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Braitenberg’s vehicle metaphor

B vehicle=organism whose body moves its sensors
and motor systems through its environment
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Braitenberg vehicles

B =embodied nervous systems
with:

B effectors

B sensors

B a nervous system

M a body

M + situated in a structured
environment

B = emergent function
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Sensors

M are characterized by a sensor characteristic=
relationship between the physical quantity (e.g. sound,
luminance, chemical concentration, mechanical
pressure....) and an inner state variable:“activation”
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Effectors

M are defined by a motor characteristic = a functional
relationship between an inner activation state and a
physical effect generated in the world (e.g., turning
rate (rotations per minute rmp), force level, stiffness,

)
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Body

B mechanically links the sensors to effectors
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Nervous system

M links sensors to effectors through the inner
activation state

<— nervous system




Environment
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M is structured at a
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Emergent behavior: taxis
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To make this more formal,
need an environmental and a
sensor model
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=> enables proving this theorem

turning rate
of vehicle

B the vehicles’ behavior emerges
from an attractor of a
dynamical system
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model of the
environment
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individual forward
neural networks
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combining the two

forward neural W/

networks: sensori-
motor model
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combining
environmental,
sensor, and
sensori-motor
model
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Behavior emerges
from a dynamical

Aturning rate
of vehicle
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M + closed loop through gk
environment 7’

B => (behavioral) dynamics



Cybernetic reading of dynamics

M the CNS reduces the A coming e
deviation from the desired of vehicle
behavioral state to zero
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Cybernetic reading of dynamics
L

M the CNS reduces the
deviation from the desired
behavioral state to zero

M by its sensors measuring
the “error”

® and the CNS sending a
feedback control signal to
its actuators to reduce the
error

wheel
Im\otlon

wheel
Im\otlon

intensity intensity

turning rate

differences in+control signal

left-right wheel differences in

intensity error

Aw

left-right )

— cAl



Cybernetic reading of dynamics

M ... depends critically on |
, Aturnlng rate
the closed loop: the body’s of vehicle
movement changes the
sensory information..
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M this is a loop through the
environment <3

B the state of the dynamics r
is the body’s physical state
in the environment



Limits of the cybernetic
view of dynamics

M presumes there is a single “goal” or set-point



B two sources

B bimodal d

M => bistab
dynamics

istribution

e (non-linar)

B => selection decision
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B transition to monostable
for mono-modal
distribution

M => instabilities lead to
qualitative change of
behavior
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B transition to monostable
for mono-modal
distribution

M => instabilities lead to
qualitative change of
behavior
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Limits of the cybernetic
view of dynamics

B far reaching implications ...

B for the nature of the perceptual variables
(not “error-signals™)

B for the nature of the state variables (not
“error-correcting-control-signals”™)

B => dynamics # cybernetics/control theory



Beyond behavioral dynamics ...
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Beyond behavioral dynamics ...

M what if we want the vehicle to

make a decision for one target, >ouree, Souree,
without actually moving so that ﬁk ﬁk
later, the outcome of that decision
can be acted out.. " J \_J

M => “covert’ orientation oo

M need to “‘store” the state of that —<
decision somewhere other than
the physical state of the vehicle: g g

neural state in the neural network



Beyond behavioral dynamics ...

A du/dt A du,/dt
: N i 2
M neural state in the NN
neural network:
activation concept cource ﬁ ﬁ cource,
B activat .
activation dynamics <\
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Beyond behavioral dynamics ...
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Beyond behavioral dynamics ...

B or we want the system to be able >QY'CS source

| 2
to act on the sources after the ﬁ ﬁk

external sources of stimulation are

removed... \J \J
B => working memory oo

M need to store the state of that <
sensory representation in the

neural network g g




Beyond behavioral dynamics ...

4 activation

A

dlmen5|on
M store the state of the B \/\——-

representation in a neural field source = source,
as a pattern of sustained ﬁ
activation
</
(0 O




Next...

® neural dynamics



