
Lecture 3 - Coordinate Systems

Lecture 3
Coordinate Systems and Trigonometry

Jan Tekülve
jan.tekuelve@ini.rub.de

Computer Science and Mathematics
Preparatory Course

01.10.2021

01.10.2021 1 / 37

Lecture 3 - Coordinate Systems Motivation

Motivation -Coordinate Systems

How far is the source away?

01.10.2021 2 / 37

Lecture 3 - Coordinate Systems Motivation

Motivation -Coordinate Systems

1 2 3 4 5 60

1

2
3

4
5

6
0

How far is the source away?

01.10.2021 2 / 37

Lecture 3 - Coordinate Systems Motivation

Motivation -Coordinate Systems

1 2 3 4 5 60

1

2
3

4
5

6
0

How far is the source away?

01.10.2021 2 / 37

Lecture 3 - Coordinate Systems Motivation

Motivation -Coordinate Systems

1 2 3 4 5 60

1

2
3

4
5

6
0

How much do I need to turn
to face the source?

α

01.10.2021 2 / 37

Lecture 3 - Coordinate Systems Motivation

Motivation -Coordinate Systems

1 2 3 4 5 60

1

2
3

4
5

6
0

How much do I need to turn
to face the source?

α

β

01.10.2021 2 / 37

Lecture 3 - Coordinate Systems Motivation

Motivation -Coordinate Systems

1 2 3 4 5 60

1

2
3

4
5

6
0

How much do I need to turn
to face the source?

α

β

new allocentric orientation: α-β

01.10.2021 2 / 37

Lecture 3 - Coordinate Systems Math

1. Motivation

2. Math
➤ Angles and Trigonometry
➤ Vector Calculation

3. Programming
➤ Installing Python Modules
➤ The Matplotlib Module
➤ The Pygame Module

4. Tasks

01.10.2021 3 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Thenumberπ

75.39
24

= 3.14159... = π and
56.54

18
= 3.14159... = π

Circumference of a circle: 2πr

01.10.2021 4 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Thenumberπ

75.39
24

= 3.14159... = π and
56.54

18
= 3.14159... = π

Circumference of a circle: 2πr

01.10.2021 4 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Thenumberπ

75.39
24

= 3.14159... = π and
56.54

18
= 3.14159... = π

Circumference of a circle: 2πr

01.10.2021 4 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Thenumberπ

75.39
24

= 3.14159... = π

and
56.54

18
= 3.14159... = π

Circumference of a circle: 2πr

01.10.2021 4 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Thenumberπ

75.39
24

= 3.14159... = π and
56.54

18
= 3.14159... = π

Circumference of a circle: 2πr

01.10.2021 4 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Thenumberπ

75.39
24

= 3.14159... = π and
56.54

18
= 3.14159... = π

Circumference of a circle: 2πr

01.10.2021 4 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Measuring Angles

▶ Defining a full angle as 360◦ is
common but actually arbitrary

▶ Less arbitrary is the use of the
actual length of the enclosed
arc-segment called the Radian

▶ Thus 360◦ = 2π, 90◦ = π
2 ,

180◦ = π ...

▶ Rad x to Degree: x · 180◦

π

▶ Degree d to Rad: d · π
180◦

360°

1

-1

-1

90°

180°

270°

01.10.2021 5 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Measuring Angles

▶ Defining a full angle as 360◦ is
common but actually arbitrary

▶ Less arbitrary is the use of the
actual length of the enclosed
arc-segment called the Radian

▶ Thus 360◦ = 2π, 90◦ = π
2 ,

180◦ = π ...

▶ Rad x to Degree: x · 180◦

π

▶ Degree d to Rad: d · π
180◦

α

π 2π

π

2

3π

2

x

1

r=1

-1

-1

01.10.2021 5 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Measuring Angles

▶ Defining a full angle as 360◦ is
common but actually arbitrary

▶ Less arbitrary is the use of the
actual length of the enclosed
arc-segment called the Radian

▶ Thus 360◦ = 2π, 90◦ = π
2 ,

180◦ = π ...

▶ Rad x to Degree: x · 180◦

π

▶ Degree d to Rad: d · π
180◦

α

π 2π

π

2

3π

2

x

1

r=1

-1

-1

01.10.2021 5 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Measuring Angles

▶ Defining a full angle as 360◦ is
common but actually arbitrary

▶ Less arbitrary is the use of the
actual length of the enclosed
arc-segment called the Radian

▶ Thus 360◦ = 2π, 90◦ = π
2 ,

180◦ = π ...

