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Abstract— The precise 3D localization of non-ego vehicles is
a crucial task for the long-term goal of autonomous driving.
In urban scenarios, where pedestrians frequently interact with
vehicles, this task also requires a precise modeling of dynamic
vehicle parts, e.g., doors. Current state-of-the-art computer
vision algorithms are in fact able to estimate a vehicle pose
but do not model doors by any means.

To provide a solution solely based on a monocular camera,
our proposed pipeline first performs a six degree-of-freedom
pose estimation and then predicts the respective states of the
vehicle doors. For both problems we utilize a perspective-
n-point fitting method based on key points. To this end,
we jointly detect the two required sets of correspondences
for the vehicle body and the doors with a neural network.
Since little insight is published for the application of key
point based vehicle detection in the literature, we compare
different implementations of the key point prediction module
and investigate algorithm details, i.e., the role of a key point
visibility analysis and two differing key point layouts. Results
for the body estimation and the door detection with respect
to these implementation details are presented on a proprietary
dataset, in which we utilize an exact vehicle model to receive
precise ground truth.

I. INTRODUCTION

The precise detection and 3D localization of non-ego
vehicles is an important aspect for the long-term goal of
autonomous driving. From the various sensor techniques
available, a solely camera-based solution is favorable since
it offers cost-effectiveness, a small form factor and high
information density compared to its alternatives, i.e., LIDAR
or RADAR.

State-of-the-art object detection algorithms summarize ve-
hicles as rigid bounding boxes, providing an efficient base-
line representation but fail to grasp the full complexity of the
vehicle’s structure: The dynamic behavior of vehicle doors
creates many situations – especially in urban scenarios –
where this abstraction level results in a crash, e.g., colliding
with an open vehicle door when solely relying on vision-
based systems.

To present a solution for this problem, we extend a
perspective-n-point (pnp) fitting pipeline to not only solve
for the vehicle body pose but also the opening angles of
all its doors in a two-stage design (Fig. 1). We train a
neural network to jointly perform the tasks of object detec-
tion, key point prediction and key point visibility analysis.
Existing works [1], [2], [3] present similar approaches but
with varying implementations and without deeper insights
to the key point detection performance. To provide these
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Fig. 1: The presented pipeline detects vehicles in a monocular
RGB image and estimates two sets of key points that explicitly
model the vehicle’s doors (yellow) along with the body (green).
A full pose estimation is done with two perspective-n-point fitting
postprocessing blocks, both utilizing an abstract key point model.
The outputs of the postprocessing blocks are combined to estimate
the exact vehicle in 3D with respect to the door states.

insights for the key point prediction problem, we perform
an extensive analysis of three research aspects along with
our vehicle door state evaluation: Firstly, we compare two
different formulations of the key point detection problem
– a heatmap approach and a regression-based strategy –
resulting in different characteristics for the respective tasks.
Secondly, two definitions for the required key point sets from
literature are deployed as the vehicle model. Finally, the need
for and influence of a joint key point visibility analysis is
investigated.

We evaluate the door modeling and the key point pre-
diction task on a proprietary dataset since the problem of
vehicle door detection is not represented by any scientific,
publicly available dataset. We provide an extended analysis
of the general detection performance, the abstract key point
models and high-precision door opening angle estimation.
In summary our contributions are:

• A multi-stage vehicle detection pipeline that explicitly
considers dynamic vehicle parts in the returned 3D
output,

• a comparison of three research aspects within the key
point prediction task (prediction method, visibility, de-
ployed key point model)

• and an evaluation of all mentioned characteristics on a
proprietary dataset.

II. RELATED WORK

This study is embedded in the domain of monocular
single-shot computer vision algorithms for 3D vehicle de-

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 233 submitted to 2021 32nd IEEE Intelligent Vehicles Symposium (IV).
Received February 14, 2021.



tection. Although this specification comes with strict lim-
itations, i.e., the constraint that 3D information cannot be
estimated directly from a camera, algorithms designed in
that domain contribute enormously to autonomous systems:
State-of-the-art algorithms for vehicle or general object de-
tection currently often require a direct 3D measurement, e.g.,
from LIDAR or RADAR. These sensors come with high
production cost, limited resolution and perform orders of
magnitudes worse in classification problems. This led to a
strong focus on camera-LIDAR-fusion approaches [4], [5],
[6], [7] which combine the laser’s accurate depth estimation
with descriptive features from a camera.

