
Lecture 1 - Introduction

Lecture 1

Introduction to Variables and Control Statements

Jan Tekülve
jan.tekuelve@ini.rub.de

Computer Science and Mathematics
Preparatory Course

28.09.2021

28.09.2021 1 / 29

Lecture 1 - Introduction

Course Formalities

Goals:

▶ Learning basic programming with Python

▶ Refreshing elementary mathematical concepts

Concept:

▶ Each lecture will usually be split into a theoretical explanation and a
programming session

▶ On the last day (08.10.) there will be an “ungraded” test

28.09.2021 2 / 29

Lecture 1 - Introduction Motivation

Overview

1. Motivation

2. Programming
➤ First Steps
➤ Variables
➤ Control Statements
➤ Utilities

3. Tasks

28.09.2021 3 / 29

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent

Braitenberg Vehicles

[Braitenberg, 1986]

28.09.2021 4 / 29

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent
Environmental Factors

(Numbers)

Braitenberg Vehicles

[Braitenberg, 1986]

28.09.2021 4 / 29

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent
Environmental Factors

(Numbers)

Relationships

(Functions)

Braitenberg Vehicles

[Braitenberg, 1986]

28.09.2021 4 / 29

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent
Environmental Factors

(Numbers)

Relationships

(Functions)

α

Distance and

Orientation

(Trigonometry)

Braitenberg Vehicles

[Braitenberg, 1986]

28.09.2021 4 / 29

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent

Environmental Factors

(Numbers)

Relationships

(Functions)

α

Distance and

Orientation

(Trigonometry)

Velocity and

Position

(Differentiation

and Integration)

Braitenberg Vehicles

[Braitenberg, 1986]

28.09.2021 4 / 29

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent
Environmental Factors

(Numbers)

Relationships

(Functions)

α

Distance and

Orientation

(Trigonometry)

Velocity and

Position

(Differentiation

and Integration)

Behavior (Differential Equations)

Braitenberg Vehicles
[Braitenberg, 1986]

28.09.2021 4 / 29

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent
Environmental Factors

(Numbers)

Relationships

(Functions)

α

Distance and

Orientation

(Trigonometry)

Velocity and

Position

(Differentiation

and Integration)

Behavior (Differential Equations)

Connections

(Matrices)

Braitenberg Vehicles

[Braitenberg, 1986]

28.09.2021 4 / 29

Lecture 1 - Introduction Motivation

ProgrammingGoal

28.09.2021 5 / 29

Lecture 1 - Introduction Motivation

Course Structure

Date Title Topics
1 28.09. Variables and Control State-

ments
Data Types, Control Statements

2 29.09. Functions in Math and Pro-
gramming

Function Types and Properties, Plot-
ting Functions, Lists

3 30.09. Full-Time Programming Ses-
sion

Deepen Programming Skills

4 01.10. Coordinate Systems Vectors, Trigonometry, The Pygame
Module

5 04.10. Differentiation Derivative Definition, Calculating
Derivatives, Numerical Differentia-
tion, File-Input/Output

28.09.2021 6 / 29

Lecture 1 - Introduction Motivation

Course Structure

Date Title Topics
6 05.10. Integration Geometrical Definition, Calculat-

ing Integrals, Numerical Integra-
tion

7 06.10. Differential Equations Properties of Differential Equa-
tions, Euler Approximation,
Braitenberg Vehicle

8 07.10. Programming Session & Re-
cap

Repetition, Questions, Test Topics

9 07.10. “Make a wish Lecture” Individual Wishes, e.g. Object-Ori-
ented Programming, Matrix Calcu-
lation

10 08.10. “Test” Self-evaluation

28.09.2021 6 / 29

Lecture 1 - Introduction Programming

1. Motivation

2. Programming
➤ First Steps
➤ Variables
➤ Control Statements
➤ Utilities

3. Tasks

28.09.2021 7 / 29

Lecture 1 - Introduction Programming

ThePython Programming Language

WhyPython?

