Timing and coordination

Gregor Schöner

Timed movement

movements that is "timed":

end-effector arrives "on time"

movement coordinated across different effectors

movement coordinated with moving objects (e.g., catching)

timing implies some form of anticipation...

Timing from a task/macro level

template...oscillator at macro-level..

anchor... kinematics at joint/actuator level

Timing in human movement

timing

- absolute vs relative timing
- coordination
- coupled oscillators

Relative vs. absolute timing

Theoretical account for absolute timing

- (neural) oscillator autonomously generates timing signal, from which timing events emerge
- => limit cycle oscillators = clocks

Limit cycle oscillator: Hopf

Neural oscillator

relaxation oscillator

$$\tau \dot{u} = -u + h_u + w_{uu} f(u) - w_{uv} f(v)$$

$$\tau \dot{v} = -v + h_v + w_{vu} f(u),$$

Relative timing

Coordination is the maintenance of stable timing relationships between components of voluntary movement.

- => recovery relative timing after perturbations
- Example: coordination of limbs, of articulators in speech production..
- Example: action-perception patterns

Coordination from coupling

coordination=stable relative timing emerges from coupling of neural oscillators

$$\begin{aligned} \tau \dot{u}_1 &= -u_1 + h_u + w_{uu} f(u_1) - w_{uv} f(v_1) \\ \tau \dot{v}_1 &= -v_1 + h_v + w_{vu} f(u_1) + c f(u_2) \\ \tau \dot{u}_2 &= -u_2 + h_u + w_{uu} f(u_2) - w_{uv} f(v_2) \\ \tau \dot{v}_2 &= -v_2 + h_v + w_{vu} f(u_2) + c f(u_1) \end{aligned}$$

[Schöner: Timing, Clocks, and Dynamical Systems. Brain and Cognition 48:31-51 (2002)]

Learn from these ideas for robotics?

timed reaching that stabilizes timing in response to perturbations

Timed movement to intercept ball

timing from an oscillator

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = -5 |u_{\text{init}}| \begin{pmatrix} x - x_{\text{init}} \\ y \end{pmatrix} + |u_{\text{hopf}}| \mathbf{f}_{\text{hopf}} - 5 |u_{\text{final}}| \begin{pmatrix} x - x_{\text{final}} \\ y \end{pmatrix} + gwn$$

$$\mathbf{f}_{\text{hopf}} = \begin{pmatrix} 2.5 - \omega \\ \omega & 2.5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - 2.5 (x^2 + y^2) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$x(t) = \sin(\omega t)$$

$$\begin{bmatrix} \text{Schöner, Santos, 2001} \end{bmatrix}$$

Х

the oscillator is turned on and off for a single cycle

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = -5 |u_{\text{init}}| \begin{pmatrix} x - x_{\text{init}} \\ y \end{pmatrix} + |u_{\text{hopf}}| \mathbf{f}_{\text{hopf}} - 5 |u_{\text{final}}| \begin{pmatrix} x - x_{\text{final}} \\ y \end{pmatrix} + \text{gwn}$$

$$\alpha \dot{u}_{\text{init}} = \mu_{\text{init}} u_{\text{init}} - |\mu_{\text{init}}| u_{\text{init}}^3 - 2.1 (u_{\text{final}}^2 + u_{\text{hopf}}^2) u_{\text{init}} + \text{gwn}$$
$$\alpha \dot{u}_{\text{hopf}} = \mu_{\text{hopf}} u_{\text{hopf}} - |\mu_{\text{hopf}}| u_{\text{hopf}}^3 - 2.1 (u_{\text{init}}^2 + u_{\text{final}}^2) u_{\text{hopf}} + \text{gwn}$$
$$\alpha \dot{u}_{\text{final}} = \mu_{\text{final}} u_{\text{final}} - |\mu_{\text{final}}| u_{\text{final}}^3 - 2.1 (u_{\text{init}}^2 + u_{\text{hopf}}^2) u_{\text{final}} + \text{gwn}$$

[Schöner, Santos, 2001]

[[]Schöner, Santos, 2001]

Timed movement to intercept ball turn oscillator on in response to detected ball at right time to contact

- plan to reach target at fixed time
- recover time as obstacle forces longer path