When solely relying on a camera, the problem of joint 3D
size and pose estimation is often solved by an exploitation
of the temporal dimension, e.g., structure-from-motion [8],
or stereo camera setups [9], [10]. Both of the approaches
require their own global pre-processing, which is susceptible
to difficult lighting conditions and other perturbations. Since
monocular single-shot solutions lack these pre-processing
steps, they are conceptually preferable. A popular line of
research tries to solve the aforementioned 3D estimation as
a pure learning problem with the help of neural networks,
which rely on the tremendous learning capacities of deep
learning. However, recent works [11], [12], [13] show that
for open world 3D vehicle estimation the variance of the
data is yet too high. Therefore model-based pipelines that
include predictions from neural networks are a good trade-
off for the targeted problem. Due to legislation and large-
scale industrialization, vehicles are restricted to explicit
manufacturing models in which the configuration can be
measured once. What is more, vehicles can be well classified
into groups (e.g., limousine, SUV, truck, . . . ), in which
members of the same group share a basic chassis structure
and have similar dimensions. This is the reason why the
model-based keypoint detector by Chabot et al. [1] yielded
outstanding performance on open world 3D vehicle detection
benchmarks [14] with a still manageable amount of models.
Their work has a learning component that slightly modifies
the dimensions of the 3D model based on the visual cues
from a bounding box detector. In comparison to our paper,
this model adaptation lends itself well to 3D size estimation
but precludes an accurate and proper evaluation of the used
key point approach. They annotated the key points semi-
automatically with the help of a 3D bounding box scaling,
which is estimated from LIDAR and therefore prone to error.
Although the distance estimation is accurate, the key point
positioning is often very poor with their labeling pipeline. In
contrast, using an exact vehicle model allows us to remove
this deep coupling and to focus exclusively on the key point
detection performance.
In the popular dataset by Song et al. [3], the authors use key
point fitting for ground truth generation. Their study shows
that pnp fitting is well suited for precise pose estimation, yet
adapting the 3D vehicle models to the actual car in the frame
yields imprecise key point positioning.

The neural network component of our pipeline is based
on convolutional bounding box detectors which are widely

known and used in the community. In short, we categorize it
as a two-stage detector [15], [16], [17] with a VGG [18]
backbone, in contrast to single-stage detectors [19], [20].
Interested readers are referred to [21], [22] for a concise
overview of the field.

The problem of vehicle door modeling is to the best of
our knowledge not covered extensively in current research.
In scientific benchmarks [14], [23], [3], [24], which have a
strong influence on the community by means of the provided
data, it is neither treated as a subtask nor is it provided
explicitly in the bounding box labeling.

III. METHOD

The method section starts with a presentation of the
vehicle door detection pipeline followed by two approaches
for predicting key points with a neural network. In the end,
the two deployed key point models are explained.

Vehicle door detection pipeline. The goal of our
pipeline is to detect an arbitrary number of vehicles in a
given monocular image and predict the respective three-
dimensional poses and extents while explicitly considering
the vehicle’s door states. To this end, we design a neural
network for joint object detection and key point prediction,
a six degree-of-freedom body vehicle estimation block
and the consecutive door modeling. Both of the two latter
post-processing steps use model-based approaches which
exploit the optimization of the reprojection error between
static 2D-3D correspondences with a calibrated camera. The
pipeline is visualized in figure 2.

The detection of vehicles in a given RGB image is
done with a Faster-RCNN [15] based network. Descriptive
features are extracted with a convolutional network [18]
and then passed to a region-proposal-network (RPN) that
provides promising regions of interest by evaluating sample
positions from an anchor-based grid structure. For each
anchor point various bounding boxes are tested which are
based on configurable sizes and aspect ratios. Interested
readers are referred to [15], [16], [17] for details. The
300 best region proposals are passed on to the second
stage of the network. The classification head verifies if the
passed region contains an object of a known class (via
softmax classification) or should be rejected as background.
Additionally, the given bounding box is refined with values
from a regression head. To utilize perspective-n-point
fitting we extend this second stage head with a key point
prediction module that outputs coordinate pairs (xp,yp) in
the image plane for two sets of key points pbody1 , ..., pbodyN

and pdoor,11 , ..., pdoor,1M , pdoor,21 , ..., pdoor,4M : one for the body
of the vehicle (green) and the other for modeling the doors
(yellow). The amount and exact positions of these key point
deployments are described in the last section of this chapter.

