Lecture 5 Integration

Jan Tekülve

jan.tekuelve@ini.rub.de

Computer Science and Mathematics Preparatory Course

05.10.2021

Reverting Differentiation

Overview

1. Motivation

2. Mathematics

- > Approximating the Area under a Curve
- > Calculating the Area under a curve
- ➤ Improper Integrals
- > Numerical Integration

3. Programming

► Reading Files

4. Tasks

Motivation

From Velocity to Position

You drove 30 km/h for 6 hours. How far did you drive?

You drove 30 km/h for 6 hours. How far did you drive?

You drove 30 km/h for 6 hours. How far did you drive?

Motivation

From Velocity to Position

Let's say you slowed down for the last 3 hours. How far did you get?

Motivation

From Velocity to Position

Let's say you slowed down for the last 3 hours. How far did you get?

What if you mixed it up to not get bored?

What if you mixed it up to not get bored?

But how about something realistic?

 Not all areas can be calculated with rectangles

- Not all areas can be calculated with rectangles
- One can however approximate them

- Not all areas can be calculated with rectangles
- One can however approximate them

- Not all areas can be calculated with rectangles
- One can however approximate them
- The more rectangles the better the approximation becomes

- Not all areas can be calculated with rectangles
- One can however approximate them
- The more rectangles the better the approximation becomes

Riemann Sums

Riemann Sums

Riemann Sums

Left and Right Sum

For an interval $[x_i, x_{i+1}]$ and a function f the functions

Left(f, [x_i , x_{i+1} [) = $f(x_i)$ and Right(f, [x_i , x_{i+1}]) = $f(x_{i+1})$

are defined to return the leftmost or rightmost value of the function in the interval.

▶ **Left and Right Sum** are defined as the Sums of Left and Right across whole partitioned interval $(x_i)_{i \in [a,b]}$ with partition length Δx

$$I_L = \sum_{i=1}^{n} \text{Left}(f, x_i, x_{i+1}) \Delta x \text{ and } I_R = \sum_{i=1}^{n} \text{Right}(f, x_i, x_{i+1}) \Delta x$$

Left and Right Sum

Left and Right Sum

Left and Right Sum

Estimation of the True Area

▶ Left and Right Sums for a partition (x_i)_{i∈[a,b]} give us an estimate of the area A

 $I_L \leq A \leq I_R$,

if the function in the interval [a, b] is increasing and

 $I_R \leq A \leq I_L$,

if the function in the interval [a, b] is decreasing.

Midpoint Method

Calculating Midpoints

Another way of approximating an integral with finite sums is the **Midpoint Method**, which uses the function value in the middle of a given interval $[x_i, x_{i+1}]$

$$Mid(f, [x_i, x_{i+1}]) = f(\frac{x_i + x_{i+1}}{2})$$

The sum of Midpoints also yields an estimation of the area under the curve

$$I_M = \sum_{i}^{n} Mid(f, [x_i, x_{i+1}])\Delta x$$

From Sums to Integrals

Midpoint Sum: $\sum_{i=1}^{n} Mid(f, [x_i, x_{i+1}]) \Delta x$

The more elements *n*, the smaller Δx and the better our approximation.

From Sums to Integrals

Midpoint Sum: $\sum_{i=1}^{n} Mid(f, [x_i, x_{i+1}]) \Delta x$ The more elements *n*, the smaller Δx and the better our approximation.

What if *n* becomes ∞ and Δx becomes infinitely small?

From Sums to Integrals

Midpoint Sum: $\sum_{i}^{n} Mid(f, [x_i, x_{i+1}]) \Delta x$ The more elements *n*, the smaller Δx and the better our approximation. **What if** *n* **becomes** ∞ **and** Δx **becomes infinitely small?**

Definite Integral

The **definite integral** of a function f(x) between the **lower boundary** a and the **upper boundary** b

$$\int_a^b f(x) dx$$

is defined as the size of the area between f and the x-axis inside the boundaries. Areas above the x-Axis are considered positive and areas below negative.

Integral as Area

Integral as Function

Integral as Function

The Antiderivative

Definition

If f is a function with domain $[a, b] \to \mathbb{R}$ and there is a function F, which is differentiable in the interval [a, b] with the property that

F'(x)=f(x),

then F is considered the **antiderivative** of f

The Antiderivative

Definition

If f is a function with domain $[a, b] \to \mathbb{R}$ and there is a function F, which is differentiable in the interval [a, b] with the property that

F'(x)=f(x),

then F is considered the **antiderivative** of f

Properties of the antiderivative

- Differentiation removes constants, because of that an antiderivative is described by a family of functions F(x) + c
- Unlike with differentiation there are no fixed rules to compute an antiderivative from a given f

A function and its antiderivative

Calculating with Integrals

Fundamental Theorem of Calculus

If f is integrable and continuous in [a, b]. Then the following holds for each antiderivative F of f

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} F'(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Example:

Area under f(x) between values 1 and 2

J

$$\int_{1}^{2} x dx = \left[\frac{1}{2}x^{2}\right]_{1}^{2} = \frac{1}{2}2^{2} - \frac{1}{2}1^{2} = 1.5$$

