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Timed movement

movements that is “timed”: 


end-effector arrives “on time”


movement coordinated across different effectors 


movement coordinated with moving objects (e.g., 
catching)


timing implies some form of anticipation… 



Timing from a task/macro level

template…oscillator at macro-level.. 


anchor… kinematics at joint/actuator level 3329Hypotheses of legged locomotion on land

function, albeit now in more natural regimes, is still the rule.
Templates should be anchored so as to reveal underlying
mechanisms. These mechanisms represent the channels along
which neuromechanical integration can be attempted. We now
assess the difficulties in this undertaking, introduce the notion
of an anchor as a specific grounding hypothesis and explore its
utility in reducing these difficulties.

Mechanisms require control
In proceeding from the animal as a body or point mass to

one with jointed legs, we confront immediately Bernstein’s
historical (1935) ‘degrees of freedom problem’. The musculo-
skeletal system has many degrees of freedom, even if it is
simplified to a linkage of rigid bodies. Locomotion entails
coordinating these many degrees of freedom, meaning that the
system restricts itself to a low-dimensional subset of its high-

dimensional space of possible motions, presumably in different
ways when coordinating different behaviors. In other words,
there is a ‘collapse of dimension’ that occurs in regulating
locomotion. It is the job of the integrative biologist to
hypothesize empirically refutable control strategies that can
achieve this simplification. We believe the most direct path
towards such hypotheses begins with a view of empirically
unrefuted templates (of the kind described above) as literal
control targets, and then seeks specific control principles that
will suffice to embed them in the surrounding mechanism.
Identifying and analyzing the control activity that achieves this
coordination cannot fail to shed some light upon the manner in
which the nervous system and the musculo-skeletal system
interact. At the very least, understanding the coordination of
the elaborated mechanical system in expressing template
behavior should produce prescriptions of the form ‘the nervous
system must at least be doing …’ or, contrarily, proscriptions
of the form ‘the nervous system could not possibly be doing
…’

Anchors – a strategy for embedding templates in elaborated
models

The coordinated recruitment of high-degree-of-freedom
physiological mechanisms into the low-degree-of-freedom
mechanical template requires significant control activity.
Raibert’s (1986) work first showed that one might organize
quadrupedal locomotion with reference to a single virtual leg
conceived as a SLIP. Later, he introduced an ankle joint into
the model to produce a one-legged hopping robot, a monoroo.
Recently, Saranli et al. (1998) have proposed algorithms that
coordinate the running of an ankle-, knee- and hip-actuated
monopod by reference to a virtual SLIP. The resulting
controller takes high-level control commands, such as desired
speed, hopping height and duty factor, for a SLIP and produces
joint torques that force the center of mass of the ankle, knee
and hip monopod to behave in the prescribed (lower degree of
freedom) manner.

In all these cases, the actual morphological details
comprising degrees of freedom ‘redundant’ for the task are
‘trimmed away’ by a controller under whose influence there
emerges a virtual mechanism (Fig. 2). This mechanism is
modeled by the dynamics of a template. The template has just
enough complexity to encode the task of maneuvering the
payload – the body center of mass for running – and no more.
The remaining degrees of freedom are used simply to anchor
the maneuver in a particular complement of mechanical
hardware. We will say that a more complex dynamic system
is an ‘anchor’ for a simpler dynamic system if (1) motions in
its high-dimensional space ‘collapse’ down to a copy of the
lower-dimensional space of motions exhibited by the simpler
system and (2) the behavior of the complex system mimics or
duplicates that of the simpler system when operating in the
relevant (reduced-dimensional copy of) motion space. Thus,
although Raibert’s (1986) quadruped has an entirely different
morphology from the ankle–knee–hip monopod, both can
serve as anchors for the SLIP template. In other words, these
anchors can be endowed with controllers that, within any
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Fig. 2. Relationship between the template and anchor. A template is
a pattern that describes and predicts the behavior of the body in
pursuit of a goal. A template, such as the simple pogo stick or spring-
loaded inverted pendulum (SLIP) shown here, serves as a guide or
target for the control of locomotion. Since we also seek models of
how legs, joints, multiple muscles and neural networks work together
to produce locomotion, we can also add degrees of freedom to better
represent the animal of interest such as a kangaroo. The resulting
anchor is a more realistic model fixed firmly or grounded in the
morphology and physiology of an animal. An anchor is not only a
more elaborate dynamic system, but must have embedded within it
the behavior of its template. A template is created by ‘trimming
away’ all the incidental complexity of joints, muscles and neurons.
Using this process, we can hypothesize new neuromechanical control
policies that span levels of organization. The relationship between
template and anchor offers a specific solution to Bernstein’s (1935)
‘degrees of freedom problem’ by advancing a specific hypothesis
concerning the manner in which the template’s behavior emerges
from the morphological and physiological details. The anchor’s
‘lower-level’ within-stride control policy actuates the ankle, knee
and hip joints to ‘trim’ the motion of its mass center down to that of
a SLIP. The ‘higher-level’ stride-to-stride control policy regulates
the task-level behavior of the template, such as fore–aft speed,
hopping height or duty factor, essentially ‘driving’ the virtual SLIP.
Such specific models of hierarchical control generate empirically
refutable hypotheses.

[Full Koditschek 99]
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Theoretical account for absolute timing

(neural) oscillator autonomously 
generates timing signal, from which 
timing events emerge


=> limit cycle oscillators = clocks
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ẋ
ẏ
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ẋ
ẏ
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ẏ

1

CCCCA =

0

BBBB@

↵ �!
! ↵

1

CCCCA

0

BBBB@

x
y

1

CCCCA � (x2 + y2)

0

BBBB@

x
y

1

CCCCA

x(t) =
p
↵ sin(!t)

cycle time T = 2⇡/!,



Neural oscillator

v

u

time

u (solid), v (dashed)

v

u

time

u (solid), v (dashed)

(a) (b)

36 GREGOR SCHÖNER

FIG. 5. (Top) A periodic evolution of an activation variable cannot be obtained as a solution of a
single-variable dynamical system, because most levels of activation (here the zero level) are crossed in
two different directions, so that the future is not uniquely determined by the present state of the activation
variable. (Bottom) A second variable, here called ‘‘inhibition,’’ is needed to disambiguate these two
events.

To see this, imagine a periodic time course of activation (Fig. 5). All levels of activa-
tion (except at the turning points) are then passed through in two directions, once at
increasing and once at decreasing activation. Thus, such activation values do not
uniquely specify the future. A second variable, here called ‘‘inhibition,’’ is needed,
to disambiguate the future: each activation level is passed through once at a smaller
and once at a larger level of this second variable. Thus, clocks cannot be built as
dynamical systems in terms of activation alone!
Stable periodic solutions, to which the system is attracted from nearby states are

called limit cycle attractors. An example of a dynamical system supporting limit
cycle attractors of an activation–inhibition pair of variables is

τu̇ ! "u # hu # wuu f (u) " wuv f (v) (6)

τv̇ ! "v # hv # wvu f (u), (7)

equations first analyzed by Amari (1977). The first two terms of each equation de-
scribe two linear uncoupled dynamical systems, each with a stable fixed point at the
resting levels of activation, hu, and of inhibition, hv. A sigmoid function,

f (u) !
1

1 # exp["βu]
, (8)

makes the system nonlinear in terms of ‘‘self-excitation’’ (wuu) and of coupling be-
tween activation and inhibition variables (wuv, wvu). For appropriate choices of these
parameters, a limit cycle attractor emerges (Fig. 6). The stability of the periodic solu-
tion manifests itself by attraction of neighboring states toward the limit cycle. The
activation-based stochastic timer model emerges as the limit case, in which the vector
field is structured such that a period of graded activation growth is followed by a
more rapid phase of activation decay (Fig. 6b). In fact, abstractly speaking, any clock
is a limit cycle attractor of a dynamical system (see, e.g., Andronov, Vitt, & Khaikin,

[Amari 77]
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Coordination is the maintenance of 
stable timing relationships between 
components of voluntary movement. 


=> recovery relative timing after 
perturbations


Example: coordination of limbs, of 
articulators in speech production.. 


Example: action-perception patterns 

Relative timing



coordination=stable relative 
timing emerges from coupling 
of neural oscillators time

activation

Coordination from coupling

[Schöner: Timing, Clocks, and Dynamical Systems. Brain and Cognition 48:31-51 (2002)]
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(Engbert et al., 1997; Pressing, 1999; Semjen et al., 2000) deal explicitly with cou-
pling, albeit within the framework of delay or functional dynamical systems.

3.2. Dynamic Timing Models

Coupling is the central concept for understanding relative timing within dynamic
timing models. Mathematically, two dynamic timers, (u1, v1) and (u2, v2), are mutu-
ally coupled if the dynamic variables of one timer contribute to the dynamic equations
of the second and vice versa. For the Amari oscillator model presented earlier [Eqs.
(6) and (7)], for instance, a simple form of mutual coupling is generated by the terms
carrying the coefficient, c, in these equations:

τu̇1 ! "u1 # hu # wuu f (u1) " wuv f (v1) (11)

τv̇1 ! "v1 # hv # wvu f (u1) # cf (u2) (12)

τu̇2 ! "u2 # hu # wuu f (u2) " wuv f (v2) (13)

τv̇2 ! "v2 # hv # wvu f (u2) # cf (u1) (14)

These are only two out of a great variety of possible coupling terms. They generically
generate phase locking, so that the two oscillators adopt identical frequencies and
align matching parts of their activation trajectory (Fig. 11). This relative time order
is stable; that is, when the two oscillators start out with differently aligned trajectories
or are perturbed away from the stable alignment, then the dynamics drives the timers
back to the stable timing relationship.
A characterization of relative timing independently of the underlying activation

states is possible through the concept of relative phase. Its empirical definition is
based on reference events (here the moments in time when activation pierces a thresh-
old leading to a motor event such as a tap). The latency between matching events
of two activation functions divided by the current cycle time of either of the activation
functions is the relative phase, φ ! ∆T/T (Fig. 9). (Relative phase may be normalized

FIG. 11. Two coupled dynamic timers [Eqs. (11), (12), (13), (14)] generically adopt a stable pattern
of relative timing called phase-locking (here near in-phase). Activation variables are in solid black,
inhibition variables in dashed gray. (Bottom) The two activation variables are plotted against each other.
Except for noise-induced fluctuations, the two variables covary, indicating phase-locking.



Learn from these ideas for 
robotics? 

timed reaching that stabilizes timing in 
response to perturbations 



Timed movement to intercept ball

timing from an oscillator
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Fig. 2. A two degree-of-freedom arm intercepts an approaching ball. Corresponding ball and arm positions
are illustrated by using the same grey-scale. The first position (light grey) is close to the critical time-to-
contact, where arm motion starts. The last position (dark grey) is close to actual contact. The black arrows
indicate the ball’s movement.

In this simulation we have extracted from a simulated ball trajectory two measures: the time-to-contact,
τt2c, based on constant approach velocity and the point of collision in the plane in which the robot arm
moves. The time-to-contact can be extracted from segmented visual information without having estimated
the full cartesisan trajectory of the ball (Lee, 1976). The point of impact can be computed along similar
lines if the ball size is assumed known and can be measured in the image.

