, only exclusive
groups can bemerged by the decomposer. The results when adding
the source pruning approach (Decomposer+PS) show that pruning
sources considerably reduces both the runtime and the number of
requests for the majority of queries. The reasons for the improve-
ment are two-fold: i) the decomposer can create more and larger

https://github.com/LinkedDataFragments/Server.js

arXiv Preprint, 2021 Heling and Acosta

subexpressions, and ii) fewer services are contacted during the exe-
cution of the query plan. Finally, with the polymorphic join opera-
tor (Decomposer+PS+PBJ), we observe the lowest overall runtimes
and number of requests in both federations. In Fed-I, executing
all queries with Decomposer+PS+PBJ is more than 34 times faster
than the Baseline and 6 times faster in Fed-II. The results show
that our interface-aware federated query approaches, that adjust to
the specifics of heterogeneous interfaces, can greatly improve the
performance in terms of runtime. Simultaneously, it reduces the
load on the servers by requiring fewer requests. The results show
that the interfaces present in the federation (Fed-I vs. Fed-II) sub-
stantially impact the querying performance when not considering
the interfaces’ capabilities (Baseline). Yet, our interface-aware so-
lution (Decomposer+PS+PBJ) enables similar performance results
regardless of the interfaces.

Query Decomposition. The results show the effectiveness of the
proposed 34=B8C~ measure as a proxy for completeness and 2>BC

measures as means to assess the expected execution cost of query
decompositions. In Table 2, we can observe that, in both federa-
tions, the decomposer without source pruning yields complete an-

swers with 34=B8C~ = 1.0, since only exclusive groups are merged
(Rule III). The cost can only be slightly reduced (Fed-I: 2>BC = 0.95
and Fed-II: 2>BC = 0.9)9. However, adding the source pruning (Decomposer+PS)
enables decompositions with about half the cost. Contacting fewer
services reduces the cost but also leads to a reduction in the ex-
pected completeness (34=B8C~ = 0.77) and to fewer answers (

∑

0=B)
that are being produced. 97% of all answers are still producedwhen
sources are pruned.10 These results show that the improvement
achieved by the decomposer in its ability to leverage the interfaces’
capabilities depends on the source pruning.

Polymorphic Bind Join. The results in both Fig. 4 and Table 2 re-
veal that, in the two federations, adding the Polymorphic Bind Join
(Decomposer+PS+PBJ) reduces the number of requests by more
than 25% and, as a consequence, reduces the overall runtimes. We
investigate the diefficiency to better understand the impact of the
PBJ. In Fig. 5, we show the diefficiency plots for four example
queries. The plot for LS3 in Fig. 5a shows that the performance
of the PBJ is similar to a regular NLJ in case it cannot leverage the
capabilities of the interfaces, e.g., LS3 where only TPFs are con-
tacted. However, if the capabilities of the services can be leveraged,
the PBJ allows for producing the results at a higher rate as shown
for queries LD3 (Fig. 5b) and LS6 (Fig. 5c). In the latter, all answers
are produced at once. Nonetheless, the semi-blocking nature of the
PBJ can also have a detrimental effect on diefficiency and runtime
as observed for query LS8 in Fig. 5d. Here, the production of the an-
swers is delayed because the block size of the inner relation (which
consumes data from a brTPF server) is not reached until all results
of the outer relation in the PBJ are produced. Future work could
study an adaptive PBJ with variable block sizes, determined accord-
ing to the expected number of tuples of the outer relation.

Summarizing our experimental evaluation, the results show the
effectiveness of our interface-aware techniques for query decom-
position, planning, and physical operators. Furthermore, the re-
sults illustrate that our techniques can cope with heterogeneous

9Cost values are normalized: 2>BC (� (%, �))/2>BC (�∗ (%, �))
10In Fed-I, the Baseline does not yield all answers, due to a timeout in LD7.

federations that are composed of different combinations of inter-
faces.

