Lecture 4 Function Limits and Differentiation

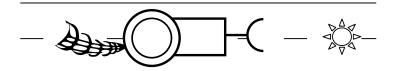
Jan Tekülve jan.tekuelve@ini.rub.de

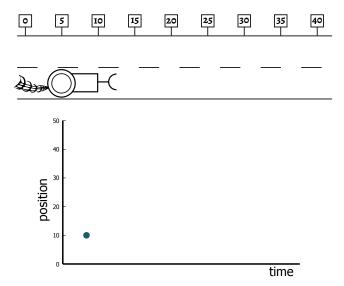
Computer Science and Mathematics
Preparatory Course

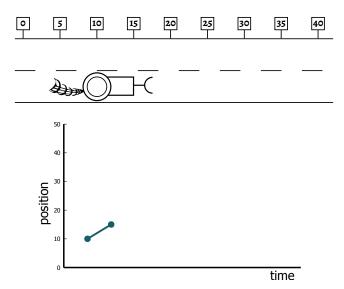
04.10.2021

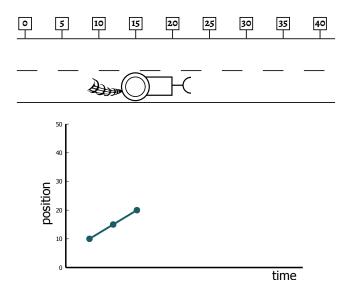
Motivation

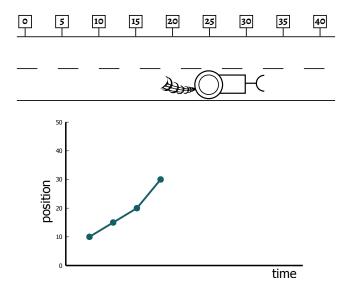
Estimating Velocity by Differentiation

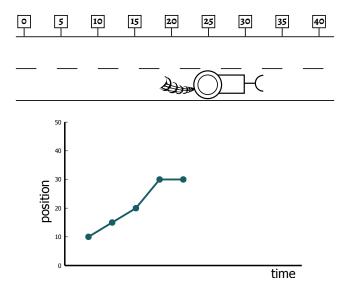


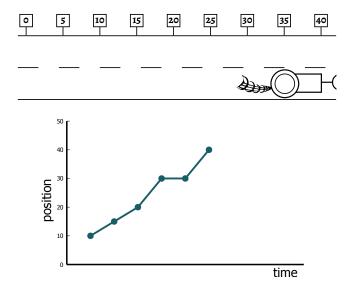


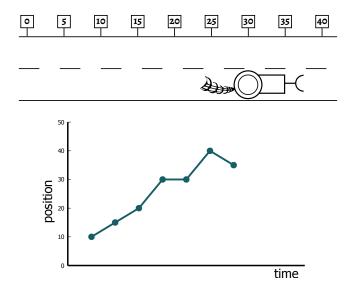


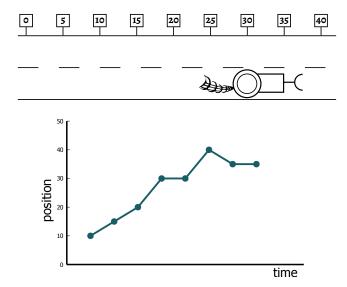


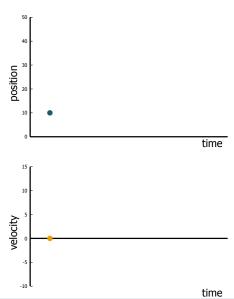


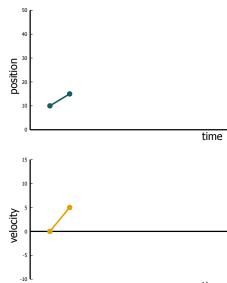


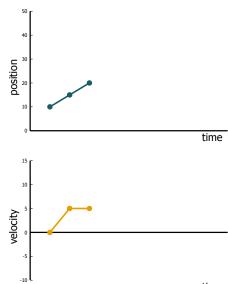


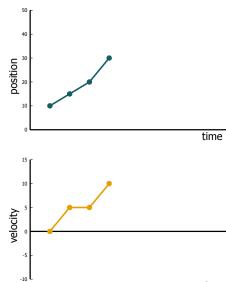


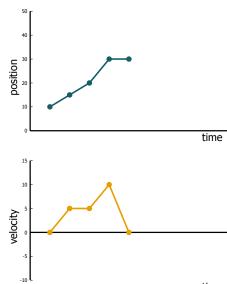


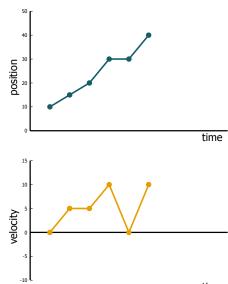


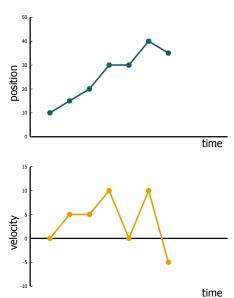


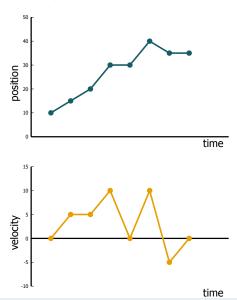












Overview

1. Motivation

2. Function Limits

- Sequences
- ➤ Limit Definition

3. Differentiation

- ➤ Graphical Interpretation
- > Formal Description
- Rules for Differentiation
- Numerical Differentiation

4. Tasks

Overview

1. Motivation

2. Function Limits

- > Sequences
- ➤ Limit Definition

3. Differentiation

- ➤ Graphical Interpretation
- > Formal Description
- ➤ Rules for Differentiation
- Numerical Differentiation

4. Tasks

Sequences

Sequence Definition

Functions with the domain $\mathbb N$ are called **sequence**. A sequence with the codomain $\mathbb R$ is called a sequence of real numbers: $f: \mathbb N \to \mathbb R, n \to f(n)$

Examples:

- ► Constant sequence: $(3)_{n \in \mathbb{N}} = (3, 3, 3, 3, 3, ...)$
- Sequence of natural numbers: $(n)_{n \in \mathbb{N}} = (1, 2, 3, 4, 5, \dots)$
- ► Harmonic sequence: $(\frac{1}{n})_{n \in \mathbb{N}} = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots)$
- Geometric sequence: $(q^n)_{n \in \mathbb{N}} = (q, q^2, q^3, q^4, q^5, \dots)$
- ► Alternating sequence: $((-1)^n)_{n \in \mathbb{N}} = (-1, 1, -1, 1, -1, \dots)$

Recursive Sequences

Recursive Sequence Definition