▶ Rad x to Degree: x · 180◦

π

▶ Degree d to Rad: d · π
180◦

α

π 2π

π

2

3π

2

x

1

r=1

-1

-1

01.10.2021 5 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Measuring Angles

▶ Defining a full angle as 360◦ is
common but actually arbitrary

▶ Less arbitrary is the use of the
actual length of the enclosed
arc-segment called the Radian

▶ Thus 360◦ = 2π, 90◦ = π
2 ,

180◦ = π ...

▶ Rad x to Degree: x · 180◦

π

▶ Degree d to Rad: d · π
180◦

α

π 2π

π

2

3π

2

x

1

r=1

-1

-1

01.10.2021 5 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Angle Conversion Examples

▶ Degree to Radians: d · π
180◦

αdeg = 34◦

⇐⇒ 34◦ · π

180◦

⇐⇒ 34◦ · π
180◦ ⇐⇒ 106.81◦

180◦ ⇐⇒ 0.593 = αrad

▶ Radians to Degree: x · 180◦

π

αrad =
3
4
π

⇐⇒ 3
4
π · 180◦

π

⇐⇒
3
4π · 180◦

π
⇐⇒ 424.115◦

π
⇐⇒ 135◦ = αdeg

01.10.2021 6 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Angle Conversion Examples

▶ Degree to Radians: d · π
180◦

αdeg = 34◦

⇐⇒ 34◦ · π

180◦

⇐⇒ 34◦ · π
180◦ ⇐⇒ 106.81◦

180◦ ⇐⇒ 0.593 = αrad

▶ Radians to Degree: x · 180◦

π

αrad =
3
4
π

⇐⇒ 3
4
π · 180◦

π

⇐⇒
3
4π · 180◦

π
⇐⇒ 424.115◦

π
⇐⇒ 135◦ = αdeg

01.10.2021 6 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Angle Conversion Examples

▶ Degree to Radians: d · π
180◦

αdeg = 34◦

⇐⇒ 34◦ · π

180◦

⇐⇒ 34◦ · π
180◦ ⇐⇒ 106.81◦

180◦ ⇐⇒ 0.593 = αrad

▶ Radians to Degree: x · 180◦

π

αrad =
3
4
π

⇐⇒ 3
4
π · 180◦

π

⇐⇒
3
4π · 180◦

π
⇐⇒ 424.115◦

π
⇐⇒ 135◦ = αdeg

01.10.2021 6 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Angle Conversion Examples

▶ Degree to Radians: d · π
180◦

αdeg = 34◦

⇐⇒ 34◦ · π

180◦

⇐⇒ 34◦ · π
180◦ ⇐⇒ 106.81◦

180◦ ⇐⇒ 0.593 = αrad

▶ Radians to Degree: x · 180◦

π

αrad =
3
4
π

⇐⇒ 3
4
π · 180◦

π

⇐⇒
3
4π · 180◦

π
⇐⇒ 424.115◦

π
⇐⇒ 135◦ = αdeg

01.10.2021 6 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Angle Conversion Examples

▶ Degree to Radians: d · π
180◦

αdeg = 34◦

⇐⇒ 34◦ · π

180◦

⇐⇒ 34◦ · π
180◦ ⇐⇒ 106.81◦

180◦ ⇐⇒ 0.593 = αrad

▶ Radians to Degree: x · 180◦

π

αrad =
3
4
π

⇐⇒ 3
4
π · 180◦

π

⇐⇒
3
4π · 180◦

π
⇐⇒ 424.115◦

π
⇐⇒ 135◦ = αdeg

01.10.2021 6 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Angle Conversion Examples

▶ Degree to Radians: d · π
180◦

αdeg = 34◦

⇐⇒ 34◦ · π

180◦

⇐⇒ 34◦ · π
180◦ ⇐⇒ 106.81◦

180◦ ⇐⇒ 0.593 = αrad

▶ Radians to Degree: x · 180◦

π

αrad =
3
4
π

⇐⇒ 3
4
π · 180◦

π

⇐⇒
3
4π · 180◦

π
⇐⇒ 424.115◦

π
⇐⇒ 135◦ = αdeg

01.10.2021 6 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Angle Conversion Examples

▶ Degree to Radians: d · π
180◦

αdeg = 34◦

⇐⇒ 34◦ · π

180◦

⇐⇒ 34◦ · π
180◦ ⇐⇒ 106.81◦

180◦ ⇐⇒ 0.593 = αrad

▶ Radians to Degree: x · 180◦

π

αrad =
3
4
π

⇐⇒ 3
4
π · 180◦

π

⇐⇒
3
4π · 180◦

π
⇐⇒ 424.115◦

π
⇐⇒ 135◦ = αdeg

01.10.2021 6 / 37

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Calculating Angles in a Right triangle

▶ Sine and cosine are defined in the
unit circle.

a = cos(α) ⇐⇒ α = cos−1(a)
b = sin(α) ⇐⇒ α = sin−1(b)

▶ Click here for interactive demo.

