
Programming Session 2

Programming Session 2

Jan Tekülve
jan.tekuelve@ini.rub.de

Computer Science andMathematics
Preparatory Course

07.10.2021

07.10.2021 1 / 28

Programming Session 2

Overview

1. Programming
➤ Utilities

2. Tasks

3. Outlook: Matrices and Scientific Programming
➤ Matrices Quick Summary
➤ TheNumpyModule
➤ Matrix Calculation with Numpy

07.10.2021 2 / 28

Programming Session 2 Programming

Ask for a correct user input

▶ Sometimes a specific user input is required

userIn = input("Please type exit! ")

while not userIn == "exit" :

userIn = input("Please type exit! ")

▶ The input might allow a range of options

userIn = input("Please choose Left or Right: ")

while not (userIn == "Left" or userIn == "Right"):

userIn = input("Please choose Left or Right: ")

07.10.2021 3 / 28

Programming Session 2 Programming

Ask for a correct user input

▶ Sometimes a specific user input is required

userIn = input("Please type exit! ")

while not userIn == "exit" :

userIn = input("Please type exit! ")

▶ The input might allow a range of options

userIn = input("Please choose Left or Right: ")

while not (userIn == "Left" or userIn == "Right"):

userIn = input("Please choose Left or Right: ")

07.10.2021 3 / 28

Programming Session 2 Programming

Variations of the For-Loop

▶ The range function has an optional stepsize parameter

myList = ["A","B","C","D","E","F"]

#Print every second element of a list

for i in range(0,len(myList),2):

print(myList[i])

#This prints A C E

▶ One can even go through the list in reverse

#From len(myList)-1 to 0 with stepsize -1

for i in range(len(myList)-1,-1,-1):

print(myList[i])

#This prints F E D C B A

07.10.2021 4 / 28

Programming Session 2 Programming

Variations of the For-Loop

▶ The range function has an optional stepsize parameter

myList = ["A","B","C","D","E","F"]

#Print every second element of a list

for i in range(0,len(myList),2):

print(myList[i])

#This prints A C E

▶ One can even go through the list in reverse

#From len(myList)-1 to 0 with stepsize -1

for i in range(len(myList)-1,-1,-1):

print(myList[i])

#This prints F E D C B A

07.10.2021 4 / 28

Programming Session 2 Programming

Dissecting Strings

▶ Split a sentence into words

mySentence = "Hello I am a Sentence"

words = mySentence.split(" ") # words is a list

["Hello", "I", "am" , "a", "Sentence"]

▶ Split a word into letters

word = "Hello"

#The list typecast converts strings to lists

letters = list(word) #["H","e","l","l","o"]

▶ Use the “in” operator to check if an element is in a list

if "e" in letters:

print("The letter 'e' is in the list.")

07.10.2021 5 / 28

Programming Session 2 Programming

Dissecting Strings

▶ Split a sentence into words

mySentence = "Hello I am a Sentence"

words = mySentence.split(" ") # words is a list

["Hello", "I", "am" , "a", "Sentence"]

▶ Split a word into letters

word = "Hello"

#The list typecast converts strings to lists

letters = list(word) #["H","e","l","l","o"]

▶ Use the “in” operator to check if an element is in a list

if "e" in letters:

print("The letter 'e' is in the list.")

07.10.2021 5 / 28

Programming Session 2 Programming

Dissecting Strings

▶ Split a sentence into words

mySentence = "Hello I am a Sentence"

words = mySentence.split(" ") # words is a list

["Hello", "I", "am" , "a", "Sentence"]

▶ Split a word into letters

word = "Hello"

#The list typecast converts strings to lists

letters = list(word) #["H","e","l","l","o"]

▶ Use the “in” operator to check if an element is in a list

if "e" in letters:

print("The letter 'e' is in the list.")

07.10.2021 5 / 28

Programming Session 2 Programming

Exchange Variable Values

▶ How to exchange two variable values?