To simulate sensor noise (which can be substantial if such optical measures are extracted from image
sequences), we added either white or colored noise to the estimated time-to-contact. Here we show simulations
that used colored noise, ζ generated from

ζ̇ = − 1
τcorr

ζ +
√

q gwn (8)

where gwn is gaussian white noise with zero mean and unit variance, so that q = 5 is the effective variance.
The correlation time, τcorr, was chosen as 0.2 sec. The simulated time-to-contact was thus

τt2c = true time− to − contact + ζ(t) (9)

These two measures, time-to-contact and point of collision, fully control the neural dynamics through the
quasi-boolean parameters. A sequence of neural switches is generated by translating sensory conditions and
logical constraints into values for these parameters (Steinhage, Schöner, 1998). For instance, the parameter,
binit, controlling the competitive advantage of the initial postural state must be “on” (= 1) when the timing
variable x is close to the initial state −1, and either of the following is true: (1) ball not approaching or
not visible (τt2c ≤ 0); (2) ball contact not yet within a criterion time-to-contact (τt2c > τcrit); (3) ball is
approaching within criterion time-to-contact but is not reachable (0 < τt2c < τcrit; breachable = 0). These
logical conditions can be expressed through this mathematical function:

binit = σ(−xcrit − x) [σ(τt2c − τcrit) + σ(τt2c) σ(τcrit − τt2c) σ(1 − breachable) + σ(−τt2c)] (10)

ball together with terms that stabilized stable limit cycles. A limitation of such approaches is that they
essentially generate a single motor act in rhythmic fashion. The flexible activation of different motor acts in
response to user demands or sensed environmental conditions is more difficult to achieve from the control
level.

These control level solutions were inspired, in part, by analogies with nervous systems, in particular, by
the way the rhythmic movement patterns in legged locomotion are generated (e.g., Beer, Chiel, Sterling, 1990;
Clark, Anderson, Skinner, 2000). The timing of rhythmic activities in nervous systems is typically based on
the autonomous generation of rhythms in specialized neural networks (“central pattern generators”), which
can be mathematically described as nonlinear dynamical systems with stable limit cycle (periodic) solutions.
Coordination among limbs can be modelled through mutual coupling of such nonlinear oscillators (Schöner,
Kelso, 1986). The on-line linkage to sensory information can be understood through the coupling of these
oscillators to time-varying sensory information (Schöner, 1994). Limited attempts to extend these theoretical
ideas to temporally discrete movements (e.g., reaching) have been made (Schöner, 1990).

The dynamic approach to autonomous robotics (Schöner, Dose, 1992; Steinhage, Schöner, 1998; Large,
Christensen, Bajcsy, 1999; Bajcsy, Large, 1999; Bicho, Mallet, Schöner, 2000) extends these ideas to the
level of planning. Plans are generated from stable states of nonlinear dynamical systems, into which sensory
information is fed. Intelligent choice of planning variables makes it possible to obtain complex trajectories
and action sequences from stationary stable states, which shift and may even go through instabilities as
sensory information changes. For the control of vehicle motion, for instance, a dynamical system of heading
direction may generate paths that circumnavigate obstacles and find their way to a target, while at all times
the planning variable “heading direction” sits in a fixed point attractor, which may shift as the vehicle moves
and sensory information changes. The possibility of integrating multiple constraints and generating decisions
through instabilities and multistability makes such systems much more flexible than nonlinear controllers.

The generation of trajectories with stable timing had not yet been attempted within this approach (but
see Schaal, Kotosaka, Sternad, 2000, for a related attempt). In this paper we propose a dynamical systems
architecture that generates timed trajectories of manipulators. The model consists of a timing layer, which can
generate both stable oscillations and stationary states. A “neural” dynamics controls the switching between
these two regimes. Incoupling of sensory information enables sensor driven initiation and termination of
movement. Coupling among several such systems enables temporal coordination of multiple effectors.

2 The dynamical systems trajectory generator

The timing level consists of a dynamical system for a pair of timing variables, (x, y). Generating oscillatory
solutions requires at least two dynamical degrees of freedom. Thus, although only the variable, x, will be used
to control motion of a relevant robotic task variable, a second auxiliary variable, y, is needed to represent
oscillatory states. The time courses of these two variables are generated from a dynamical system
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is the normal form of the Hopf bifurcation (Perko, 1991), that is, the simplest polynomial equation containing
a bifurcation to a limit cycle. We use it because it can be completely analytically solved, providing complete
control over its stable states. The “hopf” term in isolation (uinit = ufinal = 0; |uhopf | = 1) provides a stable
periodic solution (limit cycle attractor)

x(t) = sin(ωt) (3)

with cycle time T = 2π/ω and amplitude 1. Relaxation to that stable solution occurs at a time scale of
1/(2. ∗ 2.5) = 0.2 time units.

Gaussian white noise gwn is added to the timing dynamics to guarantees escape from unstable states.
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[Schöner, Santos, 2001]



the oscillator is turned on and off for a 
single cycle
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Coordination among limbs can be modelled through mutual coupling of such nonlinear oscillators (Schöner,
Kelso, 1986). The on-line linkage to sensory information can be understood through the coupling of these
oscillators to time-varying sensory information (Schöner, 1994). Limited attempts to extend these theoretical
ideas to temporally discrete movements (e.g., reaching) have been made (Schöner, 1990).

The dynamic approach to autonomous robotics (Schöner, Dose, 1992; Steinhage, Schöner, 1998; Large,
Christensen, Bajcsy, 1999; Bajcsy, Large, 1999; Bicho, Mallet, Schöner, 2000) extends these ideas to the
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information is fed. Intelligent choice of planning variables makes it possible to obtain complex trajectories
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sensory information changes. For the control of vehicle motion, for instance, a dynamical system of heading
direction may generate paths that circumnavigate obstacles and find their way to a target, while at all times
the planning variable “heading direction” sits in a fixed point attractor, which may shift as the vehicle moves
and sensory information changes. The possibility of integrating multiple constraints and generating decisions
through instabilities and multistability makes such systems much more flexible than nonlinear controllers.

The generation of trajectories with stable timing had not yet been attempted within this approach (but
see Schaal, Kotosaka, Sternad, 2000, for a related attempt). In this paper we propose a dynamical systems
architecture that generates timed trajectories of manipulators. The model consists of a timing layer, which can
generate both stable oscillations and stationary states. A “neural” dynamics controls the switching between
these two regimes. Incoupling of sensory information enables sensor driven initiation and termination of
movement. Coupling among several such systems enables temporal coordination of multiple effectors.

2 The dynamical systems trajectory generator

The timing level consists of a dynamical system for a pair of timing variables, (x, y). Generating oscillatory
solutions requires at least two dynamical degrees of freedom. Thus, although only the variable, x, will be used
to control motion of a relevant robotic task variable, a second auxiliary variable, y, is needed to represent
oscillatory states. The time courses of these two variables are generated from a dynamical system
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ẏ

)
= −5 |uinit|

(
x − xinit

y

)
+ |uhopf | fhopf − 5 |ufinal|

(
x − xfinal

y

)
+ gwn (1)

that can operate in three dynamic regimes controlled by the three “neurons” ui (i = init, hopf, final). The
“init” and “final” contributions generate stable stationary solutions at x = −1 for “init” and +1 for “final”
with y = 0 for both. These states are characterized by a time scale of τ = 1/5 = 0.2. The “hopf” term

fhopf =
(

2.5 −ω
ω 2.5

) (
x
y

)
− 2.5 (x2 + y2)

(
x
y

)
(2)

is the normal form of the Hopf bifurcation (Perko, 1991), that is, the simplest polynomial equation containing
a bifurcation to a limit cycle. We use it because it can be completely analytically solved, providing complete
control over its stable states. The “hopf” term in isolation (uinit = ufinal = 0; |uhopf | = 1) provides a stable
periodic solution (limit cycle attractor)

x(t) = sin(ωt) (3)

with cycle time T = 2π/ω and amplitude 1. Relaxation to that stable solution occurs at a time scale of
1/(2. ∗ 2.5) = 0.2 time units.

Gaussian white noise gwn is added to the timing dynamics to guarantees escape from unstable states.

The “neuronal” dynamics of ui (i = init, final, hopf) switches the timing dynamics from the fixed point
regimes into the oscillatory regime and back. Thus, a single discrete movement act is generated by starting
out with neuron |uinit| = 1 activated, the other neurons deactivated (|uhopf | = |ufinal| = 0), so that the system
is in a postural state. The oscillatory solution is then stabilized (|uinit| = 0; |uhopf | = 1). This oscillatory
solution is deactivated again when the effector reaches its target state, after approximately a half-cycle of
the oscillation, turning on the final postural state instead (|uhopf | = 0; |ufinal| = 1). These various switches
are generated from the following competitive dynamics:

α u̇init = µinit uinit − |µinit| u3
init − 2.1 (u2

final + u2
hopf) uinit + gwn (4)

α u̇hopf = µhopf uhopf − |µhopf | u3
hopf − 2.1 (u2

init + u2
final) uhopf + gwn (5)

α u̇final = µfinal ufinal − |µfinal| u3
final − 2.1 (u2

init + u2
hopf) ufinal + gwn (6)

The first two terms of each equation represent the normal form of a degenerate pitchfork bifurcation: A
single attractor at u = 0 for negative µi becomes unstable for positive µi, and two new attractors at ui = 1
and ui = −1 form. We use the absolute value of ui as a weight factor in the timing dynamics, so that +1
and −1 are equivalent “on” states of a neuron, while u = 0 is the “off” state.

The last term in each equation is a competitive term, which destabilizes any attractors in which more
than one neuron is “on”. For positive µi, all attractors of this competitive dynamics have one neuron in an
“on” state, and the other two neurons in the “off” state (Schöner, Dose, 1992; Large, Christensen, Bajczy,
1999).

The neuron, ui, with the largest competitive advantage, µi > 0, is likely to win the competition, although
for sufficiently small differences between the different µi values multiple outcomes are possible (the system
is multistable). To control switching, the parameters, µi (competitive advantages) are therefore defined as
functions of user commands, sensory events, or internal states (Steinhage, Schöner, 1998). Here, we assure
that one neuron is always “on” by varying the µ-parameters between the values 1.5 and 3.5: µi = 1.5 + 2bi,
where bi are “quasi-boolean” factors taking on values between 0 and 1 (with a tendency to have values
either close to 0 or close to 1). These quasi-booleans express logical or sensory conditions controlling the
sequential activation of the different neurons (see Steinhage, Schöner, 1998, for a general framework for
sequence generation based on these ideas):

1. binit may be controlled by user input: the command “move” sets binit from the default value 1 to 0 to
destabilize the initial posture. binit may also be controlled by sensory input, such that, for instance, binit

changes from 1 to 0 when a particular sensory event is detected. Below we demonstrate how the time-to-
contact of an approaching object computed from sensory information can be used to initiate movement
in this manner.

2. bhopf is set from 0 to 1 under the same conditions. This term is multiplied, however, with a second factor
bhas not reached target(x) = σ(xcrit−x) that resets bhopf to zero when the effector has reached its final state.
Herein, σ(x) is a sigmoid function that ranges from 0 for negative argument to 1 for positive argument,
chosen here as

σ(x) = [tanh(10x) + 1]/2 (7)

although any other functional form will work as well. The factor, bhas not reached target(x) has values close
to one while the timing variable x is below xcrit = 0.7 and switches to values close to zero when x comes
within 0.3 of the target state x = 1. Multiplying two quasi-booleans means connecting the corresponding
logical conditions with an “and” operation. Thus, as soon as the timing variable has come within the
vicinity of the final state, it autonomously turns the oscillatory state off. In actual implementation, this
switch can be driven from the sensed actual position of an effector rather than from the timing dynamics.