▶ It is simple but high level

▶ It is interpreted “on the fly”

▶ It is the state of the art scripting language

Helpful Resources

▶ The Anaconda Distribution contains all necessary software:
https://www.anaconda.com/distribution/

▶ You can find helpful documentation here: https://docs.python.org/3/

28.09.2021 8 / 29

https://www.anaconda.com/distribution/
https://docs.python.org/3/

Lecture 1 - Introduction Programming - First Steps

Setting Up

▶ Open the Spyder IDE (Integrated Development Environment)

▶ Create your first python script file
▶ Close the default temporary file
▶ Go to File → Save as .. .
▶ (Recommended) Create a new folder for your python projects
▶ Choose the name helloworld.py

▶ You are set up to write your first Python script!

28.09.2021 9 / 29

Lecture 1 - Introduction Programming - First Steps

HelloWorld

▶ Write the following line into the file:

print("Hello World!")

▶ Press the green Play button in the toolbar to execute the script

▶ Observe the output in the console on the right

▶ The print() function writes its argument to the console

28.09.2021 10 / 29

Lecture 1 - Introduction Programming - First Steps

HelloWorld

▶ Write the following line into the file:

print("Hello World!")

▶ Press the green Play button in the toolbar to execute the script

▶ Observe the output in the console on the right

▶ The print() function writes its argument to the console

28.09.2021 10 / 29

Lecture 1 - Introduction Programming - First Steps

Script: A series of commands

▶ Code is executed from top to bottom - one line after each other

print("Hello There!")

print("Haven't seen you in a while.")

print("How are you?")

▶ You can write comments in your code using the # character

print("Hello!") #This is a comment

Lines that start with # are ignored

print("How are you?")

#print("I am bored") This line is ignored

28.09.2021 11 / 29

Lecture 1 - Introduction Programming - First Steps

Script: A series of commands

▶ Code is executed from top to bottom - one line after each other

print("Hello There!")

print("Haven't seen you in a while.")

print("How are you?")

▶ You can write comments in your code using the # character

print("Hello!") #This is a comment

Lines that start with # are ignored

print("How are you?")

#print("I am bored") This line is ignored

28.09.2021 11 / 29

Lecture 1 - Introduction Programming - Variables

Variables
▶ Variables are the elementary building block of every program

greeting = "Hello, Hello!"

print(greeting) #prints "Hello, Hello!"

▶ Variables are assigned via ‘=’

var1 = "Hello" #variable names may be chosen arbitrarily

long_variable_name5 = "Hi"

#letters, numbers and underscores may make up a name

▶ Assigned variables are available for code following the assignment

print(greeting) #prints "Hello, Hello!"

greeting = "Hey!" #variables may be overwritten

print(greeting) #prints "Hey!"

28.09.2021 12 / 29

Lecture 1 - Introduction Programming - Variables

Variables
▶ Variables are the elementary building block of every program

greeting = "Hello, Hello!"

print(greeting) #prints "Hello, Hello!"

▶ Variables are assigned via ‘=’

var1 = "Hello" #variable names may be chosen arbitrarily

long_variable_name5 = "Hi"

#letters, numbers and underscores may make up a name

▶ Assigned variables are available for code following the assignment

print(greeting) #prints "Hello, Hello!"

greeting = "Hey!" #variables may be overwritten

print(greeting) #prints "Hey!"

28.09.2021 12 / 29

Lecture 1 - Introduction Programming - Variables

Variables
▶ Variables are the elementary building block of every program

greeting = "Hello, Hello!"

print(greeting) #prints "Hello, Hello!"

▶ Variables are assigned via ‘=’

var1 = "Hello" #variable names may be chosen arbitrarily

long_variable_name5 = "Hi"

#letters, numbers and underscores may make up a name

▶ Assigned variables are available for code following the assignment

print(greeting) #prints "Hello, Hello!"

greeting = "Hey!" #variables may be overwritten

print(greeting) #prints "Hey!"