A sequence $(a_n)_{n\in\mathbb{N}}$ may be recursively defined by:

- **1.** The first sequence element : a_1 , called **initial value**
- **2.** A recursive rule defining element a_{n+1} through previous elements a_n

Example: The Fibonacci Sequence

$$a_{n+1} = a_n + a_{n-1} = (1, 1, 2, 3, 5, 8, 13, 21, ...),$$

with $a_1 = 1$ and $a_2 = 1$

Properties of Sequences

Boundedness

A sequence $(a_n)_{n\in\mathbb{N}}$ has

- ▶ an **upper bound**, if there is a $K \in \mathbb{R}$, such that $a_n \leq K$ for all $n \in \mathbb{N}$
- ▶ a **lower bound**, if there is a $K \in \mathbb{R}$, such that $a_n \geq K$ for all $n \in \mathbb{N}$

Properties of Sequences

Boundedness

A sequence $(a_n)_{n\in\mathbb{N}}$ has

- ▶ an **upper bound**, if there is a $K \in \mathbb{R}$, such that $a_n \leq K$ for all $n \in \mathbb{N}$
- ▶ a **lower bound**, if there is a $K \in \mathbb{R}$, such that $a_n \geq K$ for all $n \in \mathbb{N}$

Monotonicity

A sequence $(a_n)_{n\in\mathbb{N}}$ is :

- **(strictly) monotonically increasing,** if $a_n(<) \le a_{n+1}$ for all $n \in \mathbb{N}$
- (strictly) monotonically decreasing, if $a_n(>) \ge a_{n+1}$ for all $n \in \mathbb{N}$

Definitions

A sequence $(a_n)_{n\in\mathbb{N}}$ of real numbers **converges** to a real number L, if for all $\epsilon > 0$, there exists a natural number N:

Lecture 4 - Sequences

$$a_n < L + \epsilon \wedge a_n > L - \epsilon \text{ for all } n \ge N$$

Definitions

A sequence $(a_n)_{n\in\mathbb{N}}$ of real numbers **converges** to a real number L, if for all $\epsilon > 0$, there exists a natural number N:

$$a_n < L + \epsilon \wedge a_n > L - \epsilon \text{ for all } n \ge N$$

Translation: A sequence converges to a real number L, if you get closer to L with each additional element in the sequence

Definitions

A sequence $(a_n)_{n\in\mathbb{N}}$ of real numbers **converges** to a real number L, if for all $\epsilon > 0$, there exists a natural number N:

$$a_n < L + \epsilon \wedge a_n > L - \epsilon \text{ for all } n \ge N$$

Translation: A sequence converges to a real number *L*, if you get closer to L with each additional element in the sequence

