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Task 1

1a)

In this task we plot ẋ against x. A qualitative plot as shown in Figure 1 is
sufficient. Important features of the plot that characterize the dynamics of the
system are the linear course of the dynamics, its slope, and the zero crossing at
the origin (ẋ = 0, x = 0).
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Figure 1: Phase plot of the dynamical system ẋ = −αx for α > 0 and α < 0.
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1b)

We integrate the equation ẋ = −αx to get the solution:

dx

dt
= −αx

⇒ dx

x
= −α dt

⇒
∫

dx

x
= −α

∫
dt

⇒ ln(x) = −αt+ C

⇒ x(t) = exp(−αt+ C)

⇒ x(t) = exp(C) exp(−αt)
⇒ x(t) = C̃ exp(−αt)
⇒ x(t) = x0 exp(−αt)

We can write exp(C) as a new constant C̃ and see that this constant corresponds
to the initial condition x0 by setting t equal to zero.
Next we check if the solution x(t) solves the equation by taking its time-
derivative:

d

dt
x(t) = −αx0 exp(−αt) = −αx(t).

1c)

Now we know the solution and can plot it for two initial conditions x0 (see
Figure 2).

1d)

This is a more advanced question, we may talk about this in the exercise session.
Let us first follow the instructions on the exercise sheet and then see what the
result actually means!

We want to know the times1 tn at which the solution x(t) reaches the value
x0/ exp(n). With mathematical symbols we can express it this way:

x(tn) = x0 exp(−αtn)
!
= x0 exp(−n),

where the
!
= means that we want something to be equal, not that we know that

it is equal. In fact, we might find out that the expressions on the left-hand side

1It is “times” (rather than “time”) because you can have any value for n which gives you
an infinite number of values for the time. But this does not really have an effect on how you
compute it.
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Figure 2: Time course of the solution x(t) = x0 · exp(−αt) for a positive initial
condition (blue line) and a negative initial condition (orange line).

and right hand-side of
!
= cannot be equal. However, this is not the case here:

x0 exp(−αtn)
!
= x0 exp(−n)

⇔ exp−αtn = exp−n
⇒ −αtn = −n

⇔ tn =
n

α

We calculated the times tn at which the initial condition is reduced to
x0/ exp(n). In the lectures the relaxation time was probably introduced as
the “time the initial condition is reduced to its value over e” which equals the
time t1 = x0/e with n = 1!

Let us now take a look at tn+1 − tn, which is the “formal” definition of the
relaxation time.

tn+1 − tn =
n+ 1

α
− n

α
=
n− n+ 1

α
=

1

α

We see that the relaxation time is independent of n. This is a fundamental
property of exponential decay: It does not matter at which time, tn, we observe
the system, the time after which the solution x(tn) is reduced to its value over e
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is always the same. This is why the term “relaxation time” often appears in the
context of exponential decay because in other systems it may be more difficult
to find such a characteristic time.

1e)

We know from the previous task that the relaxation time depends on α: tr = 1
α .

For larger values of α the relaxation time decreases, which means that the system
relaxes faster to an equilibrium state, here the fixed point at x = 0.

In figure 3 we see that the solution with a larger value of α relaxes faster to

zero - it reaches the characteristic value x(0)
e earlier, because its relaxation time

is shorter.
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2

Figure 3: Time course of the solution x(t) = x0 · exp(−αt) for two different
values of α, where α1 < α2.
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Task 2

2a)

Analogous to the first task we plot the dynamics ẋ = a− x2 in Figure 4.
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Figure 4: Phase plot of the dynamics ẋ = a− x2 for different values of a.

2b)

In this task we calculate the fixed points of the dynamics. They are characterized
by a time derivative equal to zero, ẋ = 0. Since ẋ describes how the solution (or
the “state” of the dynamical system) changes with time, a value of zero means
that the state will not change anymore and is thus fixed.

ẋ = 0 = a− x2

⇔ x2 = a

⇒ x1,2 = ±
√
a

Mind, that when we take the square root of a function, we always obtain two
solutions ±√. . .. We can see this in Figure 4 with a > 0: The solution crosses
the x-axis twice.
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From 1a) we also see that with a = 0 there is only one fixed point, as
−
√

0 = +
√

0 = 0. The last case, a < 0, is more interesting: From the first task
we see that there cannot be a fixed point since the solution never crosses the
x-axis. From our calculation we see that there is no (real) solution to x2 = a
when a is a negative number. Thus, for a < 0, there are no fixed points.

2c)

We use Figure 4 and modify it for our “mental simulation” for a > 0, we will
end up with Figure 5.

First, we mark all the fixed points, that is x = ±
√
a, because in these

points we know that the state will not change over time. Thus, with the initial
condition x0 equal to −

√
a and

√
a, the asymptotic behavior when time goes to

infinity is x→ −
√
a and x→

√
a, respectively.

Next we investigate the time derivative ẋ for all states x that are smaller
than −

√
a: We can see that ẋ is negative so that every state x < −

√
a will be

driven toward smaller values. This is indicated by the arrow pointing to “the
left” in Figure 5. Since there is no fixed point at values smaller than −

√
a that

could “stop” this behavior the state will go toward minus infinity with time
going to infinity.