01.10.2021 7 / 37

https://www.geogebra.org/m/WHgHyG7Z

Lecture 3 - Coordinate Systems Math - Angles and Trigonometry

Rules for any Right Triangle

▶ a2 + b2 = c2

▶ sin(x) = b
c =

opposite
hypothenuse

▶ cos(x) = a
c =

adjacent
hypothenuse

▶ tan(x) = sin(x)
cos(x) =

b
a =

opposite
adjacent x

a

c b

01.10.2021 8 / 37

Lecture 3 - Coordinate Systems Math - Vector Calculation

Vectors in the Cartesian Coordinate System

A vector v =
(
vx
vy

)
is defined as an arrow from the origin to the point (vx, vy)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5

(2,3)

(4,1)

y

x

01.10.2021 9 / 37

Lecture 3 - Coordinate Systems Math - Vector Calculation

Angles in a Coordinate System

Vector orientation with respect to a coordinate system is defined by
translating the origin onto the vectors tail

01.10.2021 10 / 37

Lecture 3 - Coordinate Systems Math - Vector Calculation

VectorNorm

The norm or length |v| =
√
vx2 + vy2 of a vector v =

(
vx
vy

)
is calculated using

the Pythagorean theorem

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2 2.5

(2,3)

y

x

01.10.2021 11 / 37

Lecture 3 - Coordinate Systems Math - Vector Calculation

Vector Addition
(
ax
ay

)
+

(
bx
by

)
=

(
ax + bx
ay + by

)
=

(
cx
cy

)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5

(2,3)

(4,1)

c

a

b
(2,-2)

y

x

01.10.2021 12 / 37

Lecture 3 - Coordinate Systems Math - Vector Calculation

ScalarMultiplication

sa = s
(
ax
ay

)
=

(
sax
say

)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3

(2,3)

(1,1.5)

b

a

a=2b

y

x

01.10.2021 13 / 37

Lecture 3 - Coordinate Systems Math - Vector Calculation

Scalar Product
▶ The scalar product< a, b > or a · b of two vectors is defined as:

< a, b >= |a||b|cos(α)

and results in a scalar value.

▶ Graphical Interpretation:

(0.5,1.0)

(1.0,0.3)

y

x

α

|a|

|b|

a

b

01.10.2021 14 / 37

Lecture 3 - Coordinate Systems Math - Vector Calculation

Scalar Product: Special Cases

▶ If both vectors a and b point in the same direction:

< a, b >= |a||b|cos(0) = |a||b|

▶ If both vectors a and b are orthogonal to each other:

< a, b >= |a||b|cos(90◦) = 0

▶ Alternatively it can be calculated the following way:

< a, b >=<

(
ax
ay

)
,

(
bx
by

)
>= axbx + ayby

01.10.2021 15 / 37

Lecture 3 - Coordinate Systems Math - Vector Calculation

Angle between Vectors

▶ The scalar product can be used to calculate the angle between two
vectors

(1,1)

(1,0)

y

x

< a, b >=|a||b|cos(α)

α =arccos
(
< a, b >
|a||b|

)
α =arccos

(
1 ∗ 1 + 1 ∗ 0√

2 ∗ 1

)
α =arccos

(
1√
2

)
α =

π

4
= 45◦

01.10.2021 16 / 37

Lecture 3 - Coordinate Systems Math - Vector Calculation

Orthogonal Vectors

(1,1)

a

(-1,1)

c

(1,0)
b

(0,-1)

d

y

x

< a, c >= axcx + aycy
= − 1 · 1 + 1 · 1 = 0

< b, d >= bxdx + bydy
= 1 · 0 + 0 · −1 = 0

01.10.2021 17 / 37

Lecture 3 - Coordinate Systems Programming

1. Motivation

2. Math
➤ Angles and Trigonometry
➤ Vector Calculation

3. Programming
➤ Installing Python Modules
➤ The Matplotlib Module
➤ The Pygame Module

4. Tasks

01.10.2021 18 / 37

Lecture 3 - Coordinate Systems Programming - Installing Python Modules

PIP installs Packages

▶ Pip is a helper tool that downloads and installs additional python
modules. You need an internet connection.