Limitations. The central assumption of our framework is the ac-
cess to high-level information about the federation (e.g., interfaces
and relevant sources) while fine-grained statistics (e.g., data dis-
tributions) are not available. Therefore, the proposed framework
components are limited to devise approximate solutions to the prob-
lems of query decomposition, planning, and execution. While our
experimental results show substantial improvements in the Fed-
Bench benchmark, these improvements might not hold in other
federations. Yet, our framework is a foundation for federated query
processing in heterogeneous federations and the components can
be refined in the case that additional statistics are available. For in-
stance, by weighting edges in the decomposition graph according
to probability of sources contributing to the answers of a query.

6 RELATED WORK

Query processing over homogeneous federations of SPARQL end-
points has been broadly studied and existing approaches address
different challenges. For instance, [1, 24] leverage requests during
runtime to obtain efficient query plans, while [8, 11, 17, 19, 20]
implement cost models that rely on pre-computed statistics, and
[4] focuses on runtime adaptivity. Furthermore, approaches that
specifically study query decomposition have been proposed. Vi-
dal et al. [28] propose a formalization of the query decomposition
problem in a way such that it can be mapped to the vertex color-
ing problem. Vidal et al. [28] propose the heuristic Fed-DSATUR to
solve the problem. Similar, Endris et al. [10] formalize the query de-
composition problem for federated SPARQL querying and present
a decomposition approach that relies on RDF Molecule Templates,
which represent metadata obtained by executing SPARQL queries
over endpoints. Different from our work, these approaches assume
all members in the federation to be SPARQL endpoints, and thus,
the proposed solutions rely on their querying capabilities.

Additional Linked Data Fragment (LDF) interfaces and corre-
sponding SPARQL clients have been proposed. They range from
less expressive interfaces, such as (Bindings-Restricted) Triple Pat-
tern Fragments ([12]) [27], to more expressive interfaces such as
SaGe [15] or smart-KG [7]. To study the expressiveness of LDF in-
terfaces, Hartig et al. [13] propose the Linked Data Fragment Ma-
chines as a formal framework that includes client demand, server
demand, and communication cost when executing queries over
these interfaces. Similar to their work, we also formalize the con-
cept of a server language to distinguish the capabilities of different
interfaces in the federation. Yet, our work goes beyond individual
interfaces and studies the problem of heterogeneous LDF federa-
tions.

Lastly, a few approaches have addressed the problem of hetero-
geneous interfaces. Comunica [26] is a client able to query hetero-
geneous LDF federations. But, in contrast to our work, Comunica
does not support interface-aware query decomposition and han-
dles the query execution on a triple pattern level, even if different
interfaces are present. Moreover, the physical join operators, such
as the nested loop join, do not adapt to the different interfaces. In a

A Framework for Federated SPARQL �ery Processing over Heterogeneous Linked Data Fragments arXiv Preprint, 2021

(a) Fed-I: LS3 (b) Fed-I: LD3 (c) Fed-II: LS6 (d) Fed-II: LS8

Figure 5: Example diefficiency plots for the approach with the PBJ (green) and without the PBJ (dotted).

recent paper, Cheng and Hartig [9] study query plans in heteroge-
neous federations. Similar to our work, they conceptualize differ-
ent interfaces, and federation members implementing those inter-
faces. They focus on a formal language for logical query plans over
such federations but, in contrast to our work, they do not propose
specific solutions to devise such plans and derive physical plans
to be evaluated by an engine. Montoya et al. [16] propose a client
to query replicas of datasets via heterogeneous interfaces (brTPF
server and SPARQL endpoints) to exploit their characteristics. Dif-
ferent from our work, they focus on different interfaces for single
datasets but do no investigate federated querying.

7 CONCLUSION AND FUTURE WORK

We formalize the concept of federations of Linked Data Fragment
services and present the challenges that querying approaches over
heterogeneous federations face. In particular, we present a theo-
retical framework and practical solutions for query decomposition,
query planning, and physical operators tailored to heterogeneous
LDF federations. In our experimental study, we evaluated a pro-
totypical implementation of our proposed solutions. The results
show a substantial improvement in performance achieved by de-
vising interface-aware strategies to exploit the capabilities of TPF,
brTPF, and SPARQL endpoints during federated query processing.
Future work may focus on extending the proposed framework to
other LDF interfaces and studying how state-of-the-art query de-
composition, planning, and source pruning approaches from fed-
erated SPARQL engines can be applied to heterogeneous federa-
tions.