The two key point sets are passed to the respective post-
processing blocks which use model-based approaches to
estimate three-dimensional outputs. This means that the size
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Fig. 2: Our multi-stage pipeline for joint estimation of the vehicle body pose and dynamic vehicle parts. A Faster R-CNN [15] based
network predicts bounding boxes with two additional sets of key points that model the body (green) and dynamic parts (yellow). The
first set is used to estimate the six degree-of-freedom vehicle pose which is then fixed to estimate the vehicle door status by solving a
simplified optimization problem. For both steps an abstract 3D key point model is required which we obtain once from a high precision
CAD model. As a combination of the post-processing blocks a six degree-of-freedom vehicle pose and four states for the vehicle doors
are returned.

estimation is removed from the problem by using additional
knowledge. In our case an exact CAD model of the vehicle to
detect is utilized: the corresponding key points are annotated
in 3D space and stored as a deployed model along with the
vehicle’s physical extent. Given a calibrated camera matrix
K, perspective-n-point fitting is applied, which optimizes
the reprojection error eproj between the detected 2D key
points pbodyk , k = 1, ..., N and the projected coordinates of
the corresponding 3D key points P bodyk over all possible
object poses denoted by the rotation matrix R and the camera
position t in 3D (eqn. 1-3). Efficient implementations like
ePnP [25] solve this problem within a few milliseconds given
at least four corresponding key point pairs. In addition to
the coordinate prediction a visibility classification is done
for each key point by the respective key point detection. The
ground truth data for this visibility head is determined by
raytracing with the CAD model similar to [1]. The quality of
this visibility filtering and the influence on the estimation of
3D values will be evaluated in our experiments. We minimize

arg min
R,t

eproj(R, t) (1)

eproj(R, t) =
1

N

N∑
k=1

(
pbodyk − pproj,k(R, t)

)2
(2)

pproj,k(R, t) = π
(
K ·R ·

(
P bodyk − t

))
, (3)

where π : R3 → R2, π(x, y, z) = (xz ,
y
z ) performs the pro-

jection within the camera frame. The underlying assumption

of a rigid body – a strict requirement of the perspective-n-
point fitting – is the reason why the presented post-processing
follows a two-stage design: Solving for both the six degree-
of-freedom pose and the four degree-of-freedom door states
in a single optimization problem leads to multiple conver-
gence points and is therefore not considered. Instead, we
first estimate the pose of the vehicle’s body R∗, t∗ with the
key points from P bodyk and then utilize this pose to estimate
the respective door states. By this means, the optimization
problem of the doors can be reduced to four independent
single input problems, i.e., the respective rotation αd around
a fixed and known rotation axis for each door d = 1, ..., 4
(Eq. (4)-(6)). Due to this simplification, a single key point
would be sufficient to solve the optimization problem:

arg min
αd

edoorproj,d(αd) (4)

edoorproj,d(αd) =
1

M

M∑
k=1

(
pdoor,dk − pproj,k(αd)

)2
(5)

pproj,k(αd) = π
(
K ·R(αd) ·R∗ ·

(
P door,dk − t∗

))
(6)

where P door,dk , k = 1, ...,M are the d-th door’s 3D key
points. Combining both results, the pipeline returns a six
degree-of-freedom pose, the body’s extent from the stored
abstract model and an opening state for each door in
the interval [0; 1]. With the knowledge from the model
this opening state can be converted into an exact 3D
measurement or an all-embracing bounding box if required.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 233 submitted to 2021 32nd IEEE Intelligent Vehicles Symposium (IV).
Received February 14, 2021.



Key point prediction methods. The neural network can
be configured with two different modules for the key point
prediction: a regression approach [1] and a heatmap imple-
mentation [2]. Both modules predict a set of coordinate pairs
(xp,yp) within the fine-tuned bounding box output for an
arbitrary number of key points.