FirstPlace = "Schumacher"

SecondPlace = "Lauda"

▶ Now Lauda overtakes Schumacher

FirstPlace = SecondPlace # FirstPlace = "Lauda"

SecondPlace = Firstplace # SecondPlace = "Lauda" !!!

▶ A helper variable is required

helper = FirstPlace # helper = "Schumacher"

FirstPlace = SecondPlace # FirstPlace = "Lauda"

SecondPlace = helper # SecondPlace = "Schumacher"

07.10.2021 6 / 28

Programming Session 2 Programming

Exchange Variable Values

▶ How to exchange two variable values?

FirstPlace = "Schumacher"

SecondPlace = "Lauda"

▶ Now Lauda overtakes Schumacher

FirstPlace = SecondPlace # FirstPlace = "Lauda"

SecondPlace = Firstplace # SecondPlace = "Lauda" !!!

▶ A helper variable is required

helper = FirstPlace # helper = "Schumacher"

FirstPlace = SecondPlace # FirstPlace = "Lauda"

SecondPlace = helper # SecondPlace = "Schumacher"

07.10.2021 6 / 28

Programming Session 2 Programming

Exchange Variable Values

▶ How to exchange two variable values?

FirstPlace = "Schumacher"

SecondPlace = "Lauda"

▶ Now Lauda overtakes Schumacher

FirstPlace = SecondPlace # FirstPlace = "Lauda"

SecondPlace = Firstplace # SecondPlace = "Lauda" !!!

▶ A helper variable is required

helper = FirstPlace # helper = "Schumacher"

FirstPlace = SecondPlace # FirstPlace = "Lauda"

SecondPlace = helper # SecondPlace = "Schumacher"

07.10.2021 6 / 28

Programming Session 2 Programming

TheBubble Sort Algorithm

07.10.2021 7 / 28

Programming Session 2 Programming

TheBubble Sort Algorithm

07.10.2021 7 / 28

Programming Session 2 Programming

TheBubble Sort Algorithm

07.10.2021 7 / 28

Programming Session 2 Programming

TheBubble Sort Algorithm

07.10.2021 7 / 28

Programming Session 2 Programming

TheBubble Sort Algorithm

07.10.2021 7 / 28

Programming Session 2 Programming

TheBubble Sort Algorithm

07.10.2021 7 / 28

Programming Session 2 Programming

TheBubble Sort Algorithm

07.10.2021 7 / 28

Programming Session 2 Programming

TheBubble Sort Algorithm

07.10.2021 7 / 28

Programming Session 2 Programming

TheBubble Sort Algorithm

07.10.2021 7 / 28

Programming Session 2 Programming

TheBubble Sort Algorithm

07.10.2021 7 / 28

Programming Session 2 Programming

TheBubble Sort Algorithm

07.10.2021 7 / 28

Programming Session 2 Programming

TheBubble Sort Algorithm

07.10.2021 7 / 28

Programming Session 2 Programming

TheBubble Sort Algorithm

07.10.2021 7 / 28

Programming Session 2 Programming

TheBubble Sort Algorithm

07.10.2021 7 / 28

Programming Session 2 Programming

TheBubble Sort Algorithm

07.10.2021 7 / 28

Programming Session 2 Programming

TheBubble Sort Algorithm

07.10.2021 7 / 28

Programming Session 2 Programming

TheBubble Sort Algorithm

07.10.2021 7 / 28

Programming Session 2 Programming

TheBubble Sort Algorithm

07.10.2021 7 / 28

Programming Session 2 Programming

Bubble Sort inWords

▶ Input: An unsorted list

▶ Do the following until nothing is changed anymore:
▶ Iterate through the complete list

1. Compare the current element with the next element

2. If the current element is greater than the next element, switch their
positions

3. Notify whether a change was made

▶ The list is now sorted.

