Lecture 2

Functions in Math and Programming

Jan Tekülve
jan.tekuelve@ini.rub.de

Computer Science and Mathematics
Preparatory Course

29.09.2021
Overview

1. Motivation

2. Functions in Math
 ➤ Definition
 ➤ Parametrization
 ➤ Function Types
 ➤ Properties

3. Programming
 ➤ Functions
 ➤ Lists
 ➤ Writing Files

4. Tasks
Functions in Braitenberg Vehicles

2a
Functions in Braitenberg Vehicles

distance

2a
Functions in Braitenberg Vehicles
Functions in Braitenberg Vehicles
Functions in Braitenberg Vehicles

2a
Functions in Braitenberg Vehicles

- **Distance**
- **Activation**
- **Motors**

Graphs showing the relationship between distance, activation, and motor speed.
Functions in Braitenberg Vehicles

- **Distance**
 - **Activation**
 - **Motors**

- **Graphs**
 - Activation vs. Distance
 - Motor Speed vs. Activation
1. Motivation

2. Functions in Math
 ➤ Definition
 ➤ Parametrization
 ➤ Function Types
 ➤ Properties

3. Programming
 ➤ Functions
 ➤ Lists
 ➤ Writing Files

4. Tasks
Function Definition

Function

X and Y are two non-empty sets. A **function** $f : X \rightarrow Y$, assigns each element $x \in X$ exactly one element $y \in Y$.

$$x \rightarrow y = f(x)$$

- x is called the **function argument**
- y is called the **function value**
- X is called the **domain of a function**
- Y is called the **codomain of a function**
- The **image** W of $f(x)$ are all values in Y that can be assumed
Braitenberg Examples

Assumptions:
- Distance d may assume positive values
- Activation a may assume any value
- Motor Speed s may assume any value between -1 and 1

$f: d \rightarrow a$
$f(d) = e^{-d}$
$X = \mathbb{R}^+, Y = \mathbb{R}^+$

$g: a \rightarrow s$
$g(a) = \tanh(a)$
$X = \mathbb{R}^-, Y = \mathbb{R}^-$
$W = [-1, 1]$
Braitenberg Examples

Assumptions:
- Distance d may assume positive values
- Activation a may assume any value
- Motor Speed s may assume any value between -1 and 1
Braitenberg Examples

Assumptions:
- Distance d may assume positive values
- Activation a may assume any value
- Motor Speed s may assume any value between -1 and 1

$f : d \rightarrow a$
- $f(d) = e^{-d}$
- $X = \mathbb{R}^+, Y = \mathbb{R}$
- $W = \mathbb{R}^+$
Braitenberg Examples

Assumptions:

- Distance d may assume positive values
- Activation a may assume any value
- Motor Speed s may assume any value between -1 and 1

$f : d \rightarrow a$

- $f(d) = e^{-d}$
- $X = \mathbb{R}^+, Y = \mathbb{R}$
- $W = \mathbb{R}^+$

$g : a \rightarrow s$

- $g(a) = \tanh(a)$
- $X = \mathbb{R}, Y = \mathbb{R}$
- $W = [-1, 1]$
Plotting Functions

Tabular Interpretation of: \(f(x) = 2x + 3 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Plotting Functions

Tabular Interpretation of: \(f(x) = 2x + 3 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
</tr>
</tbody>
</table>

y = 5
Plotting Functions

Tabular Interpretation of: \(f(x) = 2x + 3 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[f(x) = 2x + 3 \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
</tr>
</tbody>
</table>
Plotting Functions

Tabular Interpretation of: \(f(x) = 2x + 3 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>5</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graph of f(x) = 2x + 3](image-url)
Plotting Functions

Tabular Interpretation of: \(f(x) = 2x + 3 \)

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
</tr>
</tbody>
</table>
Plotting Functions

Tabular Interpretation of: $f(x) = 2x + 3$

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
</tr>
</tbody>
</table>
Function Translation

- Translation in y-direction: $\hat{f}(x) = f(x) + b$

- Translation in x-direction: $\hat{f}(x) = f(x - a)$

$\hat{f}(x) = e^x$
Function Translation

► Translation in y-direction: $\hat{f}(x) = f(x) + b$

► Translation in x-direction: $\hat{f}(x) = f(x - a)$

$f(x) = e^x \quad g(x) = e^x + 3$
Function Translation

- Translation in y-direction: \(\hat{f}(x) = f(x) + b \)

- Translation in x-direction: \(\hat{f}(x) = f(x - a) \)

\[
\begin{align*}
f(x) &= e^x \\
g(x) &= e^x + 3 \\
h(x) &= e^{x-2}
\end{align*}
\]
Function Stretching and Compression

- Stretching/Compression in **y-direction**: \(\hat{f}(x) = df(x), d > 0 \)
- Stretching/Compression in **x-direction**: \(\hat{f}(x) = f(cx), c > 0 \)

\[f(x) = e^x \]
Function Stretching and Compression

- Stretching/Compression in **y-direction**: \(\hat{f}(x) = df(x), \quad d > 0 \)
- Stretching/Compression in **x-direction**: \(\hat{f}(x) = f(cx), \quad c > 0 \)

\[
\begin{align*}
f(x) & = e^x \\
g(x) & = \frac{1}{2}e^x
\end{align*}
\]
Function Stretching and Compression