We already know what happens when we “start” in the fixed point x = −
√
a,

thus we focus on the next part, all states between −
√
a and

√
a. Here the

time derivative is positive, so that all states are driven toward larger values, as
indicated by the arrows “to the right” in Figure 5. But here the behavior will
be “stopped” by the fixed point at x =

√
a. As soon as the state reaches

√
a,

its derivative is equal to zero and it will stop its journey toward +∞.
The last part includes all states that are greater than

√
a. Here again, the

time derivative is negative and the state is driven toward smaller value. But
these states are also “caught” by the fixed point x =

√
a.

From our analysis we can see that the fixed point x =
√
a attracts all states

around it; this is why we call it an attractor. It is a stable fixed point because
the system relaxes back to the fixed point if it is perturbed out of it. We can
also see that this is an attractor because of the negative slope of the dynamics
in the fixed point.

The other fixed point x = −
√
a is a repellor because it repels all states

around it. It is unstable because if the system is perturbed out of the fixed point
x = −

√
a the state will be pushed away from it. Nevertheless, it is possible that

the solution stays exactly in this fixed point if it is “started” there. An example
of such an unstable equilibrium state is if you set a pencil or stick upright on
the table: It will stay upright, but even a small perturbation will make it fall
to the ground and you would never expect it to move back :-)

Figure 5 summarizes our findings for a > 0. Considering a < 0, we know
from the previous tasks that there are no fixed points in which the state would
“stay”. Because the time derivative is negative for all values of x, the state is
driven toward smaller values and in a figure analogous to Figure 5 we would
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repellor attractor

Figure 5: Phase plot for the same dynamics as in Figure 4 for a > 0. Arrows
denote the asymptotic behavior of the dynamics for different regions of initial
conditions. Not depicted is the case that the dynamics will not change if the
initial condition is the position of the repellor (x0 = −

√
a).

draw an arrow pointing “to the left”. Thus, with time going to infinity, the
state is going to −∞.

2d)

For a = 0 we can solve the differential equation analytically to get a better
picture of the solution x(t).

In a first step we write ẋ as dx
dt and then “separate the variables”, which

means that all terms with an x go to one side of the equation and all those with
a t to the other (pretending that dx and dt are normal variables). Then we
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integrate over x on one side and over t on the other:

ẋ =
dx

dt
= x2

⇒ dx

x2
= −dt

⇒
∫ x(t)

x(0)

dx

x2
= −

∫ t

0

dt

⇒
[
−x−1

]x(t)
x(0)

= − [t]
t
0

We can either integrate with limits 0 to t and x(0) to x(t) or integrate without
limits but add a constant. Using limits may be more elegant as we do not have
to determine the constant by setting t equal to zero and calculating the initial
condition of the solution. In both cases we end up with the solution:

−x(t)−1 + x(0)−1 = −t
⇔ x(t)−1 = t+ x(0)−1

⇔ x(t) =
1

t+ x(0)−1

2e)

With x(0) > 0, the denominator of our solution t+x(0)−1 is getting larger with
time going to infinity. For the solution x(t) this means that it is getting smaller,
eventually reaching zero. We can write this mathematically as

lim
t→∞

1

t+ x(0)−1
= 0.

We can also take a look at Figure 4 for a = 0. The time derivative is negative,
so any state is driven toward smaller values until it reaches the fixed point at
x = 0, where it stays. The solution is shown in Figure 6 (blue curve), starting
at a positive value at t = 0 and relaxing to zero.

2f)

It is more complex to understand what happens for x(0) < 0. Again we take a
look at the denominator t + x(0)−1. Now x(0) has a negative value but time t
still starts at zero and then takes on positive values (as we are going toward the
future, not toward the past!). Thus, we first have some negative values for x(t)
that are getting smaller (further toward negative values) as time t approaches
the absolute value |x(0)−1|. When t reaches |x(0)−1|, the denominator t+x(0)−1

is equal to zero and the solution diverges. This is because the function x(t) is not
defined at that point as we divide by zero and the solution reaches -infinity at a
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Figure 6: Time course of the solution we computed in 2d) for a = 0. For
positive initial conditions x(0) > 0 the system relaxes to the fixed point at 0
(blue curve). For negative initial conditions x(0) < 0, the system moves toward
negative infinity at a finite time.

finite time t. This is shown by the orange curve in Figure 6. The system starts
at t = 0 at some negative value x(0) and then decreases toward −∞. There is
no solution for t = |x(0)−1|. But there seems to be a solution for t > |x(0)−1|,
too. However, since our system starts with a negative initial condition it is
captured on the branch of the solution diverging to −∞ and the system will not
be able to “jump” over from one branch to the other at t = |x(0)−1|. In fact,
the second branch, which relaxes to zero but comes from +∞, corresponds to
the behavior of the system we get with a positive initial condition but shifted
on the time axis.

Finally, we can mark the fixed point at x = 0 and add the arrows indicating
the flow of the dynamical system in Figure 7. We see that the fixed point
attracts all states x > 0, but repels all states x < 0, which is why we call it
marginally stable. With the parameter a decreasing from positive to negative
values we observe a bifurcation: the two stable fixed points for a > 0 collide,
leading to a marginally stable fixed point for a = 0, which eventually disappears
when a becomes negative.
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fixed point, marginally stable

toward fixed point, x = 0toward negative infinity

Figure 7: Phase plot for the same dynamics as in Figure 4 for a = 0. Green
arrows denote the asymptotic behavior of the dynamics for positive initial con-
ditions x0 > 0, red arrows denote the behavior for negative initial conditions
x0 < 0.
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