3. bfinal is, conversely, set from 0 to 1 when the timing variable comes into the vicinity of the target:
bfinal = 1 − bhas not reached target.

The time scale of the neuronal dynamics is controlled by α = 45.45, which leads to a typical relaxation
time of τu = 0.02, ten times faster than the relaxation time of the timing variables. This difference in time
scale guarantee that the analysis of the attractor structure of the neural dynamics is unaffected by the
dependence of its parameters, µi on the timing variable, x, which is a dynamical variable as well. (Strictly
speaking, the neural and timing dynamics are thus mutually coupled. The difference in time scale makes it
possible to treat x as a parameter in the neural dynamics. Conversely, the neural weights can be assumed
to have relaxed to their corresponding fixed points when analyzing the timing dynamics.)

[Schöner, Santos, 2001]



Solutions. Periodic movement can be trivially generated from the timing and neural dynamics by selecting
uhopf “on” through the corresponding quasi-booleans. A timed, but temporally discrete movement act, is
autonomously generated by these two coupled levels of nonlinear dynamics through a sequence of neural
switches, such that an oscillatory state exists during an appropriate time interval of about a half-cycle. This
is illustrated in Figure 1. The timing variable, x, which is used to generate effector movement, is initially
in a postural state at −1, the corresponding neuron uinit being “on”. When the user initiates movement,
the quasi-booleans, binit and bhopf exchange values, which leads, after a short delay, to the activation of
the “hopf” neuron. This switch initiates movement, with x evolving along a harmonic trajectory, until it
approaches the final state at +1. At that point, the quasi-boolean bfinal goes to one, while bhopf changes to
zero. The neurons switch accordingly, activating the final postural state, so that x relaxes to its terminal
level x = 1. The movement time is approximately a half cycle time, here MT = 2.
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time

initiation of movement

|u|init |u|hopf |u|final

binit bhopf bfinal
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timing variables

neurons

quasi-booleans

Fig. 1. Simulation of a user initiated temporally discrete movement represented by the timing variable, x,
which is plotted together with the auxiliary variable, y, in the top panel. The time courses of the three neural
activation variables, uinit, uhopf , and ufinal, which control the timing dynamics, are shown in the middle panel.
The quasi-boolean parameters, binit, bhopf , and bfinal, plotted on bottom, determine the competitive advantage
of each neuron.

3 Simulation of a two degree-of-freedom arm intercepting a ball

As a first (toy) example of how the dynamical systems approach to timing can be put to use to solve robotic
problems, consider a two degree-of-freedom robot arm moving in a plane (Fig. 2). The task is to generate a
timed movement from an initial posture to intercept an approaching ball. Movement with a fixed movement
time (reflecting manipulator constraints) must be initiated in time to reach the ball before it arrives within
the plane in which the arm moves. Factors such as reachability and approach path of the ball are continuously
monitored, leading to a return to the resting posting when interception becomes impossible (e.g., because the
ball hits outside the workspace of the arm, the ball is no longer visible, or ball contact is no longer expected
within a criterion time-to-contact). After the ball was intercepted, the arm moves back to its resting position,
ready to initiate a new movement whenever appropriate sensory information arives.

[Schöner, Santos, 2001]
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Fig. 3. Trajectories of variables and parameters in autonomous ball interception and return to resting position.
The top three panels represent timing variables, neural variables, and quasi-booleans as in Fig 1. The bottom
panel shows the time-to-contact, which crosses a threshold at about 0.5 time units. When contact is made,
the ball is assumed to be reflected, leading to negative time-to-contact.
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ẋ2

ẏ2
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= . . . |uhopf,2|

[
fhopf,2(x2, y2) + |uhopf,1|c

(
x1 − x2

y1 − y2

)]
. . . (14)

where the index i = 1, 2 refers to arm 1 and arm 2. The coupling term is multiplied with the neuronal
activation of the other system’s hopf state so that coupling is effective only when both components are in
the movement state.

In discrete motor acts, a coupling of this form tends to synchronize movement in the two components.
Thus, even if the movement onsets are not perfectly synchronized, this coupling coordinates the two com-
ponents so that movements terminate approximately simultaneously. This is illustrated in the top panel of
Figure 5. Moreover, coupling two timing dynamics removes the need to compute exactly identical movement
times for two component movements that must be temporally coordinated. Even if there is a discrepancy in
the movement time programmed by the parameter, ω, of the timing dynamics, coupling generates identical
effective movement times. This discrete analogue of frequency locking is illustrated in the bottom panel of
Figure 5.

5 Conclusion/Outlook

We have shown how timed movements and sequences of movements can be autonomously generated from
an attractor based two-layer dynamics. The timing level has either stable fixed points or stable limit cycles.
It is switched between these regimes by the neural dynamics, which is build entirely around fixed points,
at which only one neuron is active. Parameters of the neural dynamics (“competitive advantage”) express
sensory and logical conditions for the activation of any particular neuron and the corresponding movement
state.
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Fig. 4. Sequence depicting robot movement to a target area without the
occurence of disturbances. The robot’s velocity is set according to eq. (6),
and the distance profile follows eq. (9).

of integrating eq. (7) with a time-variable oscillator radius
calculated from the adaptation rule in eq. (12).

This “adaptive system” starts with an initial radius of
Rh = 250. During the oscillator cycle, the fictional target is
assumed to move away from the robot, up to a distance that
would have required an initial oscillator radius of Rh = 400.
In Fig. 2, this enlargement of the distance to be covered is
gradual and starts at about one third of the cycle. In Fig. 3,
the enlargement is instantaneous at about two thirds of the
cycle, thus requiring a more sudden increase of velocity to
cover the remaining distance in the remaining time. In both
cases, the adaptive system produces a velocity curve well-
suited for covering the larger distance in the same time.

For Fig. 3, note that the integrated eq. (7) is only one part
of the whole dynamics in eq. (6), in which an additional
attractor to the origin “re-sets” (a, b) and stops the robot’s
motion. In practice, two parameters of this final attractor
(onset criterion bFinal and attractor strength c2) have to
mutually balance between two opposing properties: first,
smoothness of trajectories even in cases of high velocities
(e.g., as in Fig. 3), and second, the degree to which the
overall trajectory in phase space given by eq. (6) represents
the system that is given by eqs. (7) and (12) only. Apart from
this trade-off and additional physical effects like friction and
motor discretization, the courses of the simulated dynamics
remain valid for the following hardware implementations,
both for gradual and sudden changes in the task setup.

B. Khepera mobile unit

We use a two-wheeled K-Team Khepera robot to demon-
strate the approach. But, as laid out in section IV, the
dynamics proposed are to a large degree independent from
the physical implementation, and the only modifications
necessary are in the directional dynamics.

The implementation on a Khepera robot demonstrates that
the approach, in spite of its mathematical sophistication, is
suited for low-level robotic units with uncalibrated sensors
and a fairly simple control system, as is typical of the dy-
namical systems approach. Here, obstacle sensing is provided

a) b)

c) d)

e) f)

Fig. 5. Sequence depicting robot movement in a parcours unknown at
starting time. The oscillator radius is adapted according to eq. (12), and the
movement time approaches that of the undisturbed case shown in Fig. 4.

by the Khepera’s built-in infrared sensors with a maximum
range of approx. 8 cm. The odometry is based on the
Khepera’s wheel encoder values. For simplicity, targets were
directly represented through coordinates rather than by visual
extraction. The dynamics were integrated on an external PC,
and velocities for each wheel communicated to the unit. All
dynamics were additionaly superposed with gaussian white
noise to provide realistic conditions and ensure escape from
meta-stable states.

For the sequence generating dynamics in eq. (1), the
competitive advantages µi were chosen to depend on a set
of logical conditions bi as in eq. (2). After an initial phase
allowed for orienting towards the target, bHopf was activated
to begin the movement phase. Once the robot was as close
to the target as 6% of the original total distance, bFinal was
activated.

Fig. 4 shows a Khepera robot while approaching a target
without constraints. Initially, the oscillator radius Rh is
set according to eq. (10), i.e. the distance to the target
coordinates. The resulting trajectory is a straight line towards
the target, with a velocity profile similar to that of the initial
and final system in Fig. 2. In Fig. 5, the path towards the
target is obstructed by obstacles, which the system has no
prior knowledge about and only senses as it drives close by.
They are circumnavigated by the heading direction dynamics
in eq. (3). At the same time, the total distance needed to be
driven in the time of one oscillator cycle rises. The stabilizing
mechanism in eq. (12) thus gradually increases the radius Rh

of the oscillator and produces a velocity profile similar to that
of the variable system in Fig. 2.

Movement times for the experiment runs are, averaged
over several trials, shown in Tb. I. The setup in Fig. 5 is listed
as “Medium Disturbance”, while another course, requiring
more extensive detours, is shown under “High Disturbance”.
The total distance driven gives an overview over the demands
of both setups. Although an influence of the disturbances on
the movement time is visible, it is marginal when compared
to the relative increase in total distance driven and due both
to the system’s relaxation in phase space and physical effects.

a) b)

c) d)

e) f)

Fig. 4. Sequence depicting robot movement to a target area without the
occurence of disturbances. The robot’s velocity is set according to eq. (6),
and the distance profile follows eq. (9).

of integrating eq. (7) with a time-variable oscillator radius
calculated from the adaptation rule in eq. (12).

This “adaptive system” starts with an initial radius of
Rh = 250. During the oscillator cycle, the fictional target is
assumed to move away from the robot, up to a distance that
would have required an initial oscillator radius of Rh = 400.
In Fig. 2, this enlargement of the distance to be covered is
gradual and starts at about one third of the cycle. In Fig. 3,
the enlargement is instantaneous at about two thirds of the
cycle, thus requiring a more sudden increase of velocity to
cover the remaining distance in the remaining time. In both
cases, the adaptive system produces a velocity curve well-
suited for covering the larger distance in the same time.

For Fig. 3, note that the integrated eq. (7) is only one part
of the whole dynamics in eq. (6), in which an additional
attractor to the origin “re-sets” (a, b) and stops the robot’s
motion. In practice, two parameters of this final attractor
(onset criterion bFinal and attractor strength c2) have to
mutually balance between two opposing properties: first,
smoothness of trajectories even in cases of high velocities
(e.g., as in Fig. 3), and second, the degree to which the
overall trajectory in phase space given by eq. (6) represents
the system that is given by eqs. (7) and (12) only. Apart from
this trade-off and additional physical effects like friction and
motor discretization, the courses of the simulated dynamics
remain valid for the following hardware implementations,
both for gradual and sudden changes in the task setup.

B. Khepera mobile unit

We use a two-wheeled K-Team Khepera robot to demon-
strate the approach. But, as laid out in section IV, the
dynamics proposed are to a large degree independent from
the physical implementation, and the only modifications
necessary are in the directional dynamics.

The implementation on a Khepera robot demonstrates that
the approach, in spite of its mathematical sophistication, is
suited for low-level robotic units with uncalibrated sensors
and a fairly simple control system, as is typical of the dy-
namical systems approach. Here, obstacle sensing is provided
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Fig. 5. Sequence depicting robot movement in a parcours unknown at
starting time. The oscillator radius is adapted according to eq. (12), and the
movement time approaches that of the undisturbed case shown in Fig. 4.

by the Khepera’s built-in infrared sensors with a maximum
range of approx. 8 cm. The odometry is based on the
Khepera’s wheel encoder values. For simplicity, targets were
directly represented through coordinates rather than by visual
extraction. The dynamics were integrated on an external PC,
and velocities for each wheel communicated to the unit. All
dynamics were additionaly superposed with gaussian white
noise to provide realistic conditions and ensure escape from
meta-stable states.