07.10.2021 8 / 28

Programming Session 2 Programming - Utilities

Helpful Functions

▶ The randommodule

import random #import the module similar to import math

#assigns dice_roll a number between 1 and 6

dice_roll = random.randint(1,6)

#random list item

myList = ["Rock","Paper","Scissors"]

random_item = myList[random.randint(0,len(myList)-1)]

▶ Convert a string to uppercase

name = "Peter"

upname = name.upper()

print(upname) # "PETER"

07.10.2021 9 / 28

Programming Session 2 Tasks

Task: Reverse a sentence

1. Write a script that reverts the word order in a given sentence
▶ Let the user type in any sentence via the input()method
▶ Split the sentence into a list of words
▶ Use a for loop to go through the list in reverse order
▶ During each iteration add the current word to a string variable sentence
▶ Print the sentence variable

This is an example sentence → sentence example an isThis

07.10.2021 10 / 28

Programming Session 2 Tasks

Task: Hangman

2. Write a Hangman computer game. The computer secretly chooses a
word and the user may guess letters until the word is found.
▶ Choose a randomword from the words list and store it in variable
▶ For each letter of theWord print an underscore “_”
▶ Start a while loop that runs until the whole word is found
▶ In the loop let the user guess a character and store the guessed character

in a list
▶ Run a second loop through each letter of the word and check whether this

letter has been guessed already. If it has been guessed, print it otherwise
print an underscore “_”.

▶ If you still had to replace a word by “_” the while loop continues

TASK → _ _ _ _

07.10.2021 11 / 28

Programming Session 2 Tasks

Task: Bubble Sort

3. Implement the Bubbling Sort Algorithm to sort a list of numbers
▶ Start a while loop
▶ In the while loop iterate through the list and compare the current and the

next element
▶ If the next element is smaller than the current one swap them
▶ If you swap, make sure that the while loop is continued
▶ If you did not swap at all, make sure the while loop ends

07.10.2021 12 / 28

Programming Session 2 Outlook - Matrices Quick Summary

Matrix Definition
AMatrix Am,n is a rectangular array arranged inm rows and n columns.

▶ Example:

A3,4 =

1 2 3 4
5 6 7 8
9 10 11 12



▶ A single element in a matrix is usually denoted by ai,j, where i is the row
and j the column index. For example a2,3 = 7.

▶ Amatrix Am, n, wherem = n is called a squarematrix

▶ Amatrix that has only entries on the diagonal is called a diagonalmatrix

D3,3 =

1 0 0
0 6 0
0 0 4

 Special case identity matrix I3,3 =

1 0 0
0 1 0
0 0 1



07.10.2021 13 / 28

Programming Session 2 Outlook - Matrices Quick Summary

Matrix Definition
AMatrix Am,n is a rectangular array arranged inm rows and n columns.

▶ Example:

A3,4 =

1 2 3 4
5 6 7 8
9 10 11 12


▶ A single element in a matrix is usually denoted by ai,j, where i is the row
and j the column index. For example a2,3 = 7.

▶ Amatrix Am, n, wherem = n is called a squarematrix

▶ Amatrix that has only entries on the diagonal is called a diagonalmatrix

D3,3 =

1 0 0
0 6 0
0 0 4

 Special case identity matrix I3,3 =

1 0 0
0 1 0
0 0 1



07.10.2021 13 / 28

Programming Session 2 Outlook - Matrices Quick Summary

Matrix Definition
AMatrix Am,n is a rectangular array arranged inm rows and n columns.

▶ Example:

A3,4 =

1 2 3 4
5 6 7 8
9 10 11 12


▶ A single element in a matrix is usually denoted by ai,j, where i is the row
and j the column index. For example a2,3 = 7.

▶ Amatrix Am, n, wherem = n is called a squarematrix

▶ Amatrix that has only entries on the diagonal is called a diagonalmatrix

D3,3 =

1 0 0
0 6 0
0 0 4

 Special case identity matrix I3,3 =

1 0 0
0 1 0
0 0 1



07.10.2021 13 / 28

Programming Session 2 Outlook - Matrices Quick Summary

Matrix Definition
AMatrix Am,n is a rectangular array arranged inm rows and n columns.

