Computational Neuroscience: Neural Dynamics — Introduction

Gregor Schöner ini.rub.de

Cognition in the wild...

- attention/gaze
- active perception/working memory
- action plans/decisions/ sequences
- goal orientation
- motor control
- background knowledge
- learning from experience

=> implied properties of the underlying neural processes

- graded state
- continuous time
- continuous/intermittent link to the sensory and motor surfaces
- from which discrete events and categorical behavior emerge
- in closed loop
- => states must be stable

Embodiment hypothesis

- all cognition is like soccer playing = has the properties of embodied cognition
- => there is no particular boundary up to which cognition is embodied and beyond which it is computational/symbolic

Closed loop => dynamics

What does "neural dynamics" mean?

Neurons as input-output threshold elements that form feed-forward neural networks

What does "neural dynamics" mean?

- recurrent neural networks require a concept of time
- time is not discrete (spiking is asynchronous) => neural dynamics...
- requires a concept of activation state, u (membrane potential, spiking rate)

$$\dot{u}(t) = -u(t) + h + \text{input}(t) + g(u(t))$$

Dynamic fields

- continously many neurons... dynamic fields
- dimensions defined through the forward connectivity from sensory surfaces
 - e.g., feature maps...

Dynamic fiels

- dimensions may also reflect output to motor surfaces... => behavioral dynamics
 - e.g., through peripheral reflex loops

Dynamic Fields

- regular recurrent connectivity (interaction) leads to localized activation patterns as attractor states:
 - stabilized by excitatory coupling against decay
 - stabilized by inhibitory coupling against diffusive spread

Theoretical research program

- theory of behavior and thinking...emergence from the sensory-motor domain
- process accounts based on neural principles
- naturalistic tasks that connect to elementary behaviors and elementary forms of cognition

Experimental research program

- look for behavioral signatures of the postulated neural principles
 - e.g. metric effects, role of time, context, online updating
- study links between different domains

Robotic research program

- autonomous robots: actively generate behavior, initiating, selecting, terminating actions based on the system's own perceptual processes
- use autonomous robots as heuristic devices to demonstrate process accounts

- elements of embodied cognition
 - detection decisions
 - selection decisions
 - working memory for metric information
 - memory trace

- theoretical concepts
 - behavioral dynamics
 - neural dynamics
 - dynamic neural fields
 - Dynamic Field Theory

- neural foundations
 - rate code, neural maps
 - population code
 - neurophysics

- mathematic concepts
 - dynamical systems
 - stability, attractors, instabilities
 - numerical solution of differential equations

- theory-experiment relationships
 - accounting for neural and behavioral data
 - accounting for behavior in process models

- robotic and simulated behavior
 - as a heuristic tool
 - to demonstrate function from neural dynamics
 - to uncover overlooked problems

What skills do you learn?

academic skills

- read and understand scientific texts
- write technical texts, using mathematical concepts and illustrations

What skills do you learn?

mathematical skills

- conceptual understanding of dynamical systems
- capacity to read differential equations and illustrate them
- perform "mental simulation" of differential equations
- use numerical simulation to test ideas about an equation

What skills do you learn?

interdisciplinary skills

- handle concepts from a different discipline
- handle things that you don't understand
- sharpen sense of what you understand and what not