L is called the **limit** of a sequence

$$\lim_{n\to\infty}a_n=L$$

Definitions

A sequence $(a_n)_{n\in\mathbb{N}}$ of real numbers **converges** to a real number L, if for all $\epsilon > 0$, there exists a natural number N:

$$a_n < L + \epsilon \wedge a_n > L - \epsilon \text{ for all } n \ge N$$

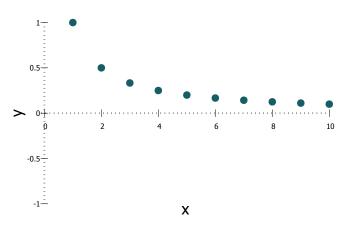
Translation: A sequence converges to a real number *L*, if you get closer to L with each additional element in the sequence

L is called the **limit** of a sequence

$$\lim_{n\to\infty}a_n=L$$

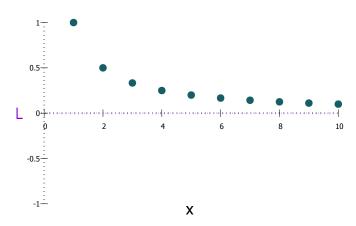
A sequence that does not converge is called divergent

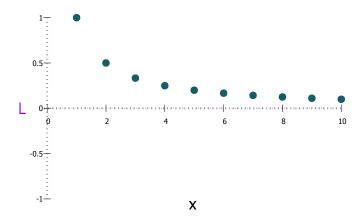
The harmonic sequence $(\frac{1}{n})_{n\in\mathbb{N}}=(1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\dots)$ converges to **Zero**

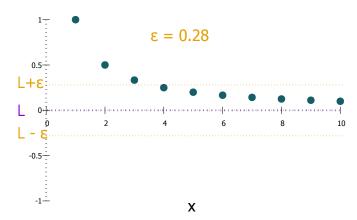


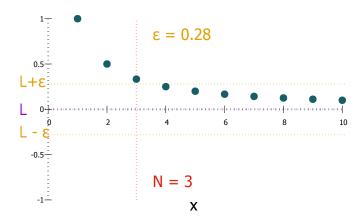
The harmonic sequence $(\frac{1}{n})_{n\in\mathbb{N}}=(1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\dots)$ converges to **Zero**

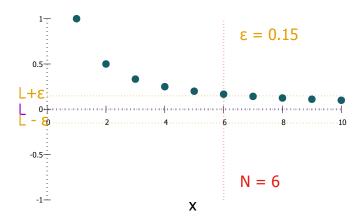
Lecture 4 - Sequences

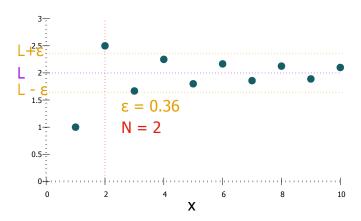


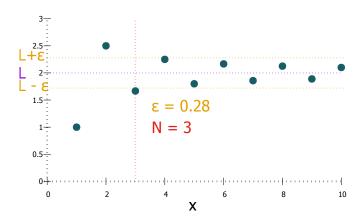












Properties of Limits

Calculating with Limits

For two converging sequences $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ with limits $\lim_{n\to\infty} x_n = L_x$ and $\lim_{n\to\infty} y_n = L_y$ the following holds:

- **Scalar multiplication:** $\lim_{n\to\infty} (ax_n) = aL_x$ for $a \in \mathbb{R}$
- **Addition:** $\lim_{n\to\infty}(x_n+y_n)=L_x+L_y$
- Multiplication: $\lim_{n\to\infty}(x_ny_n)=L_xL_y$
- **Division:** $\lim_{n\to\infty} \left(\frac{x_n}{v_n}\right) = \frac{L_x}{L_x}$
- **Norm:** $\lim_{n\to\infty}(|x_n|)=|L_x|$