- Stretching/Compression in y-direction: $\hat{f}(x) = df(x), \ d > 0$

- Stretching/Compression in x-direction: $\hat{f}(x) = f(cx), \ c > 0$

\[f(x) = e^x \quad g(x) = \frac{1}{2}e^x \quad h(x) = 4e^x \]
Function Stretching and Compression

- **Stretching/Compression in y-direction:** \(\hat{f}(x) = df(x), \ d > 0 \)
- **Stretching/Compression in x-direction:** \(\hat{f}(x) = f(cx), \ c > 0 \)

\[
\begin{align*}
 f(x) &= e^x \\
 g(x) &= \frac{1}{2}e^x \\
 h(x) &= 4e^x \\
 j(x) &= e^{4x}
\end{align*}
\]
Function Reflection

- Reflection across the **y-axis**: \(\hat{f}(x) = f(-x) \)
- Reflection across the **x-axis**: \(\hat{f}(x) = -f(x) \)

\[
\begin{align*}
 f(x) &= e^x \\
 g(x) &= -e^x \\
 h(x) &= e^{-x}
\end{align*}
\]
Function Types

▶ Linear Functions

\[y = mx + b \]
Function Types

- **Linear Functions**
 \[y = mx + b \]

- **Power Functions**
 \[y = ax^n \]
Function Types

▶ Linear Functions
\[y = mx + b \]

▶ Power Functions
\[y = ax^n \]

▶ Polynomial Functions
\[y = \sum_{i=0}^{n} a_i x^i \]
\[y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots a_n x^n \]
describe a polynomial of degree \(n \), where \(a_n \neq 0 \)
Exponentials Functions

Exponential Functions

\[f(x) = e^x \]

\[g(x) = 10^x \]

Logarithmic Functions

\[h(x) = \ln(x) \]

\[j(x) = \log_{10}(x) \]
The Gaussian Function

\[f(x) = e^{-x^2} \]
The Gaussian Function

\[f(x) = e^{-x^2} \quad g(x) = e^{-(x-2)^2} \]
Trigonometric Functions

\[f(x) = \sin(x) \quad g(x) = \cos(x) \]
Chaining Functions

\[f(x) = e^{-x^2} \quad g(x) = \cos(x) \]
Chaining Functions

\[f(x) = e^{-x^2} \quad g(x) = \cos(x) \quad h(x) = g(f(x)) \]
Chaining Functions

\[f(x) = e^{-x^2} \quad g(x) = \cos(x) \quad h(x) = g(f(x)) \quad j(x) = f(g(x)) \]
Multiple Function Arguments

\[f(x, y) = x + y \]
Multiple Function Arguments

\[f(x, y) = \sin(x) + y \]
Multiple Function Arguments

\[f(x, y) = e^{-(x^2 + y^2)} \]
Multiple Function Arguments

\[f(x, y) = e^{-(x-2)^2 + (y+1)^2} \]
Injective and Surjective

- An image f is **injective**, if two different elements $x_1 \neq x_2$ are always projected to two different elements $y_1 \neq y_2$

- An image f is **surjective**, if for each element $y \in Y$ one $x \in X$ exists, such that $y = f(x)$

Injective, but not surjective

$$f(x) = e^x$$

Surjective, but not Injective

$$f(x) = x \sin(x)$$
Bijective Functions

- An image f is **bijective**, if it is injective and surjective.

$f(x) = 4x$

$f(x) = x^3$
Inverse Function

Definition

If a function $f : X \rightarrow Y$ is bijective, then $f^{-1} : Y \rightarrow X$ describes the inverse function of f.

$$f(x) = 4x \quad f^{-1}(x) = \frac{1}{4}x$$
Monotonicity

Definition

- A function $f : \mathbb{R} \rightarrow \mathbb{R}$ is called **monotonically increasing**, if for all x_1, x_2 order is preserved by applying f:
 $$x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2)$$

- A function $f : \mathbb{R} \rightarrow \mathbb{R}$ is called **monotonically decreasing**, if for all x_1, x_2 order is reversed by applying f:
 $$x_1 \leq x_2 \Rightarrow f(x_1) \geq f(x_2)$$
Monotonicity Examples

monotonically increasing

monotonically decreasing
1. Motivation

2. Functions in Math
 ➤ Definition
 ➤ Parametrization
 ➤ Function Types
 ➤ Properties

3. Programming
 ➤ Functions
 ➤ Lists
 ➤ Writing Files

4. Tasks
Functions in Python

Functions in programming describe a parameterizable routine

Functions are defined like this:

```python
def greeting(person):  #greeting is the function name
    print("Hello " +person)  #person is the argument
#print is also a function
```