Integral as area underneath a function

The Integral as Linear Operator

Integration Rules

Summation

$$\int_a^b f(x) + g(x) = \int_a^b f(x) + \int_a^b g(x)$$

The Integral as Linear Operator

Integration Rules

Summation

$$\int_{a}^{b} f(x) + g(x) = \int_{a}^{b} f(x) + \int_{a}^{b} g(x)$$

Scalar Multiplication

$$\int_{a}^{b} cf(x) = c \int_{a}^{b} f(x)$$

The Integral as Linear Operator

Integration Rules

Summation

$$\int_a^b f(x) + g(x) = \int_a^b f(x) + \int_a^b g(x)$$

Scalar Multiplication

$$\int_{a}^{b} cf(x) = c \int_{a}^{b} f(x)$$

Boundary Transformations

$$\int_{a}^{b} f(x) + \int_{b}^{c} f(x) = \int_{a}^{c} f(x) \quad \wedge \quad \int_{a}^{b} f(x) = -\int_{b}^{a} f(x)$$

Improper Integrals

Infinite Intervals

It is possible to calculate the area in infinitely large intervals. Intervals with an infinite boundary are called **Improper Integrals**

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$

Example:

Convergent improper integral

$$\int_{1}^{\infty} x^{-2} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-2} dx = \lim_{b \to \infty} \left[-x^{-1} \right]_{1}^{b} = \lim_{b \to \infty} \left(-b^{-1} + 1 \right) = 1$$

 It is not trivial to find the antiderivative to a given function or a given dataset

- It is not trivial to find the antiderivative to a given function or a given dataset
- Instead of calculating the Integral the area beneath a curve may be approximated, by splitting the area into sub-areas

- It is not trivial to find the antiderivative to a given function or a given dataset
- Instead of calculating the Integral the area beneath a curve may be approximated, by splitting the area into sub-areas
- ► That seems familiar!

- It is not trivial to find the antiderivative to a given function or a given dataset
- Instead of calculating the Integral the area beneath a curve may be approximated, by splitting the area into sub-areas
- That seems familiar!

Partioning an Interval

Let $(x_i)_{i \in [a,b]}$ be a sequence of *n* increasing numbers in [a, b] with fixed distance *h* between x_i and $x_i + 1$ for all x_i .

$$a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$$

 We can understand Numerical Integration as the opposite of Numerical Differentiation

- We can understand Numerical Integration as the opposite of Numerical Differentiation
- Thus instead of subtracting following elements, we will add to the previous element

- We can understand Numerical Integration as the opposite of Numerical Differentiation
- Thus instead of subtracting following elements, we will add to the previous element
- ► This is equivalent to the left Riemann Sums

- We can understand Numerical Integration as the opposite of Numerical Differentiation
- Thus instead of subtracting following elements, we will add to the previous element
- This is equivalent to the left Riemann Sums

(Simple) Numerical Differentiation

The set \mathbb{I} describes the computable domain of f in the given context. It is possible to calculate function value $f(x_i)$, where $x_i \in \mathbb{I}$.

$$F(x_i) \approx F(x_{i-1}) + (f(x_i) \cdot (x_i - x_{i-1})),$$

where x_{i-1} is the smallest negative distance from x_i in \mathbb{I} .

Graphical Example

A List of Datapoints

Graphical Example

A List of Datapoints

Integrating a List of Datapoints

From a sensor we receive the following velocity values $f(x_i)$:

i	0	1	2	3	4	5	6
x_i	0	1	2	3	4	5	6
$f(x_i)$	3	2	-2	-4	-1	2	3

Integrating a List of Datapoints

From a sensor we receive the following velocity values $f(x_i)$:

i	0	1	2	3	4	5	6
x_i	0	1	2	3	4	5	6
$f(\mathbf{x}_i)$	3	2	-2	-4	-1	2	3

• The distance between each point is $\Delta x = 1$. The area underneath each point is therefore $1 * f(x_i)$

Integrating a List of Datapoints

From a sensor we receive the following velocity values $f(x_i)$:

i	0	1	2	3	4	5	6
x_i	0	1	2	3	4	5	6
$f(x_i)$	3	2	-2	-4	-1	2	3

- ► The distance between each point is Δx = 1. The area underneath each point is therefore 1 * f(x_i)
- The integrated position for $x_3 = 3$ and startpoint s = 2 equals:

 $F(x_3) = s + 1f(x_0) + 1f(x_1) + 1f(x_2) + 1f(x_3) = 2 + 3 + 2 + (-2) + (-4) = 1$

• The position at time-step $x_3 = 3$ is 1

Changing the Precision

From a sensor we receive the following velocity values $f(x_i)$:

Changing the Precision

From a sensor we receive the following velocity values $f(x_i)$:

i	0	1	2	3	4	5	6
x_i	0	0.5	1	1.5	2	2.5	3
$f(x_i)$	3	2.5	2	0	-2	-2.5	-4

► The distance between each point is Δx = 0.5. The area underneath each point is therefore 0.5 * f(x_i)