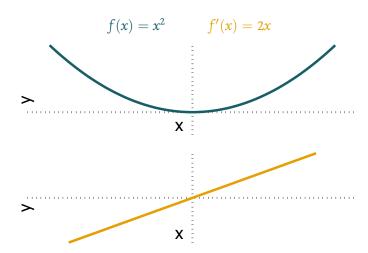
1. Motivation

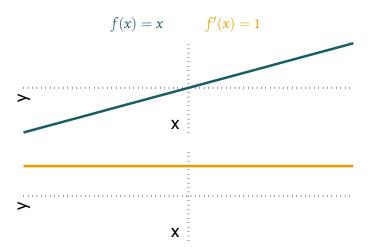
2. Function Limits

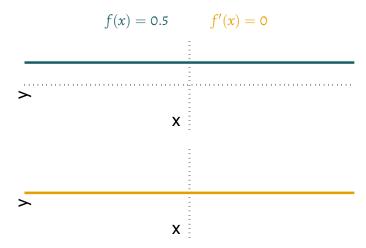
- > Sequences
- ➤ Limit Definition

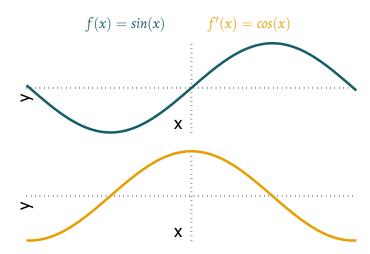
3. Differentiation

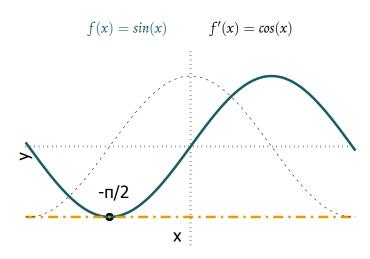
- ➤ Graphical Interpretation
- > Formal Description
- Rules for Differentiation
- Numerical Differentiation
- 4. Tasks





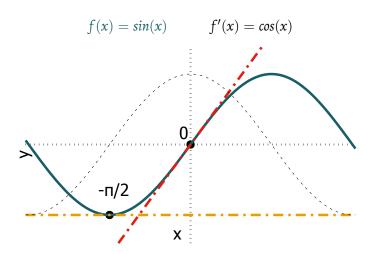




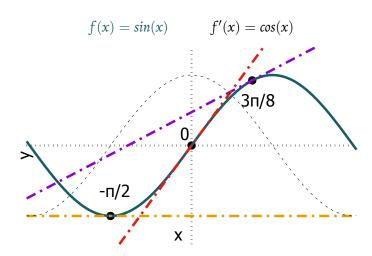


Lecture 4 - Sequences

Derivative as a Tangent



Derivative as a Tangent



Formal Definition

Differentiable Function

▶ A function f with domain M is called differentiable at position x_0 if, if the limit value

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$

exists.

Differentiable Function

▶ A function f with domain M is called differentiable at position x_0 if, if the limit value

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$

exists.

▶ This limit is called f' or **derivative of f at position x_0**. If f' is defined for all $x_0 \in M$, then f' becomes a new function called the derivative of f

Formal Definition

Differentiable Function

A function f with domain M is called differentiable at position x_0 if, if the limit value

$$\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$$

exists.

- ▶ This limit is called f' or **derivative of f at position x_0**. If f' is defined for all $x_0 \in M$, then f' becomes a new function called the derivative of f
- Alternate notations:

$$f'(x) = \frac{df}{dx}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Statement: The derivative of $f(x) = x^2$ is f'(x) = 2x

- ► **Statement:** The derivative of $f(x) = x^2$ is f'(x) = 2x
- ► Applying the formula

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0}$$

- ► **Statement:** The derivative of $f(x) = x^2$ is f'(x) = 2x
- Applying the formula

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0}$$

Simplifying

$$\lim_{x \to x_0} \frac{(x - x_0)(x + x_0)}{x - x_0} = \lim_{x \to x_0} \frac{(x - x_0)(x + x_0)}{x - x_0} = \lim_{x \to x_0} (x + x_0)$$

- ► **Statement:** The derivative of $f(x) = x^2$ is f'(x) = 2x
- Applying the formula

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0}$$

Simplifying

$$\lim_{x \to x_0} \frac{(x - x_0)(x + x_0)}{x - x_0} = \lim_{x \to x_0} \frac{(x - x_0)(x + x_0)}{x - x_0} = \lim_{x \to x_0} (x + x_0)$$

Applying the limit:

$$\lim_{x\to x_0}(x+x_0)=2x$$

Differentiation is a linear operator

Rules

▶ Constant Factor

$$\frac{d}{dx}(af) = a\frac{d}{dx}(f)$$

Sums

$$\frac{d}{dx}(f+g) = \frac{d}{dx}(f) + \frac{d}{dx}(g)$$

Example:

$$\frac{d}{dx}(4x^2) = 4\frac{d}{dx}(x^2) = 4(2x) = 8x$$

Differentiation is a linear operator

Rules

Constant Factor

$$\frac{d}{dx}(af) = a\frac{d}{dx}(f)$$

Sums

$$\frac{d}{dx}(f+g) = \frac{d}{dx}(f) + \frac{d}{dx}(g)$$

Example:

$$\frac{d}{dx}(4x^2) = 4\frac{d}{dx}(x^2) = 4(2x) = 8x$$

$$\frac{d}{dx}(4x^2 + x^2) = 4\frac{d}{dx}(x^2) + \frac{d}{dx}(x^2) = 4(2x) + 2x = 10x$$