▶ Example:

A3,4 =

1 2 3 4
5 6 7 8
9 10 11 12


▶ A single element in a matrix is usually denoted by ai,j, where i is the row
and j the column index. For example a2,3 = 7.

▶ Amatrix Am, n, wherem = n is called a squarematrix

▶ Amatrix that has only entries on the diagonal is called a diagonalmatrix

D3,3 =

1 0 0
0 6 0
0 0 4

 Special case identity matrix I3,3 =

1 0 0
0 1 0
0 0 1


07.10.2021 13 / 28

Programming Session 2 Outlook - Matrices Quick Summary

Matrix Addition/Subtraction

▶ It is possible to add twomatrices A and B together, if they have the same
number of rows and columns.

▶ Addition is carried out element-wise:

A3,2 + B3,2 =

1 2
5 6
9 10

+

4 2
3 1
8 2

 =

1+ 4 2+ 2
5+ 3 6+ 1
9+ 8 10+ 2

 =

 5 4
8 7
17 12


▶ Subtraction works analogously:

A3,2 − B3,2 =

1 2
5 6
9 10

−

4 2
3 1
8 2

 =

1− 4 2− 2
5− 3 6− 1
9− 8 10− 2

 =

−3 0
2 5
1 8



07.10.2021 14 / 28

Programming Session 2 Outlook - Matrices Quick Summary

Matrix Addition/Subtraction

▶ It is possible to add twomatrices A and B together, if they have the same
number of rows and columns.

▶ Addition is carried out element-wise:

A3,2 + B3,2 =

1 2
5 6
9 10

+

4 2
3 1
8 2

 =

1+ 4 2+ 2
5+ 3 6+ 1
9+ 8 10+ 2

 =

 5 4
8 7
17 12



▶ Subtraction works analogously:

A3,2 − B3,2 =

1 2
5 6
9 10

−

4 2
3 1
8 2

 =

1− 4 2− 2
5− 3 6− 1
9− 8 10− 2

 =

−3 0
2 5
1 8



07.10.2021 14 / 28

Programming Session 2 Outlook - Matrices Quick Summary

Matrix Addition/Subtraction

▶ It is possible to add twomatrices A and B together, if they have the same
number of rows and columns.

▶ Addition is carried out element-wise:

A3,2 + B3,2 =

1 2
5 6
9 10

+

4 2
3 1
8 2

 =

1+ 4 2+ 2
5+ 3 6+ 1
9+ 8 10+ 2

 =

 5 4
8 7
17 12


▶ Subtraction works analogously:

A3,2 − B3,2 =

1 2
5 6
9 10

−

4 2
3 1
8 2

 =

1− 4 2− 2
5− 3 6− 1
9− 8 10− 2

 =

−3 0
2 5
1 8



07.10.2021 14 / 28

Programming Session 2 Outlook - Matrices Quick Summary

ScalarMultiplication and Transposition

▶ Multiplication with scalar values is also applied element-wise:

A3,2 · 3 =

1 2
5 6
9 10

 · 3 =

1 · 3 2 · 3
5 · 3 6 · 3
9 · 3 10 · 3

 =

 3 6
15 18
27 30



▶ The transposition AT of a matrix switches the roles of row and columns
Example:

AT3,2 =

1 2
5 6
9 10

T

=

(
1 5 9
2 6 10

)
The transposition turns am× nmatrix into a n× mmatrix.

07.10.2021 15 / 28

Programming Session 2 Outlook - Matrices Quick Summary

ScalarMultiplication and Transposition

▶ Multiplication with scalar values is also applied element-wise:

A3,2 · 3 =

1 2
5 6
9 10

 · 3 =

1 · 3 2 · 3
5 · 3 6 · 3
9 · 3 10 · 3

 =

 3 6
15 18
27 30


▶ The transposition AT of a matrix switches the roles of row and columns
Example:

AT3,2 =

1 2
5 6
9 10

T

=

(
1 5 9
2 6 10

)
The transposition turns am× nmatrix into a n× mmatrix.

