Neural Dynamics

Gregor Schöner gregor.schoener@ini.rub.de

Sensors

- transform a physical intensity into a neural activation
- intensity: light, sound, displacement
- neural activation: membrane potential, spike rate

Motors

transform activation into physical action

… muscles

What is "activation"?

- activation is an abstraction of the state of neurons, defined relative to sigmoidal threshold function
 - Iow levels of activation are not transmitted (to other neural systems, to motor systems)

high levels of activation are transmitted

threshold at zero (by definition)

Origin of the activation concept in neurophysics

activation, u, as a real number that reflects the (population) membrane potential

[from: Tresilian, 2012]

 \blacksquare u(t) evolves as a dynamical system, characterized by a time scale, $\tau \approx 10 \mathrm{ms}$

 $\tau \dot{u}(t) = -u(t) + h + \operatorname{input}(t)$

[from: Tresilian, 2012]

- spiking when membrane potential exceeds threshold....
- spike train is transmitted to downstream neurons

[from: Tresilian, 2012]

activation captures different firing rates in a small population...

in neural dynamics, the spiking mechanism and associated firing rate is replaced by a statistical (population) description: threshold function

Neural dynamics

dynamical system: the present predicts the future

given a initial level of activation, u(0), the activation, u(t), at times t>0 is uniquely determined

Neural dynamics

fixed point = constant solution (stationary state)

stable fixed point = attractor: nearby solutions converge to the fixed point

Neural dynamics

Neuronal dynamics

in neural dynamics, inputs are contributions to the rate of change

positive: excitatory

negative: inhibitory

=> shifts the attractor

=> activation tracks this shift due to stability

$$\tau \dot{u}(t) = -u(t) + h + s(t)$$

Neuronal dynamics

- what is transmitted is $\sigma(u(t))$
- (labelled g(t) in the book and in some figures)
- neural dynamics as a lowpass filter of time varying input
- = input-driven solution

$$\tau \dot{u}(t) = -u(t) + h + s(t)$$

=> simulation

Neuronal dynamics with self-excitation

single activation variable with selfexcitation

representing a small population with excitatory coupling

$$\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$$

 $\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$

$$\tau \dot{u}(t) = -u(t) + h + s(t) + c \ \sigma(u(t))$$

Neuronal dynamics with self-excitation

the detection and its reverse => create discrete events from time-continuous changes

=> simulation

- two activation variables with reciprocal inhibitory coupling
- representing two small populations that are inhibitorily coupled

$$\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$$

$$\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$$

Coupling: the rate of change of one activation variable depends on the level of activation of the other activation variable

coupling

 $\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$ $\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$

to visualize, assume that u₂ has been activated by input to a positive level

=> it inhibits u_1

 $\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) - c_{12}\sigma(u_2(t))$

 $\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) - c_{21}\sigma(u_1(t))$

- why would u_2 be positive before u_1 ?
- more input to u₂ (better "match") => faster increase
- input advantage <=> time advantage <=> competitive advantage

- $\tau \dot{u}_1(t) = -u_1(t) + h + s_1(t) c_{12}\sigma(u_2(t))$
- $\tau \dot{u}_2(t) = -u_2(t) + h + s_2(t) c_{21}\sigma(u_1(t))$

vector-field (without interaction) when both neurons receive input

only activated neurons participate in interaction!

vector-field of mutual inhibition

vector-field with strong mutual inhibition: bistable

after input is presented

stronger input to $u_1 =>$ attractor with positive u_1 stronger, attractor with positive u_2 weaker => closer to instability

decision made at detection instability!

before input is presented

after input is presented

=> simulation

The neural dynamics of fields

- … the same underlying math
- coupling among continuously many activation variables
- Iocal excitatory coupling ("self-excitation")
- global inhibitory coupling ("mutual inhibition")

field vs. activation variables