The first implementation [1] defines the key point coordi-
nate estimation as a regression problem where the variables
xp and yp are directly estimated within the possible bounding
box range of [0; 1] for each key point p ∈ P . The final
amount of regression outputs is therefore 2 · (N + 4M).
During training the smooth L1 loss is applied to train the
network. This way of modeling has the structural disadvan-
tage that a key point will always be predicted to a point in
the interval even if it is not visible since the output does
not hold a non-visible state. Therefore, if the visibility of a
key point shall be considered, an additional output is required
which solely focusses on this task. The trivial implementation
is the definition of N + 4M additional binary classification
problems with softmax loss. For each key point p the network
will predict a binary filter value vp to return only key points
where vp = 1.

The alternative heatmap implementation [2] solves the
key point prediction task as a classification problem. Each
bounding box is divided into a K × J grid where each cell
represents a possible key point location. During training, a
softmax loss is combined with a one-hot encoded label for
closest key point grid cell. This is done independently for
all P = N + 4M key points, resulting in a P × K × J
output layer. In our experiments we set K = J = 56, as
proposed in the original paper. The resulting grid indices are
normalized on the grid size and scaled with the bounding
box size to receive the final key point coordinates (xp, yp).

Deployed key point models. While the perspective-n-
point fitting has a strict formalism, the resulting question
where to place key points on a model and which amount
leads to best performance is highly dependent on the applica-
tion at hand. Related work [1], [3] has proposed two different
abstractions: Firstly, the model called MANTA [1] defines a
symmetrical structure of 36 key points as a coarse wireframe.
Key points mostly capture the outlines of the chassis with
an additional focus on the wheels (five key points each).
There are no key points near the longitudinal axis and since
there are no key points on the doors we had to add 18 key
points on the outlines of dynamic parts, resulting in a final
count of 54 key points. We call this model MANTA+ in the
experiments.

The second model Apollocar [3] already provides a
fine-grained layout: 66 key points are labeled mainly on
design elements (e.g., handles) and part transitions, where
local gradients appear. This layout can be used as an
abstract model in both tasks without further modification.
The exact locations of the key points are depicted in figure 3.

Summary. We proposed a multi-step pipeline based on

MANTA+

Apollocar

Fig. 3: The key point models MANTA+ (top) [1] and Apollocar
(bottom) [3] annotated on a rendering of our CAD vehicle model.
Green key points are used to estimate the vehicle body while yellow
key points are for the doors. The final deployed models hold the
3D coordinates of both key point sets, the physical extent of the
vehicle and four transformation matrices to the rotation axes of the
doors.

key point perspective-n-point fitting and introduced several
research aspects within the approach: two competitive key
point prediction methods, two key point arrangements as
the abstract model and the influence of key point visibility
analysis. All three topics will be addressed in the following
experiments.

IV. EXPERIMENTS

Our experiments analyze the performance of key
point-based approaches for vehicle door modeling along
with a six degree-of-freedom pose estimation. We start
with a review of our proprietary dataset followed by
framework implementation details. The utilized multi-stage
pipeline does not allow for a straightforward analysis of
the overall performance, thus, we present a stagewise
evaluation concept: We briefly present image-plane related
metrics before analyzing the performance of the body pose
estimation followed by the final vehicle door detection
metrics. Subsequently, we evaluate the coupling between
the latter two stages. The names of all methods under
examination have been introduced in section III.

Dataset. Although vehicle detection and pose estimation
are very popular in scientific benchmarks ([14], [23], [24],
[26]), the task of vehicle door detection was never proposed.
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This is in our opinion due to three reasons: A focus on
LIDAR-based sensor setups, the difficult integration of doors
into bounding box based detectors and the high requirements
on labeling, especially in open world benchmarks. To over-
come these problems we recorded a dataset with a single
vehicle type, utilizing an exact production-level CAD model
of our autonomous driving test vehicles. While other work
[1], [3] focuses on a generalization of the key point models
to detect key points for any type of vehicle, the restriction
on a single but exact vehicle model allows for investigating
the performance of the key point detection modules in a
precise manner. While the annotated key points in related
work [1], [3] only coarsely fits the wanted parts, we receive
ground truth on real-world images within a precision of a
few centimeters, both for the vehicle’s body and doors.

The image data is recorded with a calibrated automotive
camera and automatically labeled with an object pose
estimated by a dGPS system. We manually fine-tune this
object pose and label the door status with help of the
projected CAD model. In the end, a frame is described
by its image, the six degree-of-freedom vehicle pose, the
dimensions of the vehicle model and four values between
0 and 1 to model the door status. Due to the high effort
for labeling, the resulting dataset consists of 200 images,
divided 175/10/15 into training, validation and testing
dataset.