07.10.2021 15 / 28

Programming Session 2 Outlook - Matrices Quick Summary

MatrixMultiplication

▶ Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

▶ The resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

▶ Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

07.10.2021 16 / 28

Programming Session 2 Outlook - Matrices Quick Summary

MatrixMultiplication

▶ Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

▶ The resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

▶ Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3 · B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
_ _ _
_ _ _

)

07.10.2021 16 / 28

Programming Session 2 Outlook - Matrices Quick Summary

MatrixMultiplication

▶ Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

▶ The resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

▶ Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3 · B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
? _ _
_ _ _

)

07.10.2021 16 / 28

Programming Session 2 Outlook - Matrices Quick Summary

MatrixMultiplication

▶ Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

▶ The resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

▶ Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3 ·B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
(3 ∗ 4+ 6 ∗ 1+ 5 ∗ 7) _ _

_ _ _

)

07.10.2021 16 / 28

Programming Session 2 Outlook - Matrices Quick Summary

MatrixMultiplication

▶ Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

▶ The resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

▶ Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3 · B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
53 _ _
_ _ _

)

07.10.2021 16 / 28

Programming Session 2 Outlook - Matrices Quick Summary

MatrixMultiplication

▶ Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

▶ The resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

▶ Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3 · B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
53 ? _
_ _ _

)

07.10.2021 16 / 28

Programming Session 2 Outlook - Matrices Quick Summary

MatrixMultiplication

▶ Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

▶ The resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

▶ Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3·B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
53 (3 ∗ 3+ 6 ∗ 2+ 5 ∗ 3) _
_ _ _

)

07.10.2021 16 / 28

Programming Session 2 Outlook - Matrices Quick Summary

MatrixMultiplication

▶ Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

▶ The resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

▶ Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3 · B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
53 36 _
_ _ _

)

07.10.2021 16 / 28

Programming Session 2 Outlook - Matrices Quick Summary

MatrixMultiplication

▶ Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

▶ The resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

▶ Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3 · B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
53 36 _
_ _ ?

)

07.10.2021 16 / 28

Programming Session 2 Outlook - Matrices Quick Summary

MatrixMultiplication

▶ Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

▶ The resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

▶ Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3·B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
53 36 _
_ _ (4 ∗ 8+ 2 ∗ 10+ 1 ∗ 2)

)

07.10.2021 16 / 28

Programming Session 2 Outlook - Matrices Quick Summary

MatrixMultiplication

▶ Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

▶ The resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

▶ Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3 · B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
53 36 _
_ _ 54

)

07.10.2021 16 / 28

Programming Session 2 Outlook - Matrices Quick Summary

MatrixMultiplication

▶ Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

▶ The resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

▶ Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3 · B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
53 36 94
25 19 54

)

07.10.2021 16 / 28

Programming Session 2 Outlook - The NumpyModule

TheNumpyModule

▶ Numpy is part of SciPy themodule for scientific programming

▶ It should have been installed with matplotlib

▶ It is usually imported like this:

import numpy as np

07.10.2021 17 / 28

Programming Session 2 Outlook - The NumpyModule

TheNumpyArray

▶ Numpy brings its own data structure the numpy array

import numpy as np

#Arrays can be created from lists

array_example = np.array([1,6,7,9])

#Arrays can be created with arange

#An array with numbers from 4 to 5 and step size 0.2

array2 = np.arange(4,5,0.2) #5 is not in the array

print(array2) # [4.0 4.2 4.4 4.6 4.8]

▶ Elements of an array can be manipulated simultaneously

array3 = array2*array2 #For example with multiplication

print(array3)# [16.0 16.64 19.36 21.16 23.04]

07.10.2021 18 / 28

Programming Session 2 Outlook - The NumpyModule

Matplotlib andNumpy
▶ Plotting sin(x) from 0 to π with lists

listX=[]

listY=[]

step_size = 0.5

for i in range(0,int(math.pi/step_size)):

xValue = i*step_size

listX.append(xValue)

listY.append(math.sin(xValue))

plt.plot(listX,listY)