For the sequence generating dynamics in eq. (1), the
competitive advantages µi were chosen to depend on a set
of logical conditions bi as in eq. (2). After an initial phase
allowed for orienting towards the target, bHopf was activated
to begin the movement phase. Once the robot was as close
to the target as 6% of the original total distance, bFinal was
activated.

Fig. 4 shows a Khepera robot while approaching a target
without constraints. Initially, the oscillator radius Rh is
set according to eq. (10), i.e. the distance to the target
coordinates. The resulting trajectory is a straight line towards
the target, with a velocity profile similar to that of the initial
and final system in Fig. 2. In Fig. 5, the path towards the
target is obstructed by obstacles, which the system has no
prior knowledge about and only senses as it drives close by.
They are circumnavigated by the heading direction dynamics
in eq. (3). At the same time, the total distance needed to be
driven in the time of one oscillator cycle rises. The stabilizing
mechanism in eq. (12) thus gradually increases the radius Rh

of the oscillator and produces a velocity profile similar to that
of the variable system in Fig. 2.

Movement times for the experiment runs are, averaged
over several trials, shown in Tb. I. The setup in Fig. 5 is listed
as “Medium Disturbance”, while another course, requiring
more extensive detours, is shown under “High Disturbance”.
The total distance driven gives an overview over the demands
of both setups. Although an influence of the disturbances on
the movement time is visible, it is marginal when compared
to the relative increase in total distance driven and due both
to the system’s relaxation in phase space and physical effects.

[Tuma, Iossifidis, Schöner, ICRA 2009]



behavioral dynamics

mathematically suitable form, as long as the range of possible
values is mapped into the correct interval, here between
1.5 and 3.5. A simple form uses quasi-logical variables
bi ∈ [0, 1] that steer the switching dynamics through:

µi = 1.5 + 2bi, with 0 ≤ bi ≤ 1 (2)

Fig. 1 shows an exemplary run of such a system to demon-
strate its state-controlling and stability properties. See [17]
for an elaborate framework for movement (re)initialization
and termination based on coupling the µi to sensory input.

IV. DYNAMICS OF THE MOVEMENT STATE

In the dynamical systems approach to robotics, the robot’s
state is described by a set of behavioral variables that suit
both the physical design of the robot and its task. The
present approach uses two separate dynamics to define the
robot’s state: one for the robot velocity, and another for
the remaining set of behavioral variables. In theory, this
remaining set can have any suitable form, as long as it
can provide for directional navigation towards the target
and away from obstacles or joint limits. We shall, in the
following, consider the simplest case of 2D-planar movement
with a heading direction φ (in angular space, and in a fixed
reference frame) as second behavioral variable.

A. Directional dynamics

The dynamics for φ contains one term that attracts towards
the direction ψTar in which the target lies, and another
term which repels from the directions in which obstacles
are perceived:

τ φ̇ =
N

∑

i=1

fObs,i(φ,ψObs,i) + fTar(φ,ψTar) (3)

Here, N is the total number of obstacles, sensed at angles
ψObs,i, and fTar is a linear attracting force of strength λTar:

fTar(φ) = −λTar (φ− ψTar) (4)

The obstacle terms fObs,i are gaussian-modulated linear
repelling functions:

fObs,i = λi (φ− ψObs,i) exp

[

−
(φ− ψObs,i)2

2σ2
i

]

(5)

The repellor strengths λi are set to decay exponentially with
the distance between the obstacles and the sensors. In angular
space, the range of the repellor is delimited by the width σi.
All contributing terms are wrapped onto the circle. See [5]
for a detailed example of a heading direction dynamics.

B. Velocity dynamics

The velocity v is set to the value of a state variable a
at each timestep. Together with an auxiliary variable b, this
state variable a evolves according to a 2D dynamical system:

τ
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ȧ
ḃ

)

= − c1 · u
2
Init

(

a
b

)

(6)

+ u2
Hopf · fHopf (a − Rh, b)

− c2 · u
2
Final

(

a2 − a · αtc

b

)

where c1 and c2 are scaling parameters, αtc is the bifurcation
parameter of a transcritical bifurcation, and fHopf is a Hopf
oscillator of radius Rh (possibly time-dependent, see below).
As only one of the neural variables ui is in an “on”-state at
any given time, only one of the three terms in eq. (6) is
different from zero. Associated with uInit is an attractor for
(a, b) at (0,0), which keeps the robot at rest before movement
onset. After uFinal is activated, the velocity is stabilized at
zero again for any negative αtc. For positive values of αtc,
the velocity v approaches αtc > 0 itself. This is useful in
cases in which, despite the stabilization mechanism described
below, the target can not be reached in the initially planned
time (e.g. due to hardware velocity limits).

During the main movement phase (the “on”-state of the
neuron uHopf ), a Hopf oscillator fHopf governs the dynam-
ics:

fHopf (a − Rh, b) =

(

λ −ω
ω λ

)(

a − Rh

b

)

(7)

−γ
[

(a − Rh)2 + b2
]

(

a − Rh

b

)

The angular frequency ω defines the cycle time T = 2π/ω
and hence the total movement time. The parameters λ > 0
and γ > 0 mutually set the oscillator radius Rh:

Rh =

√

λ

γ
(8)

In phase space, the Hopf cycle is shifted along the a-axis
by the cycle radius Rh, so that the variable a smoothly rises
from zero to 2Rh and back during one oscillator cycle.

V. TEMPORAL STABILIZATION

If we disregard physical effects (like friction, motor dis-
cretization, etc.), the robot’s velocity profile will equal the
time course of the variable a, defined by eqs. (6) and (7). In
the dynamics for (a, b), a fixed cycle radius Rh is appropriate
if no disturbances (e.g. obstacles, target displacement, etc.)
occur. If, however, the task setup changes during the robot’s
movement, an adaptation rule for the cycle radius Rh will
automatically adjust the system in eq. (7) in order to stabilize
total movement time.

A. Undisturbed case

Integrating the dynamics in eq. (7) for a fixed cycle radius
Rh gives the distance s covered by the robot in time t:

s(t) =

∫ t

0
Rh(1 − cosωτ)dτ = Rh(t −

1

ω
sinωt) (9)

After one full cycle, the distance 2πRh/ω is reached. Hence,
the radius of the oscillator should initially be set to

Rh =
ωD(t = 0)

2π
(10)

with D(t = 0) being the distance between the robot’s initial
position (x0, y0) and the target coordinates (xtar, ytar).
Together, the dynamics in eq. (3) keep the robot oriented
towards the target, and eq. (7) drives the robot exactly over
the required distance in a sinusoidal velocity profile.

mathematically suitable form, as long as the range of possible
values is mapped into the correct interval, here between
1.5 and 3.5. A simple form uses quasi-logical variables
bi ∈ [0, 1] that steer the switching dynamics through:

µi = 1.5 + 2bi, with 0 ≤ bi ≤ 1 (2)

Fig. 1 shows an exemplary run of such a system to demon-
strate its state-controlling and stability properties. See [17]
for an elaborate framework for movement (re)initialization
and termination based on coupling the µi to sensory input.

IV. DYNAMICS OF THE MOVEMENT STATE

In the dynamical systems approach to robotics, the robot’s
state is described by a set of behavioral variables that suit
both the physical design of the robot and its task. The
present approach uses two separate dynamics to define the
robot’s state: one for the robot velocity, and another for
the remaining set of behavioral variables. In theory, this
remaining set can have any suitable form, as long as it
can provide for directional navigation towards the target
and away from obstacles or joint limits. We shall, in the
following, consider the simplest case of 2D-planar movement
with a heading direction φ (in angular space, and in a fixed
reference frame) as second behavioral variable.

A. Directional dynamics

The dynamics for φ contains one term that attracts towards
the direction ψTar in which the target lies, and another
term which repels from the directions in which obstacles
are perceived:

τ φ̇ =
N

∑

i=1

fObs,i(φ,ψObs,i) + fTar(φ,ψTar) (3)

Here, N is the total number of obstacles, sensed at angles
ψObs,i, and fTar is a linear attracting force of strength λTar:

fTar(φ) = −λTar (φ− ψTar) (4)

The obstacle terms fObs,i are gaussian-modulated linear
repelling functions:
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The repellor strengths λi are set to decay exponentially with
the distance between the obstacles and the sensors. In angular
space, the range of the repellor is delimited by the width σi.
All contributing terms are wrapped onto the circle. See [5]
for a detailed example of a heading direction dynamics.

B. Velocity dynamics

The velocity v is set to the value of a state variable a
at each timestep. Together with an auxiliary variable b, this
state variable a evolves according to a 2D dynamical system:
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where c1 and c2 are scaling parameters, αtc is the bifurcation
parameter of a transcritical bifurcation, and fHopf is a Hopf
oscillator of radius Rh (possibly time-dependent, see below).
As only one of the neural variables ui is in an “on”-state at
any given time, only one of the three terms in eq. (6) is
different from zero. Associated with uInit is an attractor for
(a, b) at (0,0), which keeps the robot at rest before movement
onset. After uFinal is activated, the velocity is stabilized at
zero again for any negative αtc. For positive values of αtc,
the velocity v approaches αtc > 0 itself. This is useful in
cases in which, despite the stabilization mechanism described
below, the target can not be reached in the initially planned
time (e.g. due to hardware velocity limits).

During the main movement phase (the “on”-state of the
neuron uHopf ), a Hopf oscillator fHopf governs the dynam-
ics:

fHopf (a − Rh, b) =
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The angular frequency ω defines the cycle time T = 2π/ω
and hence the total movement time. The parameters λ > 0
and γ > 0 mutually set the oscillator radius Rh:

Rh =

√

λ

γ
(8)

In phase space, the Hopf cycle is shifted along the a-axis
by the cycle radius Rh, so that the variable a smoothly rises
from zero to 2Rh and back during one oscillator cycle.

V. TEMPORAL STABILIZATION

If we disregard physical effects (like friction, motor dis-
cretization, etc.), the robot’s velocity profile will equal the
time course of the variable a, defined by eqs. (6) and (7). In
the dynamics for (a, b), a fixed cycle radius Rh is appropriate
if no disturbances (e.g. obstacles, target displacement, etc.)
occur. If, however, the task setup changes during the robot’s
movement, an adaptation rule for the cycle radius Rh will
automatically adjust the system in eq. (7) in order to stabilize
total movement time.

A. Undisturbed case

Integrating the dynamics in eq. (7) for a fixed cycle radius
Rh gives the distance s covered by the robot in time t:

s(t) =

∫ t

0
Rh(1 − cosωτ)dτ = Rh(t −

1

ω
sinωt) (9)

After one full cycle, the distance 2πRh/ω is reached. Hence,
the radius of the oscillator should initially be set to

Rh =
ωD(t = 0)

2π
(10)

with D(t = 0) being the distance between the robot’s initial
position (x0, y0) and the target coordinates (xtar, ytar).
Together, the dynamics in eq. (3) keep the robot oriented
towards the target, and eq. (7) drives the robot exactly over
the required distance in a sinusoidal velocity profile.

mathematically suitable form, as long as the range of possible
values is mapped into the correct interval, here between
1.5 and 3.5. A simple form uses quasi-logical variables
bi ∈ [0, 1] that steer the switching dynamics through:

µi = 1.5 + 2bi, with 0 ≤ bi ≤ 1 (2)

Fig. 1 shows an exemplary run of such a system to demon-
strate its state-controlling and stability properties. See [17]
for an elaborate framework for movement (re)initialization
and termination based on coupling the µi to sensory input.

