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Sensors

transform a physical 
intensity into a 
neural activation

intensity: light, sound, 
displacement 

neural activation: 
membrane potential, 
spike rate 
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activation
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activation



Motors

transform activation 
into physical action

… muscles 
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movement

movement
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What is “activation”?

activation is an abstraction of 
the state of neurons, defined 
relative to sigmoidal threshold 
function

low levels of activation are not 
transmitted (to other neural systems, to 
motor systems)

high levels of activation are transmitted 

threshold at zero (by definition)
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Origin of the activation concept in 
neurophysics

activation, u, as a real number that reflects the 
(population) membrane potential

[from: Tresilian, 2012]



Grounding in neurophysics

u(t) evolves as a dynamical system, characterized by 
a time scale, τ ≈ 10ms

τ ·u(t) = − u(t) + h + input(t)

[from: Tresilian, 2012]



Grounding in neurophysics

spiking when membrane potential exceeds 
threshold…. 

spike train is transmitted to downstream neurons

[from: Tresilian, 2012]



Grounding in neurophysics

activation captures different firing rates in a small 
population… 

[from: Tresilian, 2012]



Grounding in neurophysics

in neural dynamics, the spiking mechanism and 
associated firing rate is replaced by a statistical 
(population) description: threshold function 
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Neural dynamics

dynamical system: the present predicts the future

given a initial level of activation, u(0), the activation, 
u(t), at times t>0 is uniquely determined

du/dt = f(u)
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τ ·u(t) = − u(t) + h



Neural dynamics

fixed point = constant solution (stationary state)

stable fixed point = attractor: nearby solutions 
converge to the fixed point

du/dt = f(u)
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Neural dynamics

attractors structure the 
ensemble of solutions (for 
all initial conditions) = flow
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Neuronal dynamics

in neural dynamics, inputs are 
contributions to the rate of 
change

positive: excitatory

negative: inhibitory

=> shifts the attractor

=> activation tracks this shift 
due to stability
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Neuronal dynamics

what is transmitted is 

(labelled g(t) in the book and in 
some figures)

=> neural dynamics as a low-
pass filter of time varying input

= input-driven solution

σ(u(t))

τ ·u(t) = − u(t) + h + s(t)
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=> simulation



Neuronal dynamics with self-excitation

single activation variable with self-
excitation

representing a small population with 
excitatory coupling 

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))
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du/dt 

resting
level, h

=> nonlinear dynamics!

Neuronal dynamics 
with self-excitation

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

du/dt
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du/dt 

resting
level, h

input strength

varying input

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation



at intermediate 
stimulus strength: 
bistable

“on” vs “off” state
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time, t

u(t)<0
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τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation



increasing input strength 
=> detection instability

=> the detection 
decision is stabilized
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τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation



decreasing input 
strength => reverse 
detection instability
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du/dt 

resting
level, h
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τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
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the detection and its  
reverse => create 
discrete events from 
time-continuous changes

time, t

u(t)

detection 
instability

reverse
detection 
instability

τ ·u(t) = − u(t) + h + s(t) + c σ(u(t))

Neuronal dynamics 
with self-excitation



=> simulation



Neuronal dynamics with competition

two activation variables 
with reciprocal inhibitory 
coupling

representing two small 
populations that are 
inhibitorily coupled

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))



Neuronal dynamics with competition

Coupling: the rate of change 
of one activation variable 
depends on the level of 
activation of the other 
activation variable

coupling

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))



to visualize, assume that 
 has been activated by 

input to a positive level

=> it inhibits 
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Neuronal dynamics with competition

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))



why would  be positive 
before ? 

more input to  (better 
“match”) => faster increase

input advantage <=> time 
advantage <=> competitive 
advantage
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Neuronal dynamics with competition

τ ·u1(t) = − u1(t) + h + s1(t) − c12σ(u2(t))
τ ·u2(t) = − u2(t) + h + s2(t) − c21σ(u1(t))



Neuronal dynamics with competition

vector-field in the 
absence of input
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Neuronal dynamics with competition

vector-field (without 
interaction) when both 
neurons receive input
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Neuronal dynamics with competition

only activated neurons 
participate in interaction!
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Neuronal dynamics with competition
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Neuronal dynamics with competition

vector-field with strong
mutual inhibition: 

bistable
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Neuronal dynamics with competition
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Neuronal dynamics with competition

stronger input to  => attractor with positive  stronger, 
attractor with positive  weaker => closer to instability
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Neuronal dynamics with competition
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=> simulation



The neural dynamics of fields

… the same underlying math 

coupling among continuously many activation 
variables

local excitatory coupling (“self-excitation”)

global inhibitory coupling (“mutual inhibition”)

τ ·u(x, t) = − u(x, t) + h + s(x, t) + ∫ dx′ w(x − x′ ) σ(u(x′ , t))
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field vs. activation variables

self-
excitation

mutual
inhibition

s(x)
u(x)

u1 u2
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