▶ Pip can be called from the console with

python -m pip install <modulename>

▶ Example:

01.10.2021 19 / 37

Lecture 3 - Coordinate Systems Programming - Installing Python Modules

Modules for the Course

▶ We will need the pygame andmatplotlibmodules

▶ Matplotlib should already be installed through Anaconda

▶ Make sure you have a working internet connection

▶ Execute the following command:

python -m pip install pygame

▶ A message like “Sucessfully installed ...” should be displayed after each
command terminated.

01.10.2021 20 / 37

Lecture 3 - Coordinate Systems Programming - The Matplotlib Module

TheMatplotlibModule

▶ Matplotlib is the most prominent plotting library for Python

▶ It was originally developed to create Matlab-like plots for free

01.10.2021 21 / 37

Lecture 3 - Coordinate Systems Programming - The Matplotlib Module

Matplotlib.pyplot

▶ We will use the pyplot submodule

A submodule can be imported with the . operator

import matplotlib.pyplot as plt

The as operator allows renaming for convenience

numbers = [1,1,2,3,5,8,13]

It is assumed that the list is a list of y-values

plt.plot(numbers)

This generates the plot, but does not display

plt.ylabel("some numbers")

plt.xlabel("generic x axis")

plt.show()

An alternative to showing would be to save the image

01.10.2021 22 / 37

Lecture 3 - Coordinate Systems Programming - The Matplotlib Module

Result

01.10.2021 23 / 37

Lecture 3 - Coordinate Systems Programming - The Matplotlib Module

Pyplot

▶ Helpful Pyplot Commands

#Define the x and y arrays and the line appearance

#'ro' stands for red dots, 'b-' for blue lines

plt.plot([1,2,3,4], [1,4,9,16], "ro",linewidth=2.0)

#Explicitly define the range of the axis

plt.axis([0, 6, 0, 20])

#Save the plot as an image with a desired resolution

plt.savefig("myplot.png",dpi=200)

▶ Find detailed examples here https://matplotlib.org/users/pyplot
tutorial.html

01.10.2021 24 / 37

https://matplotlib.org/users/pyplot tutorial.html
https://matplotlib.org/users/pyplot tutorial.html

Lecture 3 - Coordinate Systems Programming - The Matplotlib Module

Pyplot

▶ Multiple plots in one figure

x = [1,2,3,4,5]

y1 = [3,6,9,12,15]

y2 = [0.5,1,1.5,2,2.5]

plt.plot(x,y1,"ro",x,y2,"g^")

01.10.2021 25 / 37

Lecture 3 - Coordinate Systems Programming - The Pygame Module

ThePygamemodule

▶ Pygame contains a set of modules designed for video game writing

▶ It is an open-source project since 2000, latest update 2017

▶ Its classes allow high-level game programming

01.10.2021 26 / 37

Lecture 3 - Coordinate Systems Programming - The Pygame Module

Setting up an environment

▶ Every pygame script should contain this

import pygame, sys #Import pygame and system functions

from pygame.locals import * #Import all pygame modules

pygame.init() #Initialize all modules

▶ Set up a 800x600 frame

#Define the frame size

frame = pygame.display.set_mode((800, 600))

#Fill the frame with a R,G,B color

green = (0,255,0)

frame.fill(green)

pygame.display.flip() #!Important! Update the display

01.10.2021 27 / 37

Lecture 3 - Coordinate Systems Programming - The Pygame Module

PygameCoordinate System

The Pygame coordinate System has its origin in the top left corner

0 800

0

600

Y

X

01.10.2021 28 / 37

Lecture 3 - Coordinate Systems Programming - The Pygame Module

TheGame Loop

▶ A game should only end through user interaction

#This loop runs forever

while True:

#pygame.event catches user interaction in a list

for event in pygame.event.get():

#For example a click on the close-button

if event.type == QUIT:

#This exits the game appropriately

pygame.quit()

sys.exit()

▶ For simplicity the pygame.event for-loop will be omitted in future slides

01.10.2021 29 / 37

Lecture 3 - Coordinate Systems Programming - The Pygame Module

PositioningObjects

▶ pygame.Rect - object for storing rectangular coordinates

#pygame.Rect((left, top), (width, height))

#A square at Pos 500,200 with size 40

square = pygame.Rect((500,200),(40,40))

▶ Rects can be drawn on the screen

#pygame.draw.rect(screen, color, pygame.rect)

pygame.draw.rect(frame, (0,0,255), square)

pygame.display.flip() #Always call flip to draw

01.10.2021 30 / 37

Lecture 3 - Coordinate Systems Programming - The Pygame Module

DrawRectangle Example

square = pygame.Rect((500,200),(40,40))

pygame.draw.rect(frame, (0,0,255), square)