▶ Plotting sin(x) from 0 to π with numpy

xValues = np.arange(0,math.pi,0.5)

yValues = np.sin(xValues)

plt.plot(xValues,yValues)

07.10.2021 19 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

NumpyArrays asMatrices

▶ Creating the followingmatrix: A =

1 2 3 4
5 6 7 8
9 10 11 12



▶ In numpy amatrix can be created from amulti-dimensional list

This creates a 3x4 Matrix

A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

▶ Numpy treats such an array as a matrix

arr_dim = A.shape #Gives you the shape of your matrix

print(arr_dim) #Prints (3,4)

Access elements with indexing

single_number = A[1,3] #8, 2nd list,4th element

num2 = A[0,1] #2, 1st list, 2nd element

07.10.2021 20 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

NumpyArrays asMatrices

▶ Creating the followingmatrix: A =

1 2 3 4
5 6 7 8
9 10 11 12


▶ In numpy amatrix can be created from amulti-dimensional list

This creates a 3x4 Matrix

A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

▶ Numpy treats such an array as a matrix

arr_dim = A.shape #Gives you the shape of your matrix

print(arr_dim) #Prints (3,4)

Access elements with indexing

single_number = A[1,3] #8, 2nd list,4th element

num2 = A[0,1] #2, 1st list, 2nd element

07.10.2021 20 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

NumpyArrays asMatrices

▶ Creating the followingmatrix: A =

1 2 3 4
5 6 7 8
9 10 11 12


▶ In numpy amatrix can be created from amulti-dimensional list

This creates a 3x4 Matrix

A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

▶ Numpy treats such an array as a matrix

arr_dim = A.shape #Gives you the shape of your matrix

print(arr_dim) #Prints (3,4)

Access elements with indexing

single_number = A[1,3] #8, 2nd list,4th element

num2 = A[0,1] #2, 1st list, 2nd element

07.10.2021 20 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Matrix Operations inNumpy

▶ Matrix Addition:
(
1 2 3
5 6 7

)
+

(
3 5 1
5 −3 1

)
=

(
4 7 4
10 3 8

)
▶ In numpy code:

A = np.array([[1,2,3], [5,6,7]])

B = np.array([[3,5,1], [5,-3,1]])

C = A + B

D = A - B #Subtraction works analogously

print(D) #[[-2 -3 2],[0 9 6]]

07.10.2021 21 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Matrix Operations inNumpy

▶ Matrix Multiplication:
(
1 2 3
5 6 7

)
∗

3 5
5 −3
1 1

 =

(
16 2
52 14

)

▶ In numpy code:

A = np.array([[1,2,3], [5,6,7]])

E = np.array([[3,5], [5,-3],[1,1]])

F = np.matmul(A,E)

print(F) # [[16,2],[52,14]]

▶ Do not confuse with element-wise multiplication

A = np.array([[1,2,3], [5,6,7]])

B = np.array([[3,5,1], [5,-3,1]])

G = A*B # [[3,10,3],[25,-18,7]]

07.10.2021 22 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Matrix Operations inNumpy

▶ Matrix Multiplication:
(
1 2 3
5 6 7

)
∗

3 5
5 −3
1 1

 =

(
16 2
52 14

)

▶ In numpy code:

A = np.array([[1,2,3], [5,6,7]])

E = np.array([[3,5], [5,-3],[1,1]])

F = np.matmul(A,E)

print(F) # [[16,2],[52,14]]

▶ Do not confuse with element-wise multiplication

A = np.array([[1,2,3], [5,6,7]])

B = np.array([[3,5,1], [5,-3,1]])

G = A*B # [[3,10,3],[25,-18,7]]

07.10.2021 22 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Matrix Operations inNumpy

▶ It also works for vectors:

< v1, v2 >= v1Tv2 =
(
1 2 3

)
∗

35
1

 = 16

▶ In numpy code:

V1 = np.array([1,2,3])

V2 = np.array([3,5,1])

R = np.matmul(V1,V2)

print(R) # 16

▶ Or vectors andmatrices if you want to

07.10.2021 23 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Matrix Operations inNumpy