IV. DYNAMICS OF THE MOVEMENT STATE

In the dynamical systems approach to robotics, the robot’s
state is described by a set of behavioral variables that suit
both the physical design of the robot and its task. The
present approach uses two separate dynamics to define the
robot’s state: one for the robot velocity, and another for
the remaining set of behavioral variables. In theory, this
remaining set can have any suitable form, as long as it
can provide for directional navigation towards the target
and away from obstacles or joint limits. We shall, in the
following, consider the simplest case of 2D-planar movement
with a heading direction φ (in angular space, and in a fixed
reference frame) as second behavioral variable.

A. Directional dynamics

The dynamics for φ contains one term that attracts towards
the direction ψTar in which the target lies, and another
term which repels from the directions in which obstacles
are perceived:

τ φ̇ =
N

∑

i=1

fObs,i(φ,ψObs,i) + fTar(φ,ψTar) (3)

Here, N is the total number of obstacles, sensed at angles
ψObs,i, and fTar is a linear attracting force of strength λTar:

fTar(φ) = −λTar (φ− ψTar) (4)

The obstacle terms fObs,i are gaussian-modulated linear
repelling functions:

fObs,i = λi (φ− ψObs,i) exp
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−
(φ− ψObs,i)2

2σ2
i

]

(5)

The repellor strengths λi are set to decay exponentially with
the distance between the obstacles and the sensors. In angular
space, the range of the repellor is delimited by the width σi.
All contributing terms are wrapped onto the circle. See [5]
for a detailed example of a heading direction dynamics.

B. Velocity dynamics

The velocity v is set to the value of a state variable a
at each timestep. Together with an auxiliary variable b, this
state variable a evolves according to a 2D dynamical system:
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where c1 and c2 are scaling parameters, αtc is the bifurcation
parameter of a transcritical bifurcation, and fHopf is a Hopf
oscillator of radius Rh (possibly time-dependent, see below).
As only one of the neural variables ui is in an “on”-state at
any given time, only one of the three terms in eq. (6) is
different from zero. Associated with uInit is an attractor for
(a, b) at (0,0), which keeps the robot at rest before movement
onset. After uFinal is activated, the velocity is stabilized at
zero again for any negative αtc. For positive values of αtc,
the velocity v approaches αtc > 0 itself. This is useful in
cases in which, despite the stabilization mechanism described
below, the target can not be reached in the initially planned
time (e.g. due to hardware velocity limits).

During the main movement phase (the “on”-state of the
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The angular frequency ω defines the cycle time T = 2π/ω
and hence the total movement time. The parameters λ > 0
and γ > 0 mutually set the oscillator radius Rh:
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In phase space, the Hopf cycle is shifted along the a-axis
by the cycle radius Rh, so that the variable a smoothly rises
from zero to 2Rh and back during one oscillator cycle.

V. TEMPORAL STABILIZATION

If we disregard physical effects (like friction, motor dis-
cretization, etc.), the robot’s velocity profile will equal the
time course of the variable a, defined by eqs. (6) and (7). In
the dynamics for (a, b), a fixed cycle radius Rh is appropriate
if no disturbances (e.g. obstacles, target displacement, etc.)
occur. If, however, the task setup changes during the robot’s
movement, an adaptation rule for the cycle radius Rh will
automatically adjust the system in eq. (7) in order to stabilize
total movement time.

A. Undisturbed case

Integrating the dynamics in eq. (7) for a fixed cycle radius
Rh gives the distance s covered by the robot in time t:

s(t) =

∫ t

0
Rh(1 − cosωτ)dτ = Rh(t −
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After one full cycle, the distance 2πRh/ω is reached. Hence,
the radius of the oscillator should initially be set to
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with D(t = 0) being the distance between the robot’s initial
position (x0, y0) and the target coordinates (xtar, ytar).
Together, the dynamics in eq. (3) keep the robot oriented
towards the target, and eq. (7) drives the robot exactly over
the required distance in a sinusoidal velocity profile.
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mathematically suitable form, as long as the range of possible
values is mapped into the correct interval, here between
1.5 and 3.5. A simple form uses quasi-logical variables
bi ∈ [0, 1] that steer the switching dynamics through:

µi = 1.5 + 2bi, with 0 ≤ bi ≤ 1 (2)

Fig. 1 shows an exemplary run of such a system to demon-
strate its state-controlling and stability properties. See [17]
for an elaborate framework for movement (re)initialization
and termination based on coupling the µi to sensory input.
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robot’s state: one for the robot velocity, and another for
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can provide for directional navigation towards the target
and away from obstacles or joint limits. We shall, in the
following, consider the simplest case of 2D-planar movement
with a heading direction φ (in angular space, and in a fixed
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A. Directional dynamics

The dynamics for φ contains one term that attracts towards
the direction ψTar in which the target lies, and another
term which repels from the directions in which obstacles
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Here, N is the total number of obstacles, sensed at angles
ψObs,i, and fTar is a linear attracting force of strength λTar:
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repelling functions:
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The repellor strengths λi are set to decay exponentially with
the distance between the obstacles and the sensors. In angular
space, the range of the repellor is delimited by the width σi.
All contributing terms are wrapped onto the circle. See [5]
for a detailed example of a heading direction dynamics.

B. Velocity dynamics

The velocity v is set to the value of a state variable a
at each timestep. Together with an auxiliary variable b, this
state variable a evolves according to a 2D dynamical system:
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where c1 and c2 are scaling parameters, αtc is the bifurcation
parameter of a transcritical bifurcation, and fHopf is a Hopf
oscillator of radius Rh (possibly time-dependent, see below).
As only one of the neural variables ui is in an “on”-state at
any given time, only one of the three terms in eq. (6) is
different from zero. Associated with uInit is an attractor for
(a, b) at (0,0), which keeps the robot at rest before movement
onset. After uFinal is activated, the velocity is stabilized at
zero again for any negative αtc. For positive values of αtc,
the velocity v approaches αtc > 0 itself. This is useful in
cases in which, despite the stabilization mechanism described
below, the target can not be reached in the initially planned
time (e.g. due to hardware velocity limits).

During the main movement phase (the “on”-state of the
neuron uHopf ), a Hopf oscillator fHopf governs the dynam-
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The angular frequency ω defines the cycle time T = 2π/ω
and hence the total movement time. The parameters λ > 0
and γ > 0 mutually set the oscillator radius Rh:
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In phase space, the Hopf cycle is shifted along the a-axis
by the cycle radius Rh, so that the variable a smoothly rises
from zero to 2Rh and back during one oscillator cycle.

V. TEMPORAL STABILIZATION

If we disregard physical effects (like friction, motor dis-
cretization, etc.), the robot’s velocity profile will equal the
time course of the variable a, defined by eqs. (6) and (7). In
the dynamics for (a, b), a fixed cycle radius Rh is appropriate
if no disturbances (e.g. obstacles, target displacement, etc.)
occur. If, however, the task setup changes during the robot’s
movement, an adaptation rule for the cycle radius Rh will
automatically adjust the system in eq. (7) in order to stabilize
total movement time.

A. Undisturbed case

Integrating the dynamics in eq. (7) for a fixed cycle radius
Rh gives the distance s covered by the robot in time t:

s(t) =

∫ t

0
Rh(1 − cosωτ)dτ = Rh(t −

1
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sinωt) (9)

After one full cycle, the distance 2πRh/ω is reached. Hence,
the radius of the oscillator should initially be set to

Rh =
ωD(t = 0)

2π
(10)

with D(t = 0) being the distance between the robot’s initial
position (x0, y0) and the target coordinates (xtar, ytar).
Together, the dynamics in eq. (3) keep the robot oriented
towards the target, and eq. (7) drives the robot exactly over
the required distance in a sinusoidal velocity profile.
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and away from obstacles or joint limits. We shall, in the
following, consider the simplest case of 2D-planar movement
with a heading direction φ (in angular space, and in a fixed
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A. Directional dynamics
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the direction ψTar in which the target lies, and another
term which repels from the directions in which obstacles
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space, the range of the repellor is delimited by the width σi.
All contributing terms are wrapped onto the circle. See [5]
for a detailed example of a heading direction dynamics.
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where c1 and c2 are scaling parameters, αtc is the bifurcation
parameter of a transcritical bifurcation, and fHopf is a Hopf
oscillator of radius Rh (possibly time-dependent, see below).
As only one of the neural variables ui is in an “on”-state at
any given time, only one of the three terms in eq. (6) is
different from zero. Associated with uInit is an attractor for
(a, b) at (0,0), which keeps the robot at rest before movement
onset. After uFinal is activated, the velocity is stabilized at
zero again for any negative αtc. For positive values of αtc,
the velocity v approaches αtc > 0 itself. This is useful in
cases in which, despite the stabilization mechanism described
below, the target can not be reached in the initially planned
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and hence the total movement time. The parameters λ > 0
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In phase space, the Hopf cycle is shifted along the a-axis
by the cycle radius Rh, so that the variable a smoothly rises
from zero to 2Rh and back during one oscillator cycle.

V. TEMPORAL STABILIZATION

If we disregard physical effects (like friction, motor dis-
cretization, etc.), the robot’s velocity profile will equal the
time course of the variable a, defined by eqs. (6) and (7). In
the dynamics for (a, b), a fixed cycle radius Rh is appropriate
if no disturbances (e.g. obstacles, target displacement, etc.)
occur. If, however, the task setup changes during the robot’s
movement, an adaptation rule for the cycle radius Rh will
automatically adjust the system in eq. (7) in order to stabilize
total movement time.

A. Undisturbed case

Integrating the dynamics in eq. (7) for a fixed cycle radius
Rh gives the distance s covered by the robot in time t:

s(t) =

∫ t

0
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After one full cycle, the distance 2πRh/ω is reached. Hence,
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with D(t = 0) being the distance between the robot’s initial
position (x0, y0) and the target coordinates (xtar, ytar).
Together, the dynamics in eq. (3) keep the robot oriented
towards the target, and eq. (7) drives the robot exactly over
the required distance in a sinusoidal velocity profile.
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for an elaborate framework for movement (re)initialization
and termination based on coupling the µi to sensory input.
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state is described by a set of behavioral variables that suit
both the physical design of the robot and its task. The
present approach uses two separate dynamics to define the
robot’s state: one for the robot velocity, and another for
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remaining set can have any suitable form, as long as it
can provide for directional navigation towards the target
and away from obstacles or joint limits. We shall, in the
following, consider the simplest case of 2D-planar movement
with a heading direction φ (in angular space, and in a fixed
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The dynamics for φ contains one term that attracts towards
the direction ψTar in which the target lies, and another
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The repellor strengths λi are set to decay exponentially with
the distance between the obstacles and the sensors. In angular
space, the range of the repellor is delimited by the width σi.
All contributing terms are wrapped onto the circle. See [5]
for a detailed example of a heading direction dynamics.

B. Velocity dynamics
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where c1 and c2 are scaling parameters, αtc is the bifurcation
parameter of a transcritical bifurcation, and fHopf is a Hopf
oscillator of radius Rh (possibly time-dependent, see below).
As only one of the neural variables ui is in an “on”-state at
any given time, only one of the three terms in eq. (6) is
different from zero. Associated with uInit is an attractor for
(a, b) at (0,0), which keeps the robot at rest before movement
onset. After uFinal is activated, the velocity is stabilized at
zero again for any negative αtc. For positive values of αtc,
the velocity v approaches αtc > 0 itself. This is useful in
cases in which, despite the stabilization mechanism described
below, the target can not be reached in the initially planned
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and hence the total movement time. The parameters λ > 0
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In phase space, the Hopf cycle is shifted along the a-axis
by the cycle radius Rh, so that the variable a smoothly rises
from zero to 2Rh and back during one oscillator cycle.