Functions are called like this:

```python
greeting("Bob")  #"Hello Bob"
name = "Alice"
greeting(name)  #"Hello Alice"
```
Returning Values

Functions may return values to the program

```python
def square(value):
    return value*value
```

The return value may be assigned like any variable

```python
x = 3
y = square(x)  # y=9, x=3 arguments stay the same
square(square(2))  # 8 Functions may be chained
```

Data types are not explicitly specified

```python
x = square("Bob")  # This results in an error!
```
Multiple Function Arguments

- Functions may have multiple arguments

```python
def subtract(minuend, subtrahend):
    return minuend - subtrahend
```

- Advanced Function calling:

```python
result = subtract(9, 2)  # result=7
result = subtract(minuend=9, subtrahend=2)  # result=7
result = subtract(subtrahend=2, minuend=9)  # result=7
result = subtract(9, subtrahend=2)  # error!
```
Optional Function Arguments

Some Arguments may be declared optional

```python
def subtract(minuend, subtrahend, console=False):
    if console:
        print(str(minuend - subtrahend))
    return minuend - subtrahend
```

Optional arguments may be ignored while calling:

```python
result = subtract(9, 2)  # result=7
result = subtract(9, 2, True)  # result=7 and prints
result = subtract(9, 2, False)  # is equal to subtract(9, 2)
```
The List Datatype

- Lists allow to manage a collection of variables

```python
names = ['Alice', 'Bob', 'Carl', 'Dora']
numbers = [1,2,3,5,8]
```

- Accessing and modifying elements in a lists

```python
print(names)  # ['Alice', 'Bob', 'Carl', 'Dora']
single_name = names[2]  # single_name = 'Carl'
first_element = numbers[0]  # first_element = 1
last_name = names[len(names)-1]  # last_name = 'Dora'

names[1] = "Bert"  # names ['Alice', 'Bert', 'Carl', 'Dora']
```
Operations on Lists

Example Operations

numbers = [1,2,3,5,8]
names = ["Alice","Bob","Carl"]
count = len(names) # count=3
names.append("Daisy") # ['Alice','Bob','Carl','Daisy']
numbers2 = [13,21,34]
numbers3 = numbers + numbers2 # [1,2,3,5,8,13,21,34]
subset = numbers3[2:5] # [3,5,8]
characters from position 2 (included) to 5 (excluded)
The For Loop

- The For Loop runs for a fixed number of times

```python
for x in range(0, 3): This runs a loop 3 times
    print(x) # prints 0,1,2
```

- `x` is automatically incremented with each iteration

- A while-loop would look like this

```python
counter = 0
while counter < 3:
    print(counter)
    counter = counter + 1
```
Lists and Loops

The for-loop is especially helpful for lists

```python
numbers = [3, 7, 9]
for number in numbers:  # This runs for each list element
    square = number * number
    print(square)  # 9, 49, 81
```

A while-loop would look like this

```python
counter = 0
while counter < len(numbers):
    square = numbers[counter] * numbers[counter]
    counter = counter + 1
    print(square)
```
Writing Files

- Opening a file

```python
#This creates the file if it does not exist
fileObject = open("fileOutput.txt", "w")
#Option 'w' will overwrite existing files
#Use the option 'a' to append to a file instead
```

- Writing to the file

```python
#Add \n to end a line and \t to create a tab
fileObject.write("Hello you!\n")
```

- Close the file after usage:

```python
fileObject.close()
```
Tasks

1. Write a function that calculates \(f(x) = 4x + 3 \) for any number \(x \)
 - Define the function with a single parameter and a return value
 - Call the function with three different inputs and print the output each time

2*. Define a second function \(g(x, a_0, a_1, a_2, a_3) \) that calculates a polynomial of degree 3 with variable coefficients \(a_0 \) to \(a_3 \).
 - This function now has multiple parameters: \(x \) and the coefficients \(a_0 \) to \(a_3 \)
 - To calculate the power function you need to \textit{import math} at the beginning of the script
 - Calculating \(x^3 \) is then done via \textit{math.pow}(x, 3)

3. Calculate \(f(x) \) or \(g(x, 3, 0, 2, 1) \) for \(x \) values from 0 to 20. Store the result in a list.
 - Define an empty list variable
 - Run a for loop for an appropriate number of times
 - During each loop calculate \(f(x) \) or \(g(x, 3, 0, 2, 1) \) and append the result to your list
4*. Write a script that writes down the list to a file:

- Start by opening the file
- First write “Coefficients:\n” to the file to create the first line
- Write your coefficients in the second line separated by commas
- Write “Values:” to the next line
- Run a loop through your list and in each loop write down x and the function value g(x) stored in the list

File Content Sketch:

<table>
<thead>
<tr>
<th>Coefficients:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a_3, a_2, a_1, a_0</td>
<td>Values:</td>
<td></td>
</tr>
<tr>
<td>0, $g(0)$</td>
<td>1, $g(1)$</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>19, $g(19)$</td>
<td>20, $g(20)$</td>
<td></td>
</tr>
</tbody>
</table>