▶ It also works for vectors:

< v1, v2 >= v1Tv2 =
(
1 2 3

)
∗

35
1

 = 16

▶ In numpy code:

V1 = np.array([1,2,3])

V2 = np.array([3,5,1])

R = np.matmul(V1,V2)

print(R) # 16

▶ Or vectors andmatrices if you want to

07.10.2021 23 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Other helpful Operations

▶ Transpose Matrices: A =

(
1 2 3
5 6 7

)
AT =

1 5
2 6
3 7


▶ In numpy:

A = np.array([[1,2,3], [5,6,7]])

H = A.T # [[1,5],[2,6],[3,7]]

▶ Element-wise summing across arrays:

sum = np.sum(H) #24,

V1 = np.array([1,2,3]) #works also for 1D-arrays

sum_v = np.sum(V1) # 6

07.10.2021 24 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Images asMatrices


x0,0 x0,1 x0,2 x0,3 x0,4
x1,0 x1,1 x1,2 x1,3 x1,4
x2,0 x2,1 x2,2 x2,3 x2,4
x3,0 x3,1 x3,2 x3,3 x3,4
x4,0 x4,1 x4,2 x4,3 x4,4



07.10.2021 25 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Images asMatrices


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



07.10.2021 25 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Images asMatrices


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



07.10.2021 25 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Images asMatrices


1 0 0 0 1
0 0 1 0 0
0 0 0 0 0
0 1 0 1 0
0 0 1 0 0



07.10.2021 25 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Images asMatrices


1 0 0 0 1
0 0 1 0 0
0 0 0 0 0
0 1 0 1 0
0 0 1 0 0



07.10.2021 25 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞

−∞
f (x′)g(x − x′)dx′

07.10.2021 26 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞

−∞
f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -4

07.10.2021 26 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞

−∞
f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -3.5

07.10.2021 26 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞

−∞
f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -3

07.10.2021 26 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞

−∞
f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -2.5

07.10.2021 26 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞

−∞
f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -2

07.10.2021 26 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞

−∞
f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -1.5

07.10.2021 26 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞

−∞
f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -1

07.10.2021 26 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞

−∞
f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -0.5

07.10.2021 26 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞

−∞
f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 0

07.10.2021 26 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞

−∞
f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 0.5

07.10.2021 26 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞

−∞
f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 1

07.10.2021 26 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞

−∞
f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 1.5

07.10.2021 26 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞

−∞
f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 2

07.10.2021 26 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞

−∞
f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 2.5

07.10.2021 26 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞

−∞
f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 3

07.10.2021 26 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞

−∞
f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 3.5

07.10.2021 26 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞

−∞
f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 4

07.10.2021 26 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

Applying Filters to Images

07.10.2021 27 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

ConvolutionwithMatrices

10-1

Image

Edge Filter

07.10.2021 28 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

ConvolutionwithMatrices

10-1

Image

Edge Filter

10-1

07.10.2021 28 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

ConvolutionwithMatrices

10-1

Image

Edge Filter

10-1

07.10.2021 28 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

ConvolutionwithMatrices

10-1

Image

Edge Filter

10-1

07.10.2021 28 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

ConvolutionwithMatrices

10-1

Image

Edge Filter

10-1

07.10.2021 28 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

ConvolutionwithMatrices

10-1

Image

Edge Filter

10-1

07.10.2021 28 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

ConvolutionwithMatrices

10-1

Image

Edge Filter

10-1

07.10.2021 28 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

ConvolutionwithMatrices

10-1

Image

Edge Filter

10-1

07.10.2021 28 / 28

Programming Session 2 Outlook - Matrix Calculation with Numpy

ConvolutionwithMatrices

10-1

Image

Edge Filter

10-1

07.10.2021 28 / 28

	Programming
	Utilities

	Tasks
	Outlook: Matrices and Scientific Programming
	Matrices Quick Summary
	The Numpy Module
	Matrix Calculation with Numpy