V. TEMPORAL STABILIZATION

If we disregard physical effects (like friction, motor dis-
cretization, etc.), the robot’s velocity profile will equal the
time course of the variable a, defined by eqs. (6) and (7). In
the dynamics for (a, b), a fixed cycle radius Rh is appropriate
if no disturbances (e.g. obstacles, target displacement, etc.)
occur. If, however, the task setup changes during the robot’s
movement, an adaptation rule for the cycle radius Rh will
automatically adjust the system in eq. (7) in order to stabilize
total movement time.

A. Undisturbed case

Integrating the dynamics in eq. (7) for a fixed cycle radius
Rh gives the distance s covered by the robot in time t:

s(t) =

∫ t

0
Rh(1 − cosωτ)dτ = Rh(t −

1

ω
sinωt) (9)

After one full cycle, the distance 2πRh/ω is reached. Hence,
the radius of the oscillator should initially be set to
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ωD(t = 0)
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with D(t = 0) being the distance between the robot’s initial
position (x0, y0) and the target coordinates (xtar, ytar).
Together, the dynamics in eq. (3) keep the robot oriented
towards the target, and eq. (7) drives the robot exactly over
the required distance in a sinusoidal velocity profile.“neural” dynamics

velocity a

the learning of bipedal locomotion in a humanoid robot [11].
Degallier et al. [12] enabled a humanoid to perform a drum-
ming task by superposing and switching between rhythmic
and discrete movement patterns. Hersch and Billard [13]
used VITE-like dynamical systems in redundant reference
frames to produce human-like reaching acts. Studies on
(dis)similarities between discrete and rhythmic movements
in humans [14] should be seen as accompanying robotical
research.

In earlier work, we proposed oscillating pattern dynamics
to describe timing and coupling properties of discrete move-
ment [15], developed a framework for the behavioral organi-
zation of sequential action [16], and fused both concepts to
steer onset and termination points as well as movement times
of discrete motor acts [17]. Other projects addressed obstacle
avoidance using dynamical systems (see [4] for an overview).
Santos [18] in turn attempted to include into these concepts
a temporal stabilization mechanism against disturbances,
which we however found to be subject to several limitations
and structural inconsistencies (see section VI).

II. OVERALL SYSTEM

Building on this prior work, the present approach provides
the capabilities i) to initiate and terminate discrete movement
through a dynamical system for the stable generation of
sequential actions; ii) to reach a possibly moving target while
circumnavigating obstacles or dealing with other perturba-
tions; iii) to do this while maintaining, as close as physically
possible, an approximately constant total movement time;
iv) to be implementable on a wide range of robotic systems
for which directional dynamics and kinematics exist.

We formulate sets of dynamical systems on two layers
of abstraction: on the level of behavioral sequencing, values
for variables representing start, execution, and end phases
of a movement are calculated depending on external signals.
On the second level, dynamics for all behavioral variables
that define the robot’s state are integrated. In the simplest
realization of 2D-planar movements, these can be the heading
direction φ and the velocity v. The appearance of obstacles
or a change of the target location influence the directional
dynamics (e.g. that for φ) on-line: repellors and attractors
are dynamically erected for safe navigation around obstacles
and simultaneous acquisition of the target.

The dynamics for v makes use of stable limit cycle
solutions of a Hopf oscillator. Generally utilized to create
rhythmic motion [6], here one oscillator cycle is associated
with one discrete reaching act by formulating a second order
dynamics, i.e. one for the robot velocity. An adaptation rule
for intrinsic properties of the limit cycle is formulated, so
that the velocity profile is sped up or slowed down following
perturbations, in order to reach the target in as close to the
initially desired movement time as possible.

III. SEQUENCE GENERATING DYNAMICS

A dynamical system that produces discrete movement
should be able to stabilize postural states before and after
the main motion phase. The decision when to switch from
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Fig. 1. Exemplary time course of three “neural” variables (u1, u2, u3)
governed by eq. (1). Their competitive advantages (µ1, µ2, µ3) were
controlled by quasi-booleans (b1, b2, b3) according to eq. (2). Proportional
differences between these bi are amplified into decisions in which either
one state is selected and all others are suppressed or in which a blend of
multiple states may be activated at the same time. To demonstrate the state-
controlling abilities and stability of the dynamics, the bi were initially set
to (1, 0, 0) and changed every 100 timesteps. Their subsequent values were
(0.1, 0.9, 0.1), (0.3, 0.3, 0.8), and (0.6, 0.5, 0.55).

such a postural state to movement, or vice versa, should
be met according to external information (e.g. reaching a
critical time-to-contact, arrival at the target, disappearence
of the target). The corresponding decision dynamics must
therefore be continuously updated, but also be stable against
temporary fluctuations of the respective signals.

The following competitive dynamics are formulated for
each of three “neural” variables ui ∈ {uInit, uHopf , uFinal}
representing the three phases before, during, and after the
movement, respectively. The system is based on a degenerate
pitchfork bifurcation with an additional competitive term,
that stabilizes states in which only one neuron ui has values
close to one while the other two have values close to
zero [19]:

τ u̇i = µiui − |µi|u
3
i − ν

∑

a!=i

u2
aui (1)

The parameter ν controls the strength of competition, and τ
determines the time scale of the dynamics. If one competitive
weight µi is larger than the other two, the corresponding
neuron ui is most likely to win the competition, i.e. to switch
to the “on”-state while suppressing the other two neurons.
For sufficiently small differences between the µi, multiple
outcomes are possible, so that the system is multistable. For
the dynamics in eq. (1), the values of ν = 2.1 and 1.5 ≤
µi ≤ 3.5 give a reasonable trade-off between stability and
flexibility.

The competitive advantages µi can be used to “switch”
between different stable states of the system by binding
them to external signals, e.g. a time-to-contact or the target
proximity. Such a link to external information can have any
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Fig. 1. Exemplary time course of three “neural” variables (u1, u2, u3)
governed by eq. (1). Their competitive advantages (µ1, µ2, µ3) were
controlled by quasi-booleans (b1, b2, b3) according to eq. (2). Proportional
differences between these bi are amplified into decisions in which either
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to (1, 0, 0) and changed every 100 timesteps. Their subsequent values were
(0.1, 0.9, 0.1), (0.3, 0.3, 0.8), and (0.6, 0.5, 0.55).

such a postural state to movement, or vice versa, should
be met according to external information (e.g. reaching a
critical time-to-contact, arrival at the target, disappearence
of the target). The corresponding decision dynamics must
therefore be continuously updated, but also be stable against
temporary fluctuations of the respective signals.

The following competitive dynamics are formulated for
each of three “neural” variables ui ∈ {uInit, uHopf , uFinal}
representing the three phases before, during, and after the
movement, respectively. The system is based on a degenerate
pitchfork bifurcation with an additional competitive term,
that stabilizes states in which only one neuron ui has values
close to one while the other two have values close to
zero [19]:

τ u̇i = µiui − |µi|u
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i − ν

∑
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aui (1)

The parameter ν controls the strength of competition, and τ
determines the time scale of the dynamics. If one competitive
weight µi is larger than the other two, the corresponding
neuron ui is most likely to win the competition, i.e. to switch
to the “on”-state while suppressing the other two neurons.
For sufficiently small differences between the µi, multiple
outcomes are possible, so that the system is multistable. For
the dynamics in eq. (1), the values of ν = 2.1 and 1.5 ≤
µi ≤ 3.5 give a reasonable trade-off between stability and
flexibility.

The competitive advantages µi can be used to “switch”
between different stable states of the system by binding
them to external signals, e.g. a time-to-contact or the target
proximity. Such a link to external information can have any
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Fig. 2. Three different realizations of integrating eq. (7). The subplots
show the resulting paths in phase space, the time course of the variable a
(velocity profile), and the time course of its integral s (distance profile). The
“variable” system begins with the same oscillator radius Rh as the “initial”
system. Starting at one third of the cycle, the total distance to be covered
is gradually increased up to the total distance reachable with the “final”
system, and Rh is adapted according to eq. (12). All units are arbitrary.

B. Disturbed case

There are many possible influences that may disturb the
planned time course of robot motion, including physical
stalling, movement of the target, or obstacles along the path.
Regardless of whether the disturbance requires speeding up
or slowing down, the target should still be reached in as
close to the initially planned movement time as possible. To
this end, an adaptation rule for the Hopf cycle radius Rh is
formulated. For the undisturbed case, using ω = 2π/T and
eqs. (9), (10) yields the relation

D(t = 0) = D(t) +

∫ t

0
v(τ)dτ

=
D(t)

(

1 − t
T + sin (2π·t/T )

2π

)

(11)

between the initial distance, D(t = 0), the distance remain-
ing, D(t), and the currently elapsed fraction of one oscillator
cycle, t/T . With eq. (10), the last identity can be interpreted
as an adaptation rule for the Hopf cycle:

Rh(t) =
ω

2π

D(t)
(

1 − t
T + sin (2π·t/T )

2π

) (12)

This online updating rule takes into account not only the
current distance to the target, but adapts the limit cycle so
as to accelerate or decelerate the motion sufficiently so that
remaining distance is traversed within the remaining time.
If no disturbances occur, the adaptation rule in eq. (12) will
not alter Rh.

In eq. (8), the two parameters λ and γ jointly define
the cycle radius through their ratio, while their absolute
values influence the relaxation behavior of the system in

−500 0 500 1000 1500 2000
−2000

−1500

−1000

−500

0

500
Phase plot

a

b

0 200 400 600 800 1000
−500

0

500

1000

1500

2000

2500
Velocity profile

Timesteps

a

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000
Distance profile

Timesteps

s

 

 

Initial System

Adaptive System

Final System

Fig. 3. Three different realizations of integrating eq. (7). The subplots
show the resulting paths in phase space, the time course of the variable a
(velocity profile), and the time course of its integral s (distance profile). The
“variable” system begins with the same oscillator radius Rh as the “initial”
system. Starting at two thirds of the cycle, the total distance to be covered is
instantaneously increased up to the total distance reachable with the “final”
system, and Rh is adapted according to eq. (12). All units are arbitrary.

eq. (7). This additional degree of freedom should be carefully
adjusted in order to provide reliable relaxation into the
current oscillator state. In the implementations below, we
use a fixed value for λ of 0.1.

VI. IMPLEMENTATION

The approach laid out above was tested in simulation and
implemented on a mobile robotic vehicle (K-Team Khepera
unit) generating movements in the plane. Its performance was
tested in a target acquisition task in cluttered environments.

Although we also implemented a temporal stabilization
mechanism proposed by Santos [18], problems in this ap-
proach prevented a side-by-side comparison. Specifically,
Santos’ use of independent dynamics and movement abor-
tion conditions for each cartesian coordinate axis severely
constrained the scope of possible task setups. Also, Santos’
stabilization method rescaled the velocity profile in the case
of delays in an ad hoc manner that does not theoretically
warrant invariant movement time. A comparison would thus
have merely demonstrated that a fixed but arbitrary degree of
qualitative adaptation is not well suited across varying target
configurations.