Implementation and network training. Our
implementation is based on the tensorflow objection
detection framework [22] which already implements a
two-stage 2D object detection head and the mask-rcnn
[2] heatmap approach. We extend the classification stage
with the alternative key point prediction via regression.
All models are trained for 800K steps with learning rate
reduction by a factor of 10 at 500K and 700K steps.
Hyperparameter optimization on the validation dataset
showed that heatmap approaches require a higher initial
learning rate of 1e-2 compared to the regression approach
(1e-3).

2D object detection. Due to the multi-stage detector
design the general object detection performance is evaluated
first to prove a valid detection baseline for the subsequent
tasks: All trained models have 100% recall and peform in
the same orders of magnitude for mAP and mIoU with
good results above 90% (Tab. I).

Vehicle body pose estimation. The performance of the
body pose estimation is evaluated by mean Euclidean dis-
tances (∆T) and the mean of the accumulated angular errors
(∆R). All regression models perform significantly better than
the models with the heatmap approach as shown in Table II.
In fact, without visibility analysis the translation error in-
creases by one order of magnitude. The mean normalized key
point localization error ∆K underlines that the quality of the
heatmap key point detection is worse by a factor of 2 to 3.
Analyzing the influence of the visibilty classification leads

Approach Model mAP [%] mIoU [%]
Regression MANTA+ 90.9 93.4

Apollocar 90.9 93.8
MANTA+ VIS 91.8 93.0
Apollocar VIS 90.3 93.4

Heatmap MANTA+ 94.7 94.1
Apollocar 91.8 93.7
MANTA+ VIS 92.3 94.0
Apollocar VIS 91.9 93.6

TABLE I: Performance of 2D vehicle detection via mean average
precision (mAP) and mean intersection over union (mIoU) for the
different key point prediction approaches and key point models.

to interesting insights: From the comparison of ∆K with
the localization error of visible key points only (∆Kvis) we
learn that visible key points are detected significantly more
accurately. This is not caused by learning multiple tasks as a
comparison with the groundtruth visibilities for the models
without an output for visibilities (∆KGT

vis ) shows. On the
other hand, there is no performance increase in the pose
estimation between the regression models with and without
visibility filtering. Our intuition is that this is caused by
the detection noise of the key point prediction, limiting the
overall performance of the pnp fitter. Regarding the heatmap
models, for which a precise prediction of the key points
is difficult, the additional visibility analysis gives a strong
benefit, reducing the translation error by a factor of 3 to
7. Therefore and because of the good classification results
greater 95% in Pvis, we recommend to implement the key
point visibility prediction.

Comparing the two deployed key point models, no
performance difference during the pose estimation is
noticed: The Apollocar model tends to perform slightly
better, but not in a significant manner.

Vehicle door detection. Evaluating the dynamic door
detection a similar main statement can be deduced: Regres-
sion models perform better than heatmap models. But the
difference between both methods shrinks down to a factor
of 1.5 to 2 when looking at the average door state error
∆Edyn in Table III. The discrete state analysis with two
and three states (open, half-open, closed) in the columns
P2S and P3S even leads to a smaller difference in perfor-
mance. In a comparison of the key point detection quality
between static (∆Kbody) and dynamic parts (∆Kdyn) the
static parts are detected better with a factor of nearly 2 for
the favored regression models. The filtering of visible key
points, presented in ∆Kbody

vis and ∆Kbody
vis , again leads to key

points with lower localization error and therefore better state
classification precisions (P2S , P3S).

For the dynamic parts, the deployed key point model
makes a difference: In the best case (Heatmap with VIS)
the state classification precision benefits with an additional
performance of 12 percentage points. But also all other
models increase performance in all metrics. We conclude
that the definition of key points on regions with strong
gradients (e.g., handles, c.f., Fig. 3) are the main cause
for this extra performance in the vehicle door modeling task.
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Approach Model ∆T [m] ∆R [deg] ∆K [%] ∆Kvis [%] ∆KGT
vis [%] Pvis [%]

Regression MANTA+ 0.31 3.5 4.1 1.5
Apollocar 0.32 3.3 3.7 1.6
MANTA+ VIS 0.32 4.1 4.0 1.5 1.6 96.6
Apollocar VIS 0.29 3.6 3.8 1.4 1.7 96.5

