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Motor control

M is about the processes of bringing about the
physical movement of an arm (robot or
human)

B this entails
M the mechanical dynamics of an arm
B control principles

B actuators



Resources

B R M Murray, Z Li, S S. Sastry: A mathematical

introduction to robotic manipulation. CRC
Press, 1994

B K M Lynch, F C Park: Modern Robotics:
Mechanics, Planning, and Control. Cambridge
University Press, 2017

M online version of both available...



Newton’s law

B for a mass, m, described by a variable, %, in an
inertial frame: mXx = f(x, t) where f is a force

M in non-inertial frames, e.g. rotating or
accelerating frames:

B centripetal forces

B Coriolis forces



Rigid bodies: constraints

B constraints reduce the effective
numbers of degrees of freedom...

L .o 3 .
F; = my;r; ri e R, 1 =1,...,n.

g;i(ri,...,rn) =0 j=1,...k.



Rigid bodies: constraints

M generalized coordinates capture
the remaining, free degrees of
freedom

Ti:f’i(q17'°'7qm) gj(rl,...,rn):()
i=1,....n — i=1,...,k



Lagrangian mechanics

B The Lagrangian framework makes it
possible to capture dynamics in
generalized coordinates that reflect
constraints

M Lagrange function L = kinetic-
potential energy  L(q,q) = T'(q,q) — V(q),

B Least action principle: The integral of
L over time=action is minimal

5A = 6 | L(g, g, H)dt = 0

[Murray, Sastry, Li, 94]



Lagrangian mechanics

B Least action principle: The integral of L over

time=action is minimal 0A = 0 | L(q, g, t)dt = 0O

[Murray, Sastry, Li, 94]



Euler-Lagrange equation

oL oL
BoA = | (—bg+—56¢)dt =0
J oq 0q

B with 6 = doqg/dt

M and with partial integration

oL (0L d oL
—0q] + )
g oqg dt 0q

B first term vanishes: no variation at start/end
points

BsA =]

)5th=0



Euler-Lagrange equation

a4l oL

dt 0g 0q

B ...plus generalized external forces, y

.ddL oL
dt 0g 0q

=7

M in component form:

d OL 0L
dt 0q;  Jg;

:Tz z:l,...,m,



Example: pendulum
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M generalized coordinates: 6, ¢
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Example: pendulum
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Example: two-link planar robot

M generalized coordinates: 0;, 6,

[ T(8,0) = gmi (& + §7) + 5Taa6F + Sma(i3 +43) + 5T (01 + 62)°
. 1 él g o+ 2602 0 + 602 91
N 2 ég 0+ 602 0 6)2 !
.Where Sl — Sln(el), Cl — COS(QZ) 5 FT

[(Hzg@ 5+502] [@14—5329‘2 —Bsa(6; +e‘2>] H B H
0 + Bes 0 65 Bs201 0 B
inertial centrifugal/Coriolis active

torques



Open-chain manipulator

M(0)0 +C(0,0)0 + N(0,0) = 7

centrifugal/ active

inertial o ravitational
Coriolis & torques



Control systems

B robotic motion as a special case of control
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[Dorf, Bischop, 201 1]



Control systems

M state of process/actuator x
M output, y

B control signal, u

$:f(t,CE,U) y:n(tvmvu)

Error
Desired =¥ > —> — T > Actual
output —» Comparison —»{ Controller P! Actuator pP—»{ Process output
response __,,| > — o . P
I A A
- <
Sensor <
Mcasurement output Feedback

[Dorf, Bischop, 201 1]



T = f(t,z,u)

Control systems

y =n(t,x,u)

M control law: u as a function of y (or V), desired

response,y,;

M disturbances modeled stochastically

Desired =
output  —p|
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[Dorf, Bischop, 201 1]



Robotic control

low high forces
desired power power and
behavior controls controls» actuators torques | dynamics of
—| controller p——> amplifiers - and — arm and
local transmissions environment
feedback
motions
and
forces
Sensors -

[Lunch, Park, 2017]



Robotic control

position feedback

I I
torque/ current 3 motor 1 5
~ current amp 1| Sensor + encoder
controll.er, commands
dynamics I I
model | 3
current motor 2
amp 2 —> —
T b sensor + encoder
user input
DC
power voltage
supply
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[ AD T |9 current N motor n
AC b sensor + encoder
voltage

[Lunch, Park, 2017]



Robotic control

M actuators enable commanding a torque by

in good

commanding a current...
approximation
B => control signal: torque
position feedback
14 I
torque/ Ao 1 current motor 1
current P sensor + encoder
controller, | . 1 mands
dynamics I I
2 2
model b current motor 2
/]\ amp 2
sensor + encoder
user input
DC
power Voltage
supply
I, I,
I AT T Ie current motor n
AC P sensor + encoder
voltage

[Lunch, Park, 201 7]



Robotic control

Bx =f(t,x,u)

B state variable x(7)= output: kinematic state

of robot

M desired trajectory: x (f) (from motion

planning)

B control signal: u = torques

forces

desired and
behavior torques | dynamics of
—| controller > arm and

environment

motions
and
forces

(b)

[Lunch, Park, 2017]



Robotic control

M theoretical core of robotic control theory:
M devise control laws that lead to stable control

B (approximate these numerically on hardware
and computers)



