Timing and
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Timed movement

B movements that is “timed’’;
B end-effector arrives “on time”
B movement coordinated across different effectors

B movement coordinated with moving objects (e.g.,
catching)

B timing implies some form of anticipation...



Timing from a task/macro level

B template...oscillator at macro-level..

M anchor... kinematics at joint/actuator level
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Timing in human movement

B timing
M absolute vs relative timing
B coordination

B coupled oscillators



Relative vs. absolute timing

activation

threshold A

relative phase=DT/T



Theoretical account for absolute timing

B (neural) oscillator autonomously
generates timing signal, from which
timing events emerge

B => |imit cycle oscillators = clocks



Limit cycle oscillator: Hopf
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Neural oscillator
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Relative timing

B Coordination is the maintenance of
stable timing relationships between
components of voluntary movement.

B => recovery relative timing after
perturbations

B Example: coordination of limbs, of
articulators in speech production..

B Example: action-perception patterns



Coordination from coupling

A
activation
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Learn from these ideas for
robotics’

Btimed reaching that stabilizes timing in
response to perturbations



Timed movement to intercept ball

Btiming from an oscillator
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B the oscillator is turned on and off for a
single cycle
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timing variables
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Timed movement to intercept ball

EMturn oscillator on in response to detected
ball at right time to contact

timing variables

L N

neurons

ul. ' lu'hopf k lulg k L |
0 |

quasi- booleans

T 1

time to contact

O -

1
e —

4 ball trajectory ]
0
4 L . . | A | | _
1 2 3 4 5 time
time to contact ball contact

reaches threshold and reflection



Compensating for lost time

Bplan to reach target at fixed time

Brecover time as obstacle forces longer
path

¢ 2 B -\ — 3

' i ' ‘ ' - 3 ' -3
Y W D . Y b) _ -
' |

¢ N ‘ | ; ‘
1 o i ' ‘«::- ﬂ
e d) - C) - { d)
| ﬂ ' 1 ' u“i’/“
: [ o
i f) = e) —

[ Tuma, lossifidis, Schoner, ICRA 2009]




behavioral dynamics
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velocity a

behavioral organization

“neural” dynamics
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perturbed movement

initial distance

that system would t
have had based on ~ D(t =0) = D(?) +/o v(T)dT

remaining distance at D(t)
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Compensating for lost time

Phase plot Velocity profile
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[ Tuma, lossifidis, Schoner, ICRA 2009]



Compensating for lost time

Bplan to reach target at fixed time

Brecover time as obstacle forces longer
path
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Compensating for lost time

Bplan to reach target at fixed time

BMrecover time as obstacle forces longer

path
Total Increase in | Increase in
Setup Distance MT (s) Distance Time
driven (cm) (Factor) (Factor)
Undisturbed 72.4 12.3
Medium Disturb. 96.0 12.7 1.33 1.03
High Disturb. 109.7 12.9 1.52 1.05




Catching

(1) Object trajectory
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.. ﬂ..‘
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[Kim, Shukla, Billard, 20 14]



Broadcasting object postures
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B coupled dynamical systems approach
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video

B https://youtu.be/M4 | 3[LWvrbl?t=3



Timing and behavioral organization

H sequences of timed actions to intercept ball

4, Camera system

robot manipulator CoRA
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[Oubatti, Richter, Schoner, 201 3]



Timing and behavioral organization

® timing from oscillator, whose cycle time is adjusted
to perceived time to contact
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Timing and behavioral organization

® coupled neural dynamics to organize the sequence
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Timed movement with online
updating [Faroud Oubatti]
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Timing and reorganization of
movement

hitting action f |
after ball reflection




Conclusion

® timing in autonomous robotics is best
framed as a problem of stable oscillators and
their coupling



Conclusion

B timing is linked to many
problems

B arriving “just in time”, estimating time to
contact

B on line updating: planning and timing i - o
AN

absolute
timing

tightly connected o

to timing

B timed movement sequences: behavioral
organization

coordination:
relative timing

external

. . .. mal

. coordlnatlng tlmlng aCross movements, U g)‘j]‘ingmfoa
coarticulation to timing

biomechanical
contribution to
timing

B timing and control