Differentiation for Products and Quotients

Rules

► Multiplication

$$\frac{d}{dx}(fg) = \frac{d}{dx}(f)g + f\frac{d}{dx}(g)$$

Exponentiation

$$\frac{d}{dx}(f^n) = n\frac{d}{dx}(f)^{n-1}$$

Division

$$\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{\frac{d}{dx}(f)g - f\frac{d}{dx}(g)}{g^2}$$

Examples

Multiplication

$$\frac{d}{dx}(x^2sin(x)) = \frac{d}{dx}(x^2)sin(x) + x^2\frac{d}{dx}(sin(x)) = 2xsin(x) + x^2cos(x)$$

Examples

► Multiplication

$$\frac{d}{dx}(x^2sin(x)) = \frac{d}{dx}(x^2)sin(x) + x^2\frac{d}{dx}(sin(x)) = 2xsin(x) + x^2cos(x)$$

Division

$$\frac{d}{dx}\left(\frac{1}{x}\right) = \frac{\frac{d}{dx}(1)x - 1\frac{d}{dx}(x)}{x^2} = \frac{0 - 1}{x^2} = \frac{-1}{x^2}$$

 \triangleright Example $f'(x^3)$

$$\frac{d}{dx}(x^3) = \frac{d}{dx}(x^2x) = \frac{d}{dx}(x^2)x + x^2\frac{d}{dx}(x)$$

 \triangleright Example $f'(x^3)$

$$\frac{d}{dx}(x^3) = \frac{d}{dx}(x^2x) = \frac{d}{dx}(x^2)x + x^2\frac{d}{dx}(x)$$
$$= 2xx + x^2 = 3x^2$$

 \triangleright Example $f'(x^3)$

$$\frac{d}{dx}(x^3) = \frac{d}{dx}(x^2x) = \frac{d}{dx}(x^2)x + x^2\frac{d}{dx}(x)$$
$$= 2xx + x^2 = 3x^2$$

Example $f'(x^4)$

$$\frac{d}{dx}(x^4) = \frac{d}{dx}(x^2x^2) = \frac{d}{dx}(x^2)x^2 + x^2\frac{d}{dx}(x^2)$$

 \triangleright Example $f'(x^3)$

$$\frac{d}{dx}(x^3) = \frac{d}{dx}(x^2x) = \frac{d}{dx}(x^2)x + x^2\frac{d}{dx}(x)$$
$$= 2xx + x^2 = 3x^2$$

Example $f'(x^4)$

$$\frac{d}{dx}(x^4) = \frac{d}{dx}(x^2x^2) = \frac{d}{dx}(x^2)x^2 + x^2\frac{d}{dx}(x^2)$$
$$= 2xx^2 + x^22x = 2x^3 + 2x^3 = 4x^3$$

Special cases

► The derivative of

$$f(x) = e^x \operatorname{is} f'(x) = e^x$$

► The derivative of

$$f(x) = \ln(x) \text{ is } f'(x) = \frac{1}{x}$$

► The derivative of

$$f(x) = sin(x)$$
 is $f'(x) = cos(x)$

Composite functions

Chain Rule

▶ Function h is a composition of functions g and f

$$h(x) = (g \circ f)(x) = g(f(x))$$

Differentiation

▶ If *g* and *f* are differentiable, *h* is also differentiable

$$\frac{d}{dx}(h(x)) = \frac{d}{dx}(g(y))\frac{d}{dx}(f(x)), \text{ with } y = f(x)$$

Verbal rule: Inner derivative times outer derivative

$$h(x) = 5(7x+2)^4 = g(f(x))$$

►
$$h(x) = 5(7x + 2)^4 = g(f(x))$$

 $g(x) = 5x^4 \wedge f(x) = 7x + 2$

$$h(x) = 5(7x+2)^4 = g(f(x))$$

$$g(x) = 5x^4 \wedge f(x) = 7x + 2$$

 $g'(x) = 20x^3 \wedge f'(x) = 7$

►
$$h(x) = 5(7x + 2)^4 = g(f(x))$$

 $g(x) = 5x^4 \wedge f(x) = 7x + 2$
 $g'(x) = 20x^3 \wedge f'(x) = 7$
 $h'(x) = 20(7x + 2)^37 = 140(7x + 2)^3$