Robotic control

M task: generate joint torques that produce a
desired motion...0 (1)

B <=> make error: e(t) = 0(¢) — 6,(r) small

1

for a constant

e 1 A | :
W . 2% settling time t d €Sl red State
overshoot

[Lunch, Park, 2017]
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Toy example

M linear mass spring model

mé(t) + bé(t) + ke(r) =0

overdamped
critically damped

NN

Sy

underdamped

[Lunch, Park, 2017]



Motion control single joint

B = M6+ mgrcos(9) + bO

[Lunch, Park, 2017]



Motion control single joint

B = MO+ mgrcos(0) + bO
B feedback PID controller

Wr=K0,+K,0,+K;|0()dr

+

ed + 96 T
. ( > arm
2 > Kp I dynamics

_|_

— [dt > K;

| 2 L] K,

Figure 11.12: Block diagram of a PID controller. [LunCh, Park’ 20 I 7]



Motion control single joint

B = MO+ mgrcos(0) + bO

B feedback PID controller

Wr=K0,+K,0,+K;|0()dr

\E’ term
desired config =

PID final config
1 \ﬁ) term (\I‘] |

0 PD control P term l
Iterm | 9 PD final config
PID control

0 ~— — D term initial config
0 o} 10
time (s) controls

[Lunch, Park, 2017]



Motion control single joint

B = MO + mgrcos(d) + b0 = MO + h(0, 0)
B feedforward controller

® has model of the dynamics:

B = M0+ h,0)

B compute forward torque

B (1) = M@O,(1))0,() + h(b,,6,)

B if model exact: 0 ~ 0,

[Lunch, Park, 2017]



Motion control single joint

M feedforward controller

® if model wrong..

—m/4F

actual

Task 1 desired

—3m/4

desired

-
4
. 4 |
AN 3/
- -
- -
- -
-~ “
A -

|

Figure 11.17: Results of feedforward control with an incorrect model: 7 = 0.08 m,
but 7 = 0.1 m. The desired trajectory in Task 1 is 04(t) = —n/2 — (w/4) cos(t) for
0 <t < 7. The desired trajectory for Task 2 is 04(t) = 7/2 — (7/4) cos(t),0 < ¢t < 7.

[Lunch, Park, 2017]
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time (s)



Motion control single joint

B combined feedforward and feedback PID
controller ...

YN (() <éd +K,0,+ K0, + K, Jé’(t’)dt’) + h(0, 0)

B = inverse dynamics or computed torque
controller

[Lunch, Park, 2017]



Control of multi-joint arm

M generate joint torques that produce a
desired motion...0,

Berrord,=0-0,

S PD control 7 = K0, + K0,+ K |0,(tdt

B => controlling joints independently

M(6)0+C(0,0)0 + N(6,0) =1




Control of multi-joint arm

B there are many more sophisticated models
that compensate for interaction torques/
inertial coupling... e.g. computed torque
control (inverse dynamics)

B = MO+ CO+ N+ MO) (—K,é — Kye).

\ .

N

Tff Tfb

M)+ C(6,0)0 + N(0,0) =1

=> @-0p=¢=—-Ke—Kpe



Control of multi-joint arm

B ... computed torque control (inverse
dynamics)

® but: computational effort can be
considerable... simplification.. only
compensate for gravity...

Wr=K0,+K.0,+K;|0,1)dt + NO)

M(0)0+C(6,0)0 + N(0,0) =T




Problem: contact forces

M as soon as the robot arm makes contact, a
host of problems arise from the contact
forces and their effect on the arm and
controller...

B need compliance... resisting to a well-
defined degree

B => impedance control... research frontier



Impedance

B to control movement well.. need a very stiff
arm and “stiff” controller (high gain K_x)

M to control force/limit force (e.g. for
interaction with surfaces or humans) you
need a relatively soft arm and soft controller

M design system to give hand, x, a desired
impedance: m, b, k in

Bmi+bx+kx=f

B where f is force applied..

AN
% 7
3

=Y




Operational space formulation

M Euler-Langrage in end-effector space
Cl . :
AX)xX+pu(x, x)+p(x)=F

B with F forces acting on the end-effector
B equivalent dynamics in joint space

" A(q)i+b(g, d)+8(g)=T

m with joint torques I'=JT(g)F

[Khatib, 1987]



Impedance control

M Hogan 1985...
m =J'(0)(AO)x +i7j(0, %) — (MX + Bx + Kx))



Link to movement planning

B where does “desired trajectory’” come from!

B typically from end-effector level movement
planning

B then add an inverse kinematic...

B which can be problematic

M alternative: planning and control in end-
effector space



Operational space formulation

M in end-effector space add constraints as
contributions to the “virtual forces”

C]
—grad[U; ()],

| Q)
Fg= —grad[Up(x)].

Xd
%
0

- AX)X+pu(x, X)+p(x)=F

[Khatib, 1986,1987]



Optimal control

M given a plant x = f(x, u)
B find a control signal u()

M that moves the state from an final position
x0) to a terminal position x.(#;) within the
time 7

M a (difficult) planning problem!

B minimize a cost function to find such a signal



How does the human (or other
animal) movement system
generate movement!?

B mechanics:... biomechanics
M actuator: muscle
M control?

® optimal control?