28.09.2021 12 / 29

Lecture 1 - Introduction Programming - Variables

Data Types andOperations

▶ Variables store information of various type:

farewell = "Bye, Bye!" #String Type

num1 = 5 # Integer Type

num2 = 3.0 # Float Type

▶ Operations may be performed using variables

print(num1+num2) #prints 8.0

▶ Results may again be stored in variables

num3 = num1+num2 #num3 is now 8.0

print(num3) #prints 8.0

num3 = num3+1 #num3 updates based on its current value

print(num3) #prints 9.0

28.09.2021 13 / 29

Lecture 1 - Introduction Programming - Variables

Data Types andOperations

▶ Variables store information of various type:

farewell = "Bye, Bye!" #String Type

num1 = 5 # Integer Type

num2 = 3.0 # Float Type

▶ Operations may be performed using variables

print(num1+num2) #prints 8.0

▶ Results may again be stored in variables

num3 = num1+num2 #num3 is now 8.0

print(num3) #prints 8.0

num3 = num3+1 #num3 updates based on its current value

print(num3) #prints 9.0

28.09.2021 13 / 29

Lecture 1 - Introduction Programming - Variables

Data Types andOperations

▶ Variables store information of various type:

farewell = "Bye, Bye!" #String Type

num1 = 5 # Integer Type

num2 = 3.0 # Float Type

▶ Operations may be performed using variables

print(num1+num2) #prints 8.0

▶ Results may again be stored in variables

num3 = num1+num2 #num3 is now 8.0

print(num3) #prints 8.0

num3 = num3+1 #num3 updates based on its current value

print(num3) #prints 9.0

28.09.2021 13 / 29

Lecture 1 - Introduction Programming - Variables

Excursion:The Spyder Debugger

▶ A debugger allows a look under the ‘hood’ of a program

Click here to display the current variables

These are the Debug Controls

Start Debugging Execute Line by Line Stop
 Debugging

28.09.2021 14 / 29

Lecture 1 - Introduction Programming - Variables

Useful Operations onData Types

▶ Operations on Numbers

2+2 #4

50-5*6 #20

(50-5*6)/4 #5.0

8/5 #1.6

17/3 #5.666666666666667

17//3 #5 Integer Division

17%3 #2 Rest of the Division

▶ Operations on Strings

'Wo' + 'rd' #'Word' or "Word"

'Isn't' # This results in an error!

'Isn\'t' #'Isn't' Use \ to escape characters

28.09.2021 15 / 29

Lecture 1 - Introduction Programming - Control Statements

Control Statements
▶ if-Statement

x = 3.5

if x > 0 : #Indentation organizes blocks

print("x is positive!")#Indent with 4 spaces

print("Program is finished!")

▶ else-statement

x = 3.5

if x > 0 : #Indentation organizes blocks

print("x is positive!")#Indent with 4 spaces

else :

print("x is not positive!")

print("Program is finished!")

28.09.2021 16 / 29

Lecture 1 - Introduction Programming - Control Statements

Control Statements
▶ if-Statement

x = 3.5

if x > 0 : #Indentation organizes blocks

print("x is positive!")#Indent with 4 spaces

print("Program is finished!")

▶ else-statement

x = 3.5

if x > 0 : #Indentation organizes blocks

print("x is positive!")#Indent with 4 spaces

else :

print("x is not positive!")

print("Program is finished!")

28.09.2021 16 / 29

Lecture 1 - Introduction Programming - Control Statements

Control Statements

▶ else if-statement

x = 3.5

if x > 0 : #Indentation organizes blocks

print("x is positive!") #Indent with 4 spaces

elif x < 0 :

print("x is negative!")

else:

print("x is zero!")

print("Program is finished!")

28.09.2021 17 / 29

Lecture 1 - Introduction Programming - Control Statements

Variable Scope

▶ Python code is organized in
blocks by indentation (4 spaces)

▶ Variables defined in the global
scope are available at all positions
in the code below its definition

▶ Variables defined in a block are
available in the block and all
blocks inside it

a = 3

b = 4

if a > 2:

c = a + b

b = 1

if c > 5:

print(a)

else:

print(a)

print(c)

print(b)

28.09.2021 18 / 29

Lecture 1 - Introduction Programming - Control Statements

Variable Scope

▶ Python code is organized in
blocks by indentation (4 spaces)

▶ Variables defined in the global
scope are available at all positions
in the code below its definition

▶ Variables defined in a block are
available in the block and all
blocks inside it

Global

a = 3

b = 4

if a > 2:

c = a + b

b = 1

if c > 5:

print(a)

else:

print(a)

print(c)

print(b)