Lecture 4 - Sequences

$$h(x) = 5(7x+2)^4 = g(f(x))$$

$$g(x) = 5x^{4} \wedge f(x) = 7x + 2$$

$$g'(x) = 20x^{3} \wedge f'(x) = 7$$

$$h'(x) = 20(7x + 2)^{3}7 = 140(7x + 2)^{3}$$

$$h(x) = e^{5x} = g(f(x))$$

$$h(x) = 5(7x+2)^4 = g(f(x))$$

$$g(x) = 5x^{4} \land f(x) = 7x + 2$$

$$g'(x) = 20x^{3} \land f'(x) = 7$$

$$h'(x) = 20(7x + 2)^{3}7 = 140(7x + 2)^{3}$$

$$h(x) = e^{5x} = g(f(x))$$

$$g(x) = e^x \wedge f(x) = 5x$$

$$h(x) = 5(7x+2)^4 = g(f(x))$$

$$g(x) = 5x^{4} \wedge f(x) = 7x + 2$$

$$g'(x) = 20x^{3} \wedge f'(x) = 7$$

$$h'(x) = 20(7x + 2)^{3}7 = 140(7x + 2)^{3}$$

$$h(x) = e^{5x} = g(f(x))$$

$$g(x) = e^x \wedge f(x) = 5x$$

$$g'(x) = e^x \wedge f'(x) = 5$$

$$h(x) = 5(7x+2)^4 = g(f(x))$$

$$g(x) = 5x^{4} \wedge f(x) = 7x + 2$$

$$g'(x) = 20x^{3} \wedge f'(x) = 7$$

$$h'(x) = 20(7x + 2)^{3}7 = 140(7x + 2)^{3}$$

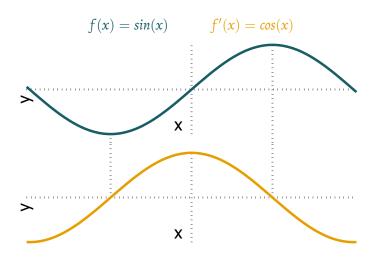
$$h(x) = e^{5x} = g(f(x))$$

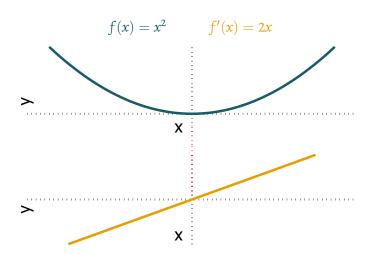
$$g(x) = e^x \wedge f(x) = 5x$$

$$g'(x) = e^x \wedge f'(x) = 5$$

$$h'(x) = e^{5x}5 = 5e^{5x}$$

Finding Local Extrema





Lecture 4 - Sequences

$$f(x) = 4x^2 + 6x$$

$$f(x) = 4x^2 + 6x$$
$$f'(x) = 8x + 6$$

►
$$f(x) = 4x^2 + 6x$$

 $f'(x) = 8x + 6$
 $f'(x) = 8x + 6 \stackrel{!}{=} 0$

$$f(x) = 4x^{2} + 6x$$

$$f'(x) = 8x + 6$$

$$f'(x) = 8x + 6 \stackrel{!}{=} 0$$

$$\iff 8x = -6$$

$$f(x) = 4x^{2} + 6x$$

$$f'(x) = 8x + 6$$

$$f'(x) = 8x + 6 \stackrel{!}{=} 0$$

$$\iff 8x = -6$$

$$\iff x = \frac{-6}{8} = \frac{-3}{4}$$

29 / 36

$$f(x) = 4x^{2} + 6x$$

$$f'(x) = 8x + 6$$

$$f'(x) = 8x + 6 \stackrel{!}{=} 0$$

$$\iff 8x = -6$$

$$\iff x = \frac{-6}{8} = \frac{-3}{4}$$

 $ightharpoonup f(x) = \sin(x)$

►
$$f(x) = 4x^2 + 6x$$

 $f'(x) = 8x + 6$
 $f'(x) = 8x + 6 \stackrel{!}{=} 0$
 $\iff 8x = -6$
 $\iff x = \frac{-6}{8} = \frac{-3}{4}$