REFERENCES
[1] Ibrahim Abdelaziz, Essam Mansour, Mourad Ouzzani, Ashraf Aboulnaga, and

Panos Kalnis. 2017. Lusail: A System for Querying Linked Data at Scale. Proc.
VLDB Endow. 11, 4 (2017), 485–498. https://doi.org/10.1145/3186728.3164144

[2] Maribel Acosta, Olaf Hartig, and Juan F. Sequeda. 2019. Federated
RDF Query Processing. In Encyclopedia of Big Data Technologies.
https://doi.org/10.1007/978-3-319-63962-8_228-1

[3] Maribel Acosta and Maria-Esther Vidal. 2015. Networks of Linked Data
Eddies: An Adaptive Web Query Processing Engine for RDF Data. In
The Semantic Web - ISWC 2015 - 14th International Semantic Web Confer-
ence, Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part I. 111–127.
https://doi.org/10.1007/978-3-319-25007-6_7

[4] Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo, and Edna
Ruckhaus. 2011. ANAPSID: An Adaptive Query Processing Engine for SPARQL
Endpoints. In The Semantic Web - ISWC 2011 - 10th International Semantic
Web Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part I. 18–34.
https://doi.org/10.1007/978-3-642-25073-6_2

[5] Maribel Acosta, Maria-Esther Vidal, and York Sure-Vetter. 2017. Dieffi-
ciency Metrics: Measuring the Continuous Efficiency of Query Processing Ap-
proaches. In The Semantic Web - ISWC 2017 - 16th International Semantic
Web Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part II. 3–19.
https://doi.org/10.1007/978-3-319-68204-4_1

[6] Carlos Buil Aranda, Marcelo Arenas, and Óscar Corcho. 2011. Semantics
and Optimization of the SPARQL 1.1 Federation Extension. In The Semanic
Web: Research and Applications - 8th Extended Semantic Web Conference, ESWC
2011, Heraklion, Crete, Greece, May 29 - June 2, 2011, Proceedings, Part II. 1–15.
https://doi.org/10.1007/978-3-642-21064-8_1

[7] Amr Azzam, Javier D. Fernández, Maribel Acosta, Martin Beno, and Axel
Polleres. 2020. SMART-KG: Hybrid Shipping for SPARQL Querying on the Web.
InWWW’20: TheWeb Conference 2020, Taipei, Taiwan, April 20-24, 2020. 984–994.
https://doi.org/10.1145/3366423.3380177

[8] Angelos Charalambidis, Antonis Troumpoukis, and Stasinos Konstan-
topoulos. 2015. SemaGrow: optimizing federated SPARQL queries.
In Proceedings of the 11th International Conference on Semantic Sys-
tems, SEMANTICS 2015, Vienna, Austria, September 15-17, 2015. 121–128.
https://doi.org/10.1145/2814864.2814886

[9] Sijin Cheng and Olaf Hartig. 2020. FedQPL: A Language for Logical Query
Plans over Heterogeneous Federations of RDF Data Sources (Extended Version).
arXiv:2010.01190 [cs.DB]

[10] Kemele M. Endris, Mikhail Galkin, Ioanna Lytra, Mohamed Nadjib Mami, Maria-
Esther Vidal, and Sören Auer. 2017. MULDER: Querying the Linked Data Web
by Bridging RDF Molecule Templates. In Database and Expert Systems Applica-
tions - 28th International Conference, DEXA 2017, Lyon, France, August 28-31, 2017,
Proceedings, Part I. 3–18. https://doi.org/10.1007/978-3-319-64468-4_1

[11] Olaf Görlitz and Steffen Staab. 2011. SPLENDID: SPARQL Endpoint Federation
Exploiting VOID Descriptions. In Proceedings of the Second International Work-
shop on Consuming Linked Data (COLD2011), Bonn, Germany, October 23, 2011.
http://ceur-ws.org/Vol-782/GoerlitzAndStaab_COLD2011.pdf