Global

Global

28.09.2021 18 / 29

Lecture 1 - Introduction Programming - Control Statements

Variable Scope

▶ Python code is organized in
blocks by indentation (4 spaces)

▶ Variables defined in the global
scope are available at all positions
in the code below its definition

▶ Variables defined in a block are
available in the block and all
blocks inside it

Block 1

Block 2

Block 3

Global

a = 3

b = 4

if a > 2:

c = a + b

b = 1

if c > 5:

print(a)

else:

print(a)

print(c)

print(b)

Global

Global

28.09.2021 18 / 29

Lecture 1 - Introduction Programming - Control Statements

Variable Scope

▶ Example

a = 3 # Global Scope

b = 4

if a > 2 :

c = a + b # Block 1

b = 1

if c > 5:

print(a) # Block 2

else : # Global

print(a) # Block 3

print(c) # If a <= 2 this will result in an error

print(b) # '1' or '4' if a <= 2

28.09.2021 19 / 29

Lecture 1 - Introduction Programming - Control Statements

While Loops

▶ Print the numbers from 1 to 10

a = 0

while a < 10 :

a = a +1 # Increase a by 1

print(a)

▶ Be careful with the exit condition

a = 0

while a < 10 :

print(a) # Prints 0 until the end of time

You can kill the running programby pressing the red terminate button

28.09.2021 20 / 29

Lecture 1 - Introduction Programming - Control Statements

While Loops

▶ Print the numbers from 1 to 10

a = 0

while a < 10 :

a = a +1 # Increase a by 1

print(a)

▶ Be careful with the exit condition

a = 0

while a < 10 :

print(a) # Prints 0 until the end of time

You can kill the running programby pressing the red terminate button

28.09.2021 20 / 29

Lecture 1 - Introduction Programming - Control Statements

Boolean Statements
▶ Examples

3 > 2 #True, greater than

3 < 3 #False, less than

3 <= 3 # True, equal or less than

4 == 5 # False, == checks equality

4 != 5 # True, != is the opposite of ==

"ello" in "Hello" # True, only works for sequence types

"hel" not in "Hello" # True, "in" is case sensitive

▶ Boolean Variables

test = 7

isGreaterThanOne = test > 1

if isGreaterThanOne:

print("The number is Greater than 1!")

28.09.2021 21 / 29

Lecture 1 - Introduction Programming - Control Statements

Boolean Statements
▶ Examples

3 > 2 #True, greater than

3 < 3 #False, less than

3 <= 3 # True, equal or less than

4 == 5 # False, == checks equality

4 != 5 # True, != is the opposite of ==

"ello" in "Hello" # True, only works for sequence types

"hel" not in "Hello" # True, "in" is case sensitive

▶ Boolean Variables

test = 7

isGreaterThanOne = test > 1

if isGreaterThanOne:

print("The number is Greater than 1!")

28.09.2021 21 / 29

Lecture 1 - Introduction Programming - Utilities

User Input

▶ Use input to prompt the user

person = input('Enter your name: ')

#whatever the user types is stored in person

print('Hello ' + person)

▶ Invalid Data Types

inputValue = input('Please enter a number: ')

result = 5 + inputValue # This results in an error!

▶ Variables might need to be type casted

result = 5 + float(inputValue)

#This works if an actual number was typed

28.09.2021 22 / 29

Lecture 1 - Introduction Programming - Utilities

User Input

▶ Use input to prompt the user

person = input('Enter your name: ')

#whatever the user types is stored in person

print('Hello ' + person)

▶ Invalid Data Types

inputValue = input('Please enter a number: ')

result = 5 + inputValue # This results in an error!

▶ Variables might need to be type casted

result = 5 + float(inputValue)

#This works if an actual number was typed

28.09.2021 22 / 29

Lecture 1 - Introduction Programming - Utilities

User Input

▶ Use input to prompt the user

person = input('Enter your name: ')

#whatever the user types is stored in person

print('Hello ' + person)

▶ Invalid Data Types

inputValue = input('Please enter a number: ')

result = 5 + inputValue # This results in an error!