$$f'(x) = \sin(x)$$
$$f'(x) = \cos(x)$$

$$f(x) = 4x^{2} + 6x$$

$$f'(x) = 8x + 6$$

$$f'(x) = 8x + 6 \stackrel{!}{=} 0$$

$$\iff 8x = -6$$

$$\iff x = \frac{-6}{8} = \frac{-3}{4}$$

$$f'(x) = cos(x)$$
$$f'(x) = cos(x) \stackrel{!}{=} 0$$

 $ightharpoonup f(x) = \sin(x)$

29 / 36

$$f(x) = 4x^{2} + 6x$$

$$f'(x) = 8x + 6$$

$$f'(x) = 8x + 6 \stackrel{!}{=} 0$$

$$\iff 8x = -6$$

$$\iff x = \frac{-6}{8} = \frac{-3}{4}$$

$$f'(x) = sin(x)$$

$$f'(x) = cos(x)$$

$$f'(x) = cos(x) \stackrel{!}{=} 0$$

$$\iff x = cos^{-1}(0)$$

$$f(x) = 4x^{2} + 6x$$

$$f'(x) = 8x + 6$$

$$f'(x) = 8x + 6 \stackrel{!}{=} 0$$

$$\iff 8x = -6$$

$$\iff x = \frac{-6}{8} = \frac{-3}{4}$$

$$\iff x = \frac{\pi}{8} = \frac{\pi}{4}$$

$$f(x) = \sin(x)$$

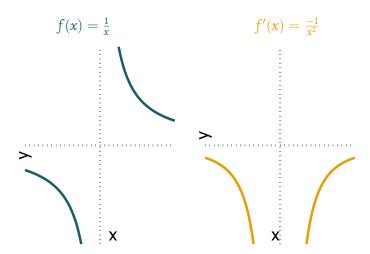
$$f'(x) = \cos(x)$$

$$f'(x) = \cos(x) \stackrel{!}{=} 0$$

$$\iff x = \cos^{-1}(0)$$

$$\iff x = 90^{\circ} = \frac{\pi}{2}, 270^{\circ} = \frac{3\pi}{2}, \dots$$

Differentiability is not given



Numerical Differentiation

▶ **Problem:** Only function values $f(x_0)$ of f(x) are known, but not the real function f

Numerical Differentiation

- **Problem:** Only function values $f(x_0)$ of f(x) are known, but not the real function f
- Instead of calculating the derivative of f analytically, it is possible to approximate f'(x) using **numerical differentiation**

Numerical Differentiation

- ▶ **Problem:** Only function values $f(x_0)$ of f(x) are known, but not the real function f
- Instead of calculating the derivative of f analytically, it is possible to approximate f'(x) using **numerical differentiation**

(Simple) Numerical Differentiation

The set \mathbb{I} describes the computable domain of f in the given context. It is possible to calculate function value $f(x_i)$, where $x_i \in \mathbb{I}$.

$$f'(x_i) \approx \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i},$$

where x_{i+1} is the smallest positive distance from x_i in \mathbb{I} .

From a sensor we receive the following values:

From a sensor we receive the following values:

► The derivative at x₃ equals:

$$f'(x_3) = \frac{f(x_{3+1}) - f(x_3)}{x_{3+1} - x_3}$$

From a sensor we receive the following values:

► The derivative at x₃ equals:

$$f'(x_3) = \frac{f(x_{3+1}) - f(x_3)}{x_{3+1} - x_3} \Rightarrow \frac{f(x_4) - f(x_3)}{4 - 3}$$

From a sensor we receive the following values:

► The derivative at x_3 equals:

$$f'(x_3) = \frac{f(x_{3+1}) - f(x_3)}{x_{3+1} - x_3} \Rightarrow \frac{f(x_4) - f(x_3)}{4 - 3} = \frac{1.6 - 1.4}{1}$$

From a sensor we receive the following values:

► The derivative at x_3 equals:

$$f'(x_3) = \frac{f(x_{3+1}) - f(x_3)}{x_{3+1} - x_3} \Rightarrow \frac{f(x_4) - f(x_3)}{4 - 3} = \frac{1.6 - 1.4}{1} = 0.2$$

From a sensor we receive the following values:

► The derivative at x_3 equals:

$$f'(x_3) = \frac{f(x_{3+1}) - f(x_3)}{x_{3+1} - x_3} \Rightarrow \frac{f(x_4) - f(x_3)}{4 - 3} = \frac{1.6 - 1.4}{1} = 0.2$$

The change at position x_3 is 0.2

Tasks

1. Calculate the derivative of the following functions (on a piece of paper)

1.1
$$f(x) = 7x^4$$

1.2 $g(x) = 2x^4 + 3x^3 + x^2 + 10x + 5$
1.3 $h(x) = 4e^{3x}$
1.4 $i(x) = (12x^2 + 5)3x^3$
1.5 $j(x) = \frac{3x}{\cos(x)}$

- First think about the rule you need to use
- ▶ Identify the parts of the rule in the equation
- ► If possible differentiate individual parts first
- ► Apply the rule

Task Template Braitenberg

- ► Download the archive *task_template_4.zip* from the course homepage. Extract it into a folder of your choice.
- ► The archive contains task_4_1.py, task_4_1_student_code.py and braitenberg.png.
- ► Use task_4_1.py to run the program, but edit code only in task_4_1_student_code.py.