[12] Olaf Hartig and Carlos Buil Aranda. 2016. Bindings-Restricted Triple
Pattern Fragments. In On the Move to Meaningful Internet Systems: OTM
2016 Conferences - Confederated International Conferences: CoopIS, C&TC,
and ODBASE 2016, Rhodes, Greece, October 24-28, 2016, Proceedings. 762–779.
https://doi.org/10.1007/978-3-319-48472-3_48

[13] Olaf Hartig, Ian Letter, and Jorge Pérez. 2017. A Formal Framework for Compar-
ing Linked Data Fragments. In The Semantic Web - ISWC 2017 - 16th International
Semantic Web Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part
I. 364–382. https://doi.org/10.1007/978-3-319-68288-4_22

[14] Lars Heling and Maribel Acosta. 2020. Estimating Characteristic Sets for RDF
Dataset Profiles Based on Sampling. In The Semantic Web - 17th International
Conference, ESWC2020, Heraklion, Crete, Greece, May 31-June 4, 2020, Proceedings.
157–175. https://doi.org/10.1007/978-3-030-49461-2_10

[15] Thomas Minier, Hala Skaf-Molli, and Pascal Molli. 2019. SaGe: Web Pre-
emption for Public SPARQL Query Services. In The World Wide Web Con-
ference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019. 1268–1278.
https://doi.org/10.1145/3308558.3313652

[16] Gabriela Montoya, Christian Aebeloe, and Katja Hose. 2018. Towards Ef-
ficient Query Processing over Heterogeneous RDF Interfaces. In Emerging
Topics in Semantic Technologies - ISWC 2018 Satellite Events [best papers
from 13 of the workshops co-located with the ISWC 2018 conference]. 39–53.
https://doi.org/10.3233/978-1-61499-894-5-39

[17] Gabriela Montoya, Hala Skaf-Molli, and Katja Hose. 2017. The Odyssey Ap-
proach for Optimizing Federated SPARQL Queries. In The Semantic Web - ISWC
2017 - 16th International Semantic Web Conference, Vienna, Austria, October 21-25,
2017, Proceedings, Part I. 471–489. https://doi.org/10.1007/978-3-319-68288-4_28

[18] Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. 2009. Semantics and
complexity of SPARQL. ACM Trans. Database Syst. 34, 3 (2009), 16:1–16:45.
https://doi.org/10.1145/1567274.1567278

[19] BastianQuilitz and Ulf Leser. 2008. QueryingDistributed RDFData Sources with
SPARQL. In The Semantic Web: Research and Applications, 5th European Seman-
tic Web Conference, ESWC 2008, Tenerife, Canary Islands, Spain, June 1-5, 2008,
Proceedings. 524–538. https://doi.org/10.1007/978-3-540-68234-9_39

[20] Muhammad Saleem and Axel-Cyrille Ngonga Ngomo. 2014. HiBISCuS:
Hypergraph-Based Source Selection for SPARQL Endpoint Federation. In
The Semantic Web: Trends and Challenges - 11th International Conference,

https://doi.org/10.1145/3186728.3164144
https://doi.org/10.1007/978-3-319-63962-8_228-1
https://doi.org/10.1007/978-3-319-25007-6_7
https://doi.org/10.1007/978-3-642-25073-6_2
https://doi.org/10.1007/978-3-319-68204-4_1
https://doi.org/10.1007/978-3-642-21064-8_1
https://doi.org/10.1145/3366423.3380177
https://doi.org/10.1145/2814864.2814886
https://arxiv.org/abs/2010.01190
https://doi.org/10.1007/978-3-319-64468-4_1
http://ceur-ws.org/Vol-782/GoerlitzAndStaab_COLD2011.pdf
https://doi.org/10.1007/978-3-319-48472-3_48
https://doi.org/10.1007/978-3-319-68288-4_22
https://doi.org/10.1007/978-3-030-49461-2_10
https://doi.org/10.1145/3308558.3313652
https://doi.org/10.3233/978-1-61499-894-5-39
https://doi.org/10.1007/978-3-319-68288-4_28
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1007/978-3-540-68234-9_39

arXiv Preprint, 2021 Heling and Acosta

ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014. Proceedings. 176–191.
https://doi.org/10.1007/978-3-319-07443-6_13