A. Simulations

Figs. 2 and 3 show simulations of the temporal stabiliza-
tion mechanism. In both figures, three different realizations
of integrating the dynamics in eq. (7) are displayed each
in phase space, as a velocity profile, and as a distance
profile. The first realization is a complete Hopf cycle with
an oscillator radius of Rh = 250 units (“initial system”), the
second a complete Hopf cycle with an oscillator radius of
Rh = 400 units (“final system”), and the third is the result
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Fig. 2. Three different realizations of integrating eq. (7). The subplots
show the resulting paths in phase space, the time course of the variable a
(velocity profile), and the time course of its integral s (distance profile). The
“variable” system begins with the same oscillator radius Rh as the “initial”
system. Starting at one third of the cycle, the total distance to be covered
is gradually increased up to the total distance reachable with the “final”
system, and Rh is adapted according to eq. (12). All units are arbitrary.

B. Disturbed case

There are many possible influences that may disturb the
planned time course of robot motion, including physical
stalling, movement of the target, or obstacles along the path.
Regardless of whether the disturbance requires speeding up
or slowing down, the target should still be reached in as
close to the initially planned movement time as possible. To
this end, an adaptation rule for the Hopf cycle radius Rh is
formulated. For the undisturbed case, using ω = 2π/T and
eqs. (9), (10) yields the relation

D(t = 0) = D(t) +

∫ t

0
v(τ)dτ

=
D(t)

(

1 − t
T + sin (2π·t/T )

2π

)

(11)

between the initial distance, D(t = 0), the distance remain-
ing, D(t), and the currently elapsed fraction of one oscillator
cycle, t/T . With eq. (10), the last identity can be interpreted
as an adaptation rule for the Hopf cycle:

Rh(t) =
ω

2π

D(t)
(

1 − t
T + sin (2π·t/T )

2π

) (12)

This online updating rule takes into account not only the
current distance to the target, but adapts the limit cycle so
as to accelerate or decelerate the motion sufficiently so that
remaining distance is traversed within the remaining time.
If no disturbances occur, the adaptation rule in eq. (12) will
not alter Rh.

In eq. (8), the two parameters λ and γ jointly define
the cycle radius through their ratio, while their absolute
values influence the relaxation behavior of the system in
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show the resulting paths in phase space, the time course of the variable a
(velocity profile), and the time course of its integral s (distance profile). The
“variable” system begins with the same oscillator radius Rh as the “initial”
system. Starting at two thirds of the cycle, the total distance to be covered is
instantaneously increased up to the total distance reachable with the “final”
system, and Rh is adapted according to eq. (12). All units are arbitrary.

eq. (7). This additional degree of freedom should be carefully
adjusted in order to provide reliable relaxation into the
current oscillator state. In the implementations below, we
use a fixed value for λ of 0.1.

VI. IMPLEMENTATION

The approach laid out above was tested in simulation and
implemented on a mobile robotic vehicle (K-Team Khepera
unit) generating movements in the plane. Its performance was
tested in a target acquisition task in cluttered environments.

Although we also implemented a temporal stabilization
mechanism proposed by Santos [18], problems in this ap-
proach prevented a side-by-side comparison. Specifically,
Santos’ use of independent dynamics and movement abor-
tion conditions for each cartesian coordinate axis severely
constrained the scope of possible task setups. Also, Santos’
stabilization method rescaled the velocity profile in the case
of delays in an ad hoc manner that does not theoretically
warrant invariant movement time. A comparison would thus
have merely demonstrated that a fixed but arbitrary degree of
qualitative adaptation is not well suited across varying target
configurations.

A. Simulations

Figs. 2 and 3 show simulations of the temporal stabiliza-
tion mechanism. In both figures, three different realizations
of integrating the dynamics in eq. (7) are displayed each
in phase space, as a velocity profile, and as a distance
profile. The first realization is a complete Hopf cycle with
an oscillator radius of Rh = 250 units (“initial system”), the
second a complete Hopf cycle with an oscillator radius of
Rh = 400 units (“final system”), and the third is the result
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Fig. 2. Three different realizations of integrating eq. (7). The subplots
show the resulting paths in phase space, the time course of the variable a
(velocity profile), and the time course of its integral s (distance profile). The
“variable” system begins with the same oscillator radius Rh as the “initial”
system. Starting at one third of the cycle, the total distance to be covered
is gradually increased up to the total distance reachable with the “final”
system, and Rh is adapted according to eq. (12). All units are arbitrary.

B. Disturbed case

There are many possible influences that may disturb the
planned time course of robot motion, including physical
stalling, movement of the target, or obstacles along the path.
Regardless of whether the disturbance requires speeding up
or slowing down, the target should still be reached in as
close to the initially planned movement time as possible. To
this end, an adaptation rule for the Hopf cycle radius Rh is
formulated. For the undisturbed case, using ω = 2π/T and
eqs. (9), (10) yields the relation

D(t = 0) = D(t) +

∫ t

0
v(τ)dτ

=
D(t)

(

1 − t
T + sin (2π·t/T )

2π

)

(11)

between the initial distance, D(t = 0), the distance remain-
ing, D(t), and the currently elapsed fraction of one oscillator
cycle, t/T . With eq. (10), the last identity can be interpreted
as an adaptation rule for the Hopf cycle:

Rh(t) =
ω

2π

D(t)
(

1 − t
T + sin (2π·t/T )

2π

) (12)

This online updating rule takes into account not only the
current distance to the target, but adapts the limit cycle so
as to accelerate or decelerate the motion sufficiently so that
remaining distance is traversed within the remaining time.
If no disturbances occur, the adaptation rule in eq. (12) will
not alter Rh.

In eq. (8), the two parameters λ and γ jointly define
the cycle radius through their ratio, while their absolute
values influence the relaxation behavior of the system in
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(velocity profile), and the time course of its integral s (distance profile). The
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system. Starting at two thirds of the cycle, the total distance to be covered is
instantaneously increased up to the total distance reachable with the “final”
system, and Rh is adapted according to eq. (12). All units are arbitrary.

eq. (7). This additional degree of freedom should be carefully
adjusted in order to provide reliable relaxation into the
current oscillator state. In the implementations below, we
use a fixed value for λ of 0.1.

VI. IMPLEMENTATION

The approach laid out above was tested in simulation and
implemented on a mobile robotic vehicle (K-Team Khepera
unit) generating movements in the plane. Its performance was
tested in a target acquisition task in cluttered environments.

Although we also implemented a temporal stabilization
mechanism proposed by Santos [18], problems in this ap-
proach prevented a side-by-side comparison. Specifically,
Santos’ use of independent dynamics and movement abor-
tion conditions for each cartesian coordinate axis severely
constrained the scope of possible task setups. Also, Santos’
stabilization method rescaled the velocity profile in the case
of delays in an ad hoc manner that does not theoretically
warrant invariant movement time. A comparison would thus
have merely demonstrated that a fixed but arbitrary degree of
qualitative adaptation is not well suited across varying target
configurations.

A. Simulations

Figs. 2 and 3 show simulations of the temporal stabiliza-
tion mechanism. In both figures, three different realizations
of integrating the dynamics in eq. (7) are displayed each
in phase space, as a velocity profile, and as a distance
profile. The first realization is a complete Hopf cycle with
an oscillator radius of Rh = 250 units (“initial system”), the
second a complete Hopf cycle with an oscillator radius of
Rh = 400 units (“final system”), and the third is the result
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Fig. 4. Sequence depicting robot movement to a target area without the
occurence of disturbances. The robot’s velocity is set according to eq. (6),
and the distance profile follows eq. (9).

of integrating eq. (7) with a time-variable oscillator radius
calculated from the adaptation rule in eq. (12).

This “adaptive system” starts with an initial radius of
Rh = 250. During the oscillator cycle, the fictional target is
assumed to move away from the robot, up to a distance that
would have required an initial oscillator radius of Rh = 400.
In Fig. 2, this enlargement of the distance to be covered is
gradual and starts at about one third of the cycle. In Fig. 3,
the enlargement is instantaneous at about two thirds of the
cycle, thus requiring a more sudden increase of velocity to
cover the remaining distance in the remaining time. In both
cases, the adaptive system produces a velocity curve well-
suited for covering the larger distance in the same time.

For Fig. 3, note that the integrated eq. (7) is only one part
of the whole dynamics in eq. (6), in which an additional
attractor to the origin “re-sets” (a, b) and stops the robot’s
motion. In practice, two parameters of this final attractor
(onset criterion bFinal and attractor strength c2) have to
mutually balance between two opposing properties: first,
smoothness of trajectories even in cases of high velocities
(e.g., as in Fig. 3), and second, the degree to which the
overall trajectory in phase space given by eq. (6) represents
the system that is given by eqs. (7) and (12) only. Apart from
this trade-off and additional physical effects like friction and
motor discretization, the courses of the simulated dynamics
remain valid for the following hardware implementations,
both for gradual and sudden changes in the task setup.

B. Khepera mobile unit

We use a two-wheeled K-Team Khepera robot to demon-
strate the approach. But, as laid out in section IV, the
dynamics proposed are to a large degree independent from
the physical implementation, and the only modifications
necessary are in the directional dynamics.

The implementation on a Khepera robot demonstrates that
the approach, in spite of its mathematical sophistication, is
suited for low-level robotic units with uncalibrated sensors
and a fairly simple control system, as is typical of the dy-
namical systems approach. Here, obstacle sensing is provided

a) b)

c) d)

e) f)

Fig. 5. Sequence depicting robot movement in a parcours unknown at
starting time. The oscillator radius is adapted according to eq. (12), and the
movement time approaches that of the undisturbed case shown in Fig. 4.

by the Khepera’s built-in infrared sensors with a maximum
range of approx. 8 cm. The odometry is based on the
Khepera’s wheel encoder values. For simplicity, targets were
directly represented through coordinates rather than by visual
extraction. The dynamics were integrated on an external PC,
and velocities for each wheel communicated to the unit. All
dynamics were additionaly superposed with gaussian white
noise to provide realistic conditions and ensure escape from
meta-stable states.

For the sequence generating dynamics in eq. (1), the
competitive advantages µi were chosen to depend on a set
of logical conditions bi as in eq. (2). After an initial phase
allowed for orienting towards the target, bHopf was activated
to begin the movement phase. Once the robot was as close
to the target as 6% of the original total distance, bFinal was
activated.

Fig. 4 shows a Khepera robot while approaching a target
without constraints. Initially, the oscillator radius Rh is
set according to eq. (10), i.e. the distance to the target
coordinates. The resulting trajectory is a straight line towards
the target, with a velocity profile similar to that of the initial
and final system in Fig. 2. In Fig. 5, the path towards the
target is obstructed by obstacles, which the system has no
prior knowledge about and only senses as it drives close by.
They are circumnavigated by the heading direction dynamics
in eq. (3). At the same time, the total distance needed to be
driven in the time of one oscillator cycle rises. The stabilizing
mechanism in eq. (12) thus gradually increases the radius Rh

of the oscillator and produces a velocity profile similar to that
of the variable system in Fig. 2.

Movement times for the experiment runs are, averaged
over several trials, shown in Tb. I. The setup in Fig. 5 is listed
as “Medium Disturbance”, while another course, requiring
more extensive detours, is shown under “High Disturbance”.
The total distance driven gives an overview over the demands
of both setups. Although an influence of the disturbances on
the movement time is visible, it is marginal when compared
to the relative increase in total distance driven and due both
to the system’s relaxation in phase space and physical effects.
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c) d)

e) f)

Fig. 4. Sequence depicting robot movement to a target area without the
occurence of disturbances. The robot’s velocity is set according to eq. (6),
and the distance profile follows eq. (9).

of integrating eq. (7) with a time-variable oscillator radius
calculated from the adaptation rule in eq. (12).