Explain Task Template!

Tasks

- 2. Calculate the vehicle's velocity through numerical differentiation.
 - Open task_4_1_student_code.py and implement the function calc_velocity_from_position.
 - Use the given list of positions to estimate the vehicles velocity using numerical differentiation.
 - ► Append the resulting velocity values to the *player_velocities_x* list.
 - ► **Tip**: Use a for-loop that runs through the position values and compares the current list-entry to the preceding one.
- **3.** Write a script the calculates the Fibonacci sequence for an arbitrary number *N* of elements. Print the numbers to the console.
 - ▶ The first two elements of a_1 and a_2 are always 1
 - Write a loop that runs N times and calculates the Fibonacci number $a_{n+1} = a_n + a_{n-1}$
 - ▶ **Tip:** Use variables to store the values for the current value a_n and the previous value a_{n-1} and update them in each loop.

1.
$$f(x) = 7x^4$$

• $f'(x) = 4 * 7x^3 = 28x^3$ (Exponentiation Rule)

1.
$$f(x) = 7x^4$$

•
$$f'(x) = 4 * 7x^3 = 28x^3$$
 (Exponentiation Rule)

2.
$$g(x) = 2x^4 + 3x^3 + x^2 + 10x + 5$$

$$g'(x) = 8x^3 + 9x^2 + 2x + 10$$
 (Exponentiation Rule)

- 1. $f(x) = 7x^4$
 - $f'(x) = 4 * 7x^3 = 28x^3$ (Exponentiation Rule)
- **2.** $g(x) = 2x^4 + 3x^3 + x^2 + 10x + 5$
 - $ightharpoonup g'(x) = 8x^3 + 9x^2 + 2x + 10$ (Exponentiation Rule)
- 3. $h(x) = 4e^{3x}$
 - ► Chain Rule: Outer function $k(x) = 4e^x$ and inner function l(x) = 3x

- 1. $f(x) = 7x^4$
 - $f'(x) = 4 * 7x^3 = 28x^3$ (Exponentiation Rule)
- **2.** $g(x) = 2x^4 + 3x^3 + x^2 + 10x + 5$
 - $ightharpoonup g'(x) = 8x^3 + 9x^2 + 2x + 10$ (Exponentiation Rule)
- 3. $h(x) = 4e^{3x}$
 - ► Chain Rule: Outer function $k(x) = 4e^x$ and inner function l(x) = 3x
 - $k'(x) = 4e^x$ and $l'(x) = 3 \Rightarrow h'(x) = 4e^{3x} * 3 = 12e^{3x}$

- 1. $f(x) = 7x^4$
 - $f'(x) = 4 * 7x^3 = 28x^3$ (Exponentiation Rule)
- **2.** $g(x) = 2x^4 + 3x^3 + x^2 + 10x + 5$
 - $g'(x) = 8x^3 + 9x^2 + 2x + 10$ (Exponentiation Rule)
- 3. $h(x) = 4e^{3x}$
 - ► Chain Rule: Outer function $k(x) = 4e^x$ and inner function l(x) = 3x
 - $k'(x) = 4e^x$ and $l'(x) = 3 \Rightarrow h'(x) = 4e^{3x} * 3 = 12e^{3x}$
- **4.** $i(x) = (12x^2 + 5)3x^3$
 - $i'(x) = 24x * 3x^3 + (12x^2 + 5) * 9x^2$ (Multiplication Rule)
 - $i'(x) = 72x^4 + 108x^4 + 45x^2 = 180x^4 + 45x^2$

- 1. $f(x) = 7x^4$
 - $f'(x) = 4 * 7x^3 = 28x^3$ (Exponentiation Rule)
- **2.** $g(x) = 2x^4 + 3x^3 + x^2 + 10x + 5$
 - $g'(x) = 8x^3 + 9x^2 + 2x + 10$ (Exponentiation Rule)
- 3. $h(x) = 4e^{3x}$
 - ► Chain Rule: Outer function $k(x) = 4e^x$ and inner function l(x) = 3x
 - $k'(x) = 4e^x$ and $l'(x) = 3 \Rightarrow h'(x) = 4e^{3x} * 3 = 12e^{3x}$
- **4.** $i(x) = (12x^2 + 5)3x^3$
 - $i'(x) = 24x * 3x^3 + (12x^2 + 5) * 9x^2$ (Multiplication Rule)
 - $i'(x) = 72x^4 + 108x^4 + 45x^2 = 180x^4 + 45x^2$
- $5. \ j(x) = \frac{3x}{\cos(x)}$
 - \rightarrow $j'(x) = \frac{3*\cos x 3x* \sin x}{\cos(x)^2}$ (Division Rule)