[Tuma, lossifidis, Schöner, ICRA 2009]

behavioral dynamics

Nheading direction $\tau \dot{\phi} = \sum f_{Obs,i}(\phi, \psi_{Obs,i}) + f_{Tar}(\phi, \psi_{Tar})$ i=1 $\tau\left(\begin{array}{c}a\\b\end{array}\right) = -c_1 \cdot u_{Init}^2\left(\begin{array}{c}a\\b\end{array}\right)$ velocity a $+ \quad u_{Hopf}^2 \cdot f_{Hopf}(a - R_h, b)$ $- c_2 \cdot u_{Final}^2 \begin{pmatrix} a^2 - a \cdot \alpha_{tc} \\ b \end{pmatrix}$ $f_{Hopf}(a - R_h, b) = \begin{pmatrix} \lambda & -\omega \\ \omega & \lambda \end{pmatrix} \begin{pmatrix} a - R_h \\ b \end{pmatrix}$ (7) $-\gamma \left[(a - R_h)^2 + b^2 \right] \begin{pmatrix} a - R_h \\ b \end{pmatrix}$ peak velocity

required to

arrive at time T

$$R_h = \frac{\omega D(t=0)}{2\pi} \qquad T = \frac{2\pi}{\omega}$$

behavioral organization

velocity a

$$\tau \dot{u}_i = \mu_i u_i - |\mu_i| \, u_i^3 - \nu \sum_{a \neq i} u_a^2 u_i$$

perturbed movement

initial distance that system would have had based on remaining distance at time of perturbation

$$D(t=0) = D(t) + \int_0^t v(\tau) d\tau$$
$$= \frac{D(t)}{\left(1 - \frac{t}{T} + \frac{\sin\left(2\pi \cdot t/T\right)}{2\pi}\right)}$$

peak velocity needed to reach target in remaining time

$$R_h(t) = \frac{\omega}{2\pi} \frac{D(t)}{\left(1 - \frac{t}{T} + \frac{\sin\left(2\pi \cdot t/T\right)}{2\pi}\right)}$$

[Tuma, Iossifidis, Schöner, ICRA 2009]

- plan to reach target at fixed time
- recover time as obstacle forces longer path

[Tuma, lossifidis, Schöner, ICRA 2009]

plan to reach target at fixed time

recover time as obstacle forces longer path

Setup	Total Distance driven (cm)	MT (s)	Increase in Distance (Factor)	Increase in Time (Factor)
Undisturbed Medium Disturb. High Disturb.	72.4 96.0 109.7	12.3 12.7 12.9	1.33 1.52	1.03 1.05

Catching

[Kim, Shukla, Billard, 2014]

Fig. 2. Block diagram for robotic catching.

[Kim, Shukla, Billard, 2014]

[Shukla, Billard, 2012]

video

https://youtu.be/M413ILWvrbl?t=3

Timing and behavioral organization

sequences of timed actions to intercept ball

[Oubatti, Richter, Schöner, 2013]

Timing and behavioral organization

timing from oscillator, whose cycle time is adjusted to perceived time to contact

 $\tau \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = -c_{\text{post}} a \begin{pmatrix} x - x_{\text{post}} \\ y \end{pmatrix} + c_{\text{hopf}} H(x, y) + \eta,$

$$H(x,y) = \begin{pmatrix} \lambda & -\omega \\ \omega & \lambda \end{pmatrix} \begin{pmatrix} x - r - x_{\text{init}} \\ y \end{pmatrix}$$
$$- \left((x - r - x_{\text{init}})^2 + y^2 \right) \begin{pmatrix} x - r - x_{\text{init}} \\ y \end{pmatrix}$$

$$\frac{T}{2d_{\text{init}}} = \frac{t_{\text{tim}}}{d(t)}.$$

[Oubatti, Richter, Schöner, 2013]

Timing and behavioral organization

coupled neural dynamics to organize the sequence

[Oubatti, Richter, Schöner, 2013]

return from hit

-5

800

600

400

0

-40

-80

100

90

Timed movement with online updating [Faroud Oubatti]

Timing and reorganization of movement

hitting action reinitiated after ball reflection

Conclusion

timing in autonomous robotics is best framed as a problem of stable oscillators and their coupling

Conclusion

timing is linked to many problems

arriving "just in time", estimating time to contact

on line updating: planning and timing tightly connected

timed movement sequences: behavioral organization

coordinating timing across movements, coarticulation

timing and control