This “adaptive system” starts with an initial radius of
Rh = 250. During the oscillator cycle, the fictional target is
assumed to move away from the robot, up to a distance that
would have required an initial oscillator radius of Rh = 400.
In Fig. 2, this enlargement of the distance to be covered is
gradual and starts at about one third of the cycle. In Fig. 3,
the enlargement is instantaneous at about two thirds of the
cycle, thus requiring a more sudden increase of velocity to
cover the remaining distance in the remaining time. In both
cases, the adaptive system produces a velocity curve well-
suited for covering the larger distance in the same time.

For Fig. 3, note that the integrated eq. (7) is only one part
of the whole dynamics in eq. (6), in which an additional
attractor to the origin “re-sets” (a, b) and stops the robot’s
motion. In practice, two parameters of this final attractor
(onset criterion bFinal and attractor strength c2) have to
mutually balance between two opposing properties: first,
smoothness of trajectories even in cases of high velocities
(e.g., as in Fig. 3), and second, the degree to which the
overall trajectory in phase space given by eq. (6) represents
the system that is given by eqs. (7) and (12) only. Apart from
this trade-off and additional physical effects like friction and
motor discretization, the courses of the simulated dynamics
remain valid for the following hardware implementations,
both for gradual and sudden changes in the task setup.

B. Khepera mobile unit

We use a two-wheeled K-Team Khepera robot to demon-
strate the approach. But, as laid out in section IV, the
dynamics proposed are to a large degree independent from
the physical implementation, and the only modifications
necessary are in the directional dynamics.

The implementation on a Khepera robot demonstrates that
the approach, in spite of its mathematical sophistication, is
suited for low-level robotic units with uncalibrated sensors
and a fairly simple control system, as is typical of the dy-
namical systems approach. Here, obstacle sensing is provided
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Fig. 5. Sequence depicting robot movement in a parcours unknown at
starting time. The oscillator radius is adapted according to eq. (12), and the
movement time approaches that of the undisturbed case shown in Fig. 4.

by the Khepera’s built-in infrared sensors with a maximum
range of approx. 8 cm. The odometry is based on the
Khepera’s wheel encoder values. For simplicity, targets were
directly represented through coordinates rather than by visual
extraction. The dynamics were integrated on an external PC,
and velocities for each wheel communicated to the unit. All
dynamics were additionaly superposed with gaussian white
noise to provide realistic conditions and ensure escape from
meta-stable states.

For the sequence generating dynamics in eq. (1), the
competitive advantages µi were chosen to depend on a set
of logical conditions bi as in eq. (2). After an initial phase
allowed for orienting towards the target, bHopf was activated
to begin the movement phase. Once the robot was as close
to the target as 6% of the original total distance, bFinal was
activated.

Fig. 4 shows a Khepera robot while approaching a target
without constraints. Initially, the oscillator radius Rh is
set according to eq. (10), i.e. the distance to the target
coordinates. The resulting trajectory is a straight line towards
the target, with a velocity profile similar to that of the initial
and final system in Fig. 2. In Fig. 5, the path towards the
target is obstructed by obstacles, which the system has no
prior knowledge about and only senses as it drives close by.
They are circumnavigated by the heading direction dynamics
in eq. (3). At the same time, the total distance needed to be
driven in the time of one oscillator cycle rises. The stabilizing
mechanism in eq. (12) thus gradually increases the radius Rh

of the oscillator and produces a velocity profile similar to that
of the variable system in Fig. 2.

Movement times for the experiment runs are, averaged
over several trials, shown in Tb. I. The setup in Fig. 5 is listed
as “Medium Disturbance”, while another course, requiring
more extensive detours, is shown under “High Disturbance”.
The total distance driven gives an overview over the demands
of both setups. Although an influence of the disturbances on
the movement time is visible, it is marginal when compared
to the relative increase in total distance driven and due both
to the system’s relaxation in phase space and physical effects.

[Tuma, Iossifidis, Schöner, ICRA 2009]



TABLE I

AVERAGE MOVEMENT TIMES (MT) IN DIFFERENT SETUPS.

Total Increase in Increase in
Setup Distance MT (s) Distance Time

driven (cm) (Factor) (Factor)

Undisturbed 72.4 12.3
Medium Disturb. 96.0 12.7 1.33 1.03
High Disturb. 109.7 12.9 1.52 1.05

C. Robustness

For obstacle avoidance and generation of movement se-
quences, a dynamics of the heading direction and a com-
petitive dynamics were employed in a modular fashion.
These building blocks maintain their original properties of
robustness with regard to their intrinsic parameters (e.g.
ν, λi) [8][19]. Concerning the velocity dynamics with its
adaptation rule, the oscillator will not relax into its foreseen
state fast enough if the value of λ is too high. Below a
corresponding threshold region, we found the system to
be stable both against changes in λ and for a variety of
representative changes in the task setup, including sudden
displacement of targets (e.g., as in Fig. 3). While a systematic
theoretic examination of robustness does not seem feasible,
a more comprehensive empirical approach such as in [13]
can be the aim of future investigations.

VII. CONCLUSION

We presented a framework for the generation and temporal
stabilization of discrete movements. Consistently formulated
within the dynamical systems approach to robotics, the pro-
posed method has the capabilities i) to initiate and terminate
discrete movement through a dynamical system for the stable
generation of sequential actions; ii) to reach a possibly
moving target while circumnavigating obstacles or dealing
with other disturbances; iii) to do this while maintaining,
as close as physically possible, an approximately constant
total movement time; iv) to be implementable on a wide
range of robotic systems for which directional dynamics and
kinematics can be formulated. We have demonstrated the
approach on a Khepera mobile unit to show its reliability
even when depending on low-level sensor information. The
use of a wheeled vehicle moving in a 2D plane with obstacles
should however be seen as one particular realization of a
more abstract problem: stabilizing movement time of discrete
movements in the presence of perturbations.

Other tasks for the future include exploiting the coupling
capabilities of the Hopf oscillator when coordinating multiple
movements and further exploring possible similarities and
necessary differences between systems generating discrete

versus rhythmic movement. Currently, we are working on
an extended implementation for a redundant robot arm with
seven degrees of freedom.
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Catching Objects in Flight
Seungsu Kim, Ashwini Shukla, and Aude Billard

Abstract—We address the difficult problem of catching in-flight
objects with uneven shapes. This requires the solution of three
complex problems: accurate prediction of the trajectory of fast-
moving objects, predicting the feasible catching configuration, and
planning the arm motion, and all within milliseconds. We follow a
programming-by-demonstration approach in order to learn, from
throwing examples, models of the object dynamics and arm move-
ment. We propose a new methodology to find a feasible catching
configuration in a probabilistic manner. We use the dynamical
systems approach to encode motion from several demonstrations.
This enables a rapid and reactive adaptation of the arm motion
in the presence of sensor uncertainty. We validate the approach in
simulation with the iCub humanoid robot and in real-world exper-
iments with the KUKA LWR 4+ (7-degree-of-freedom arm robot)
to catch a hammer, a tennis racket, an empty bottle, a partially
filled bottle, and a cardboard box.

Index Terms—Catching, Gaussian mixture model, machine
learning, robot control, support vector machines.

I. INTRODUCTION

W E consider the problem of catching fast-flying objects
on nonballistic flight trajectories: in flights that last less

than a second, with objects that have arbitrary shapes and mass,
and when the catching point is not located at the center of
mass (COM). The latter condition requires the robot to adopt a
particular orientation of the arm to catch the object at a specific
point (e.g., catching the lower part of the handle of a hammer).

Catching such an object in-flight is extremely challenging and
requires the solution to three complex problems.

1) accurate prediction of the trajectory of the objects: the fact
that an arbitrary shaped or nonrigid object yields a highly
nonlinear translational and rotational motion of the object;

2) predicting the optimal catching configuration (intercept
point): As the robot must catch the object with a particu-
lar hand orientation, this limits tremendously the possible
catching configurations;

3) fast planning of precise trajectories for the robot’s arm to
intercept and catch the object on time, given that the object
is in-flight for less than a second.
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Fig. 1. Schematic overview of the system.

Accurate prediction of the flight trajectory of the object relies
on accurate sensing, which cannot always be ensured in robotics.
This requires a frequent reestimation of the target’s location as
both robot and object move. To compensate for such inaccu-
rate sensing, we need to predict robustly the whole trajectory
of fast-moving objects against sensor noise and external pertur-
bations. At the same time, we need to constantly and rapidly
repredict a feasible catching configuration and regenerate the
desired trajectory of the robot’s arm. A schematic overview of
our framework is shown in Fig. 1.

A. Robotic Catching

A body of work has been devoted to the autonomous control of
fast movements such as catching [13], [18], [25], [28], [30]–[32],
[44], hitting flying objects [24], [37], and juggling [6], [33], [35].
We here briefly review these works with a focus on how they 1)
predict trajectories of moving objects, 2) determine the catching
posture, and 3) generate desired trajectories for the robot’s arm
and hand.

1) Object Trajectory Prediction: To catch effectively a mov-
ing object, we must predict its trajectory ahead of time. This then
serves to determine the catching point along this trajectory. Most
approaches assume a known model of the dynamics of motion.
For instance, Hong and Slotine [18] and Riley and Atkeson [32]
model the trajectory of a flying ball as a parabola and estimate
the parameters of the model recursively through least squares
optimization. Frese et al. [13] use a ballistic model incorporated
with air drag for the ball trajectories; they use it in conjunction
with an extended Kalman filter (EKF) [3] for online reestimation
of the trajectory.

Such approaches are accurate at estimating the trajectories,
but they rely on an analytical motion model for the object. In
addition, most of the study is tuned for spherical objects by
estimating only the position of the object’s COM. However, to

1552-3098 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 2. Block diagram for robotic catching.

use of new control laws based on DSs for both the estimation of
the flying trajectory of the object and for controlling the robot
motion.

The remainder of this paper is divided as follows. In
Section II, we present the technical details of the methods. In
Section III, we validate the method in simulation by using the
iCub simulator, and in a real robot by using the LWR 4+.
Section IV concludes with a summary of remaining issues that
will be addressed in future work.

II. METHODS

We start by giving an overview of our robotic catching system.
As illustrated in the schematic of Fig. 2, the system is divided
into two iterating threads. The first thread continuously pre-
dicts the object trajectory (to be introduced in Section II-A)
and iteratively updates the best-catching configuration and
catching time (see Section II-B) with each new measurement
of the flying object. The updated catching configuration is set
as the target for the robot-arm controller (see Section II-C).
The second thread, i.e., the arm controller, continuously adapts
the end-effector posture to the changes in the predicted best-
catching configuration and catching time. The arm controller
computes the trajectory of the hand in Cartesian space. In our
implementation, this trajectory is then converted into joint an-
gles by solving the IK.

We evaluate the system first in simulation by using the iCub
simulator [39]. Only the upper body of the iCub robot is con-
trolled in this experiment, i.e., we control the robot’s 7-DOF
right arm, its 3-DOF waist, and its 9-DOF hand. The simulator
uses the ODE physics engine to simulate gravity, friction, and
the interaction forces across the body structure of the robot.

Second, we validate the system in a real robotic catching
experiment by using the LWR 4+ and the 16-DOF Allegro
hand [2] as the end-effector. The repeatability