(500,200)

(540,240)

01.10.2021 31 / 37

Lecture 3 - Coordinate Systems Programming - The Pygame Module

Loading Images

#Loads the Image

vehicle = pygame.image.load("braitenberg.png")

vehicle.convert() #Converts the image to game coordinates

frame.blit(vehicle,(600,300)) #Places it on the screen

01.10.2021 32 / 37

Lecture 3 - Coordinate Systems Programming - The Pygame Module

Using the Game-Loop

▶ Moving the vehicle across the screen

We loaded the image in vehicle

and set up a screen in frame

xPos = 100 #Start Position

frame.blit(vehicle,(xPos,300)) #Draw the vehicle

while True:

xPos = xPos +1 #Increase the xPos

frame.fill((0,255,0)) #Paint over the old canvas

frame.blit(vehicle,(xPos,300)) #Draw at the new pos

pygame.display.flip() #Show the Updates

▶ This draws all vehicles on top of another!

01.10.2021 33 / 37

Lecture 3 - Coordinate Systems Programming - The Pygame Module

Using the Game-Loop

▶ Moving the vehicle across the screen

We loaded the image in vehicle

and set up a screen in frame

xPos = 100 #Start Position

frame.blit(vehicle,(xPos,300)) #Draw the vehicle

while True:

xPos = xPos +1 #Increase the xPos

frame.fill((0,255,0)) #Paint over the old canvas

frame.blit(vehicle,(xPos,300)) #Draw at the new pos

pygame.display.flip() #Show the Updates

▶ This draws all vehicles on top of another!

01.10.2021 33 / 37

Lecture 3 - Coordinate Systems Programming - The Pygame Module

Using the Game-Loop

▶ Moving the vehicle across the screen

We loaded the image in vehicle

and set up a screen in frame

xPos = 100 #Start Position

frame.blit(vehicle,(xPos,300)) #Draw the vehicle

while True:

xPos = xPos +1 #Increase the xPos

frame.fill((0,255,0)) #Paint over the old canvas

frame.blit(vehicle,(xPos,300)) #Draw at the new pos

pygame.display.flip() #Show the Updates

▶ This draws all vehicles on top of another!

01.10.2021 33 / 37

Lecture 3 - Coordinate Systems Programming - The Pygame Module

Helpful Functions

▶ Pygame

Introduces a pause between each game loop

pygame.time.delay(100)

rot_sprite = pygame.transform.rotozoom(player_image,

angle,1)

This rotates an image to angle degrees

▶ Trigonometry:

math.pi #The number pi

math.asin(x) # sin−1(x)
math.acos(x) # cos−1(x)
math.degrees(radianValue) # radian to degree

01.10.2021 34 / 37

Lecture 3 - Coordinate Systems Tasks

Task Template

▶ For this task download the file task 3 1.zip from the course website and
extract its contents in a folder of your choice.

▶ It contains the files task 3 1 environment.py and task 3 1 student code.py.

▶ You will only change code in task 3 1 student code.py.

Explain Task Template!

01.10.2021 35 / 37

Lecture 3 - Coordinate Systems Tasks

Angle Calculation

1. Calculate the angle between Vector A and Vector B by implementing
calculate angles via trigonometry.

▶ Implement calculate angles via trigonometry using the appropriate formula
for a right triangle

▶ Usemath.asin to get sin−1 andmath.degrees() to convert radian in angle

2. Calculate the angle between Vector A and Vector B by implementing the
remaining functions.

▶ Calculate the scalar product using a for loop that iterates through each
element of the vector

▶ In each loop multiply the current element of each vector and add the
result to a sum variable

▶ Similarly implement the norm function by iterating through a single
vector

▶ Use both functions to implement the scalar product to angle formula

01.10.2021 36 / 37

Lecture 3 - Coordinate Systems Tasks

Pyplot Task (optional)

Take your script from the previous lecture that stores function values in a list.
1. Extend the script by also storing the x-values in a second list. Use the x

and f (x) list to plot your polynomial function.

2. Generate another f (x) list with the same x-values, but other coefficients
a0 to a4. Plot both functions in the same plot.

3. Save one of your plots as a ‘.png’ image with 300 dpi. Add labels at your
own discretion.

01.10.2021 37 / 37

	Motivation
	Math
	Angles and Trigonometry
	Vector Calculation

	Programming
	Installing Python Modules
	The Matplotlib Module
	The Pygame Module

	Tasks