Changing the Precision

From a sensor we receive the following velocity values $f(x_i)$:

i	0	1	2	3	4	5	6
x_i	0	0.5	1	1.5	2	2.5	3
$f(x_i)$	3	2.5	2	0	-2	-2.5	-4

- ► The distance between each point is Δx = 0.5. The area underneath each point is therefore 0.5 * f(x_i)
- The integrated position for $x_6 = 3$ and startpoint s = 2 equals:

$$F(x_6) = s + 0.5f(x_0) + 0.5f(x_1) + 0.5f(x_2) + 0.5f(x_3) + 0.5f(x_4) + 0.5f(x_5) + 0.5f(x_6) = 2 + 1.5 + 1.25 + 1 + 0 + (-1) + (-1.25) + (-2) = 1.5$$

• The position at time-step
$$x_6 = 3$$
 is 1.5

1. Motivation

2. Mathematics

- > Approximating the Area under a Curve
- Calculating the Area under a curve
- Improper Integrals
- Numerical Integration

3. Programming▶ Reading Files

4. Tasks

Reading Files

Opening a file

```
fileObject = open("file.txt", "r")
#The option r stands for read
```

Reading the file contents

```
#readlines creates a list containing each line
lines = fileObject.readlines()
for line in lines:
    print(line)
```

Close the file after usage:

fileObj.close()#This can be done right after readlines()

Details on Strings

Useful string operations

```
#Strip removes the new-line character '\n'
line = line.strip()
#Split tokenizes the string at the given character
line = line.split(" ")# 'Hello you' to ['Hello','you']
line = line.split("o")# 'Hello you' to ['Hell',' y','u']
line = line.replace("l","b")# 'Hello you' to 'Hebbo you'
```

Tasks

Answer the following tasks using a piece of paper and a pocket calculator.

- 1. Given the Antiderivative $F(x) = 12x^2 + 5x$ of the function f(x), calculate the area between f(x) and the x-axis in the interval of [-3, 5].
- 2. Calculate $\int_0^{\pi} \cos(x) dx$. Before applying the formula, look at a plot of $\cos(x)$. What kind of result should you expect?

Task Template

- Download the archive task_template_5.zip from the course homepage. Extract it into a folder of your choice.
- The archive contains task_51.py, student_code_51.py, task_52.py, student_code_52.py, and velocity_series.txt.
- ▶ You only need to edit code in the *student_code* files.

Explain Task Template!

Programming Tasks

- **1.** Implement the function *calc_area(a,b)*, which returns the area between x-axis and function curve f(x) in the interval a, b.
 - The functions f(x) and F(x) are implemented already and you can call them in your code
 - Run *task51.py* to verify your result and plot an example area.
 - Given $F(x) = 4x^3 + 2x^2$ calculate f(x) on a piece of paper.
 - ► Implement both functions F(x) and f(x) in student_code instead of the given ones. Test using task51.py.
- **2.** Calculate the derivative of F(x) = sin(x) and verify the result via numerical integration.
 - Implement the function *numerical_integration* using the formula for (simple) numerical integration.
 - A list of y-values, a start point and a step size are given through the function argument.
 - ▶ Use a for loop through all y-values of function f(x) and use them to calculate the values F(x). Append them to the list *y*_values_F.
 - Play around with the precision parameter of the task52.py. What happens?

File Reading Task

- 3.1* Write a script that opens *velocity_series.txt* from the course page, reads its contents and stores them as a list of floating values.
 - ▶ Use *file.readlines*() to receive a list of strings containing each line
 - Extract the velocity in each line by applying the *split()* method in a for-loop
 - ▶ In the loop typecast the velocity into a float and append it to a second list
- **3.2*** Copy your function *numerical_integration* from the previous task and calculate the resulting series of positions.
 - Choose a step size and a starting point of your choice
 - If that works read the step size and the starting point from the file velocity_series.txt. You might need to change your code from 3.1 to achieve this.

Task Solutions

Task Solutions

.

1. The antiderivative is already given, therefore you only need to plug-in the beginning and the end of the interval.

$$[F(x)]_a^b = F(b) - F(a) = F(5) - F(3)$$

=12 * 5² + 5 * 5 - (12 * (-3)² + 5 * (-3)) = 325 - 93 = 232
Task Solutions

1. The antiderivative is already given, therefore you only need to plug-in the beginning and the end of the interval.

$$[F(x)]_a^b = F(b) - F(a) = F(5) - F(3) = 12 * 5^2 + 5 * 5 - (12 * (-3)^2 + 5 * (-3)) = 325 - 93 = 232$$

2. Looking at the plot of cos(x) you can see that exactly the same area is enclosed above the x-axis as below the x-axis, therefore the total area has to be zero.

To verify this analytically, you had to figure out the antiderivative of cos(x) first. From the lecture you know that F(x) = sin(x).

$$[F(x)]_a^b = F(b) - F(a) = F(\pi) - F(0) = \sin(\pi) - \sin(0) = 0 - 0 = 0$$