Heatmap MANTA+ 3.17 10.8 12.9 3.9
Apollocar 3.63 12.9 11.1 4.5
MANTA+ VIS 0.94 24.2 10.1 4.9 4.2 96.4
Apollocar VIS 0.54 6.6 9.9 3.2 3.3 96.4

TABLE II: Performance of the six degree-of-freedom pose estimation task. Mean Euclidean distances are summed up to ∆T while
∆R represents the accumulated angular errors. The mean normalized key point localization errors for all key points, visible predicted key
points and key points with visibility from ground truth are denoted by ∆K, ∆Kvis, ∆KGT

vis respectively. The key point localization error
is normalized on the respective bounding box dimensions. Visibility classification precision is given in column Pvis.

Approach Model ∆Edyn P2S [%] P3S [%] ∆Kbody [%] ∆Kdyn [%] ∆Kbody
vis [%] ∆Kdyn

vis [%]
Regression MANTA+ 0.123 82.9 80.0 3.1 5.5

Apollocar 0.122 85.7 84.3 3.0 4.8
MANTA+ VIS 0.101 88.6 85.7 3.3 4.9 1.2 2.0
Apollocar VIS 0.086 91.4 88.5 2.8 5.2 1.1 1.8

Heatmap MANTA+ 0.207 72.9 64.3 12.2 13.8
Apollocar 0.214 70.0 67.1 10.0 12.5
MANTA+ VIS 0.166 75.7 75.7 9.7 10.7 3.6 6.7
Apollocar VIS 0.101 87.1 82.9 7.2 13.6 2.2 4.5

TABLE III: Performance of the estimation of the vehicle door states as mean state error Edyn and two- and three-state classification
(open, half-open, closed) precision P2S , P3S . Similar to Tab. II the mean normalized key point localization errors are denoted by ∆K for
the two sets (the body body and dynamic doors dyn) and whether or not to visibility analysis has been performed (vis).

Body pose dependency analysis. Since the optimization
of the vehicle state is a function of the estimated vehicle pose
(Eqn. 4) we analyze the coupling between both modules in
Table IV. Therefore, we estimate the dynamic door states
using the vehicle pose ωGT from ground truth and compare
it to the results from the previous section.

Using the ground truth has little effect on the results
of the regression models since they already perform well.
However, for the heatmap models increases of up to +10%
are measurable for the state classification precisions (P2S ,
P3S), indicating that for an accurate vehicle door estimation
a robust vehicle pose is required.

Approach Model ∆EGT
dyn PGT

2S PGT
3S

Regression MANTA+ 0.154 81.4 77.1
Apollocar 0.140 81.4 81.4
MANTA+ VIS 0.097 90.0 87.1
Apollocar VIS 0.083 92.9 88.6

Heatmap MANTA+ 0.177 80.0 77.1
Apollocar 0.171 80.0 77.1
MANTA+ RVIS 0.146 82.9 80.0
Apollocar RVIS 0.085 90.0 87.1

TABLE IV: Performance of the estimation of the vehicle door
states using the ground truth pose ωGT with the predicted door key
points.

V. CONCLUSION

We presented an algorithm that explicitly models dynamic
vehicle doors along with 2D detection and six degree-of-
freedom pose estimation of vehicles. Our pipeline builds
upon a model-based key point approach, in which both
required sets of key points are predicted jointly. We im-
plemented a heatmap and a regression key point predic-
tion module from literature and compared their respective

results. Also, the role of visibility analysis during fitting
was investigated. For our evaluation we utilized a proprietary
dataset and deployed two key point models which were also
benchmarked.

Our results show that the regression approach provides
significantly better results, not only in the estimation of
vehicle poses but also in the state estimation of the vehicle
doors. High classification rates for both two- and three-state
door analysis proved the presented algorithm well-suited for
the task of vehicle door modeling. The extensive analysis
of key point detection errors w.r.t. visibility analysis showed
the benefits of this filtering, especially since key points with
visible cues are detected better. In the end, the best results
for both tasks were achieved using the regression approach
with visibility filtering and the deployed Apollocar vehicle
key point model.

Although the presented algorithm is limited to a single
model, it can be used as a reference system with multiple
known vehicle models or be further generalized by learning
approaches, as for example shown in [1].
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