[21] Muhammad Saleem, Alexander Potocki, Tommaso Soru, Olaf Hartig, and Axel-
Cyrille Ngonga Ngomo. 2018. CostFed: Cost-Based Query Optimization for
SPARQL Endpoint Federation. In Proceedings of the 14th International Confer-
ence on Semantic Systems, SEMANTICS 2018, Vienna, Austria, September 10-13,
2018. 163–174. https://doi.org/10.1016/j.procs.2018.09.016

[22] Michael Schmidt, Olaf Görlitz, Peter Haase, Günter Ladwig, Andreas Schwarte,
and Thanh Tran. 2011. FedBench: A Benchmark Suite for Federated Semantic
Data Query Processing. In The Semantic Web - ISWC 2011 - 10th International
Semantic Web Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part
I. 585–600. https://doi.org/10.1007/978-3-642-25073-6_37

[23] Michael Schmidt, Michael Meier, and Georg Lausen. 2010. Foundations of
SPARQL query optimization. In Database Theory - ICDT 2010, 13th Interna-
tional Conference, Lausanne, Switzerland, March 23-25, 2010, Proceedings. 4–33.
https://doi.org/10.1145/1804669.1804675

[24] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt.
2011. FedX: Optimization Techniques for Federated Query Processing on Linked
Data. In The Semantic Web - ISWC 2011 - 10th International Semantic Web
Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part I. 601–616.

https://doi.org/10.1007/978-3-642-25073-6_38
[25] Arnaud Soulet and FabianM. Suchanek. 2019. Anytime Large-Scale Analytics of

Linked OpenData. In The SemanticWeb - ISWC 2019 - 18th International Semantic
Web Conference, Auckland, New Zealand, October 26-30, 2019, Proceedings, Part I.
576–592. https://doi.org/10.1007/978-3-030-30793-6_33

[26] Ruben Taelman, Joachim Van Herwegen, Miel Vander Sande, and Ruben Ver-
borgh. 2018. Comunica: A Modular SPARQL Query Engine for the Web.
In The Semantic Web - ISWC 2018 - 17th International Semantic Web Con-
ference, Monterey, CA, USA, October 8-12, 2018, Proceedings, Part II. 239–255.
https://doi.org/10.1007/978-3-030-00668-6_15

[27] Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Her-
wegen, Laurens De Vocht, Ben De Meester, Gerald Haesendonck, and
Pieter Colpaert. 2016. Triple Pattern Fragments: A low-cost knowledge
graph interface for the Web. J. Web Semant. 37-38 (2016), 184–206.
https://doi.org/10.1016/j.websem.2016.03.003

[28] Maria-Esther Vidal, Simón Castillo, Maribel Acosta, Gabriela Montoya, and
Guillermo Palma. 2016. On the Selection of SPARQL Endpoints to Efficiently
Execute Federated SPARQL Queries. Trans. Large Scale Data Knowl. Centered
Syst. 25 (2016), 109–149. https://doi.org/10.1007/978-3-662-49534-6_4

https://doi.org/10.1007/978-3-319-07443-6_13
https://doi.org/10.1016/j.procs.2018.09.016
https://doi.org/10.1007/978-3-642-25073-6_37
https://doi.org/10.1145/1804669.1804675
https://doi.org/10.1007/978-3-642-25073-6_38
https://doi.org/10.1007/978-3-030-30793-6_33
https://doi.org/10.1007/978-3-030-00668-6_15
https://doi.org/10.1016/j.websem.2016.03.003
https://doi.org/10.1007/978-3-662-49534-6_4

	Abstract
	1 Introduction
	2 Motivating Example
	3 Federations of Linked Data Fragment Services
	4 Federated Query Processing over Heterogeneous Federations
	4.1 Query Decomposition
	4.2 Query Planner
	4.3 Physical Operators

	5 Experimental Evaluation
	5.1 Experimental Results

	6 Related Work
	7 Conclusion and Future Work
	References