▶ Variables might need to be type casted

result = 5 + float(inputValue)

#This works if an actual number was typed

28.09.2021 22 / 29

Lecture 1 - Introduction Programming - Utilities

Type Casting

▶ Implicit Typecast

a = 1.0 #float

b = 2 #int

c = a + b #3.0 float

▶ Explicit Typecasts

d = float(b) #2.0

e = 3.7

f = int(3.7) #3 Any floating point is cut off

g = str(e) #String '3.7'

h = int(g) # This results in an error!

i = float(g) # 3.7

print('Variable i is: ' +str(i)) #Print expects strings

28.09.2021 23 / 29

Lecture 1 - Introduction Programming - Utilities

Type Casting

▶ Implicit Typecast

a = 1.0 #float

b = 2 #int

c = a + b #3.0 float

▶ Explicit Typecasts

d = float(b) #2.0

e = 3.7

f = int(3.7) #3 Any floating point is cut off

g = str(e) #String '3.7'

h = int(g) # This results in an error!

i = float(g) # 3.7

print('Variable i is: ' +str(i)) #Print expects strings

28.09.2021 23 / 29

Lecture 1 - Introduction Programming - Utilities

Useful built-in Functions
▶ Rounding and Absolute Value

a = 3.898987897897

b = round(a,3) #3.899

c = abs(-3.2) #|-3.2| = 3.2

t = type(c) #t is <class 'float'>

test = t is float # True

▶ The math module

import math #Import makes a module available

squareTwo = math.sqrt(2) #
√

2
power = math.pow(3,4) # 34

exponential = math.exp(4) #e4

piNumber = math.pi #3.14159265359

28.09.2021 24 / 29

Lecture 1 - Introduction

Lecture Slides/Material

Use the following URL to access the lecture slides:

https://www.ini.rub.de/teaching/courses/
computer science and mathematics preparatory course winter term 2021/

28.09.2021 25 / 29

https://www.ini.rub.de/teaching/courses/computer_science_and_mathematics_preparatory_course_winter_term_2021/
https://www.ini.rub.de/teaching/courses/computer_science_and_mathematics_preparatory_course_winter_term_2021/

Lecture 1 - Introduction Tasks

Tasks Control Statements

1. Write a script that determines whether a number is greater than zero
▶ Define a variable num and assign it a number of your choice
▶ Use If and Else to print out either “The number is greater than zero” or

“The number is smaller or equal to zero” to the console depending on the
value of num

2. Write a script that takes a percentage and prints out the corresponding
verbal grade.

▶ Define a variable perc and assign it a number
between 1 and 100.

▶ Use If and Else to print out the correct grade
depending on the value of perc.

% Grade % Grade
86-100 A 40-55 D
71-85 B 25 -39 E
56-70 C 1 - 24 F

28.09.2021 26 / 29

Lecture 1 - Introduction Tasks

Tasks Variables and Loops

3. Write a script that asks the user for two different inputs and prints their
sum
▶ Define a variable num1 and assign it a value using the input() function
▶ Repeat the above step for a second variable num2
▶ Add num1 and num2 together in a third variable sum and print it

(Do not forget to typecast num1 and num2)
4*. Write a script that asks the user for number input until the sum of the

inputs is greater than 20.
▶ Start with a variable sum that is initialized with the value 0.
▶ Create a while-loop that ends when sum is greater than 20.
▶ Inside the while-loop ask the user for input and add the input to sum.

(Do not forget to typecast the input)

28.09.2021 27 / 29

Lecture 1 - Introduction Tasks

Advanced Task

5*. Write a script that finds the maximum number out of 3 numbers.
▶ Example:

You choose the three numbers to be 13, 16 and 5.
The program should print: “The highest number is 16”.

▶ Define three variables each containing a different number.
▶ Use If and Else statements to find the highest of the three numbers.
▶ Print the number to the console.
▶ The script should work for any three numbers.

28.09.2021 28 / 29

Lecture 1 - Introduction Tasks

References

Braitenberg, V. (1986).
Vehicles: Experiments in synthetic psychology.
MIT press.

28.09.2021 29 / 29

	Motivation
	Programming
	First Steps
	Variables
	Control Statements
	Utilities

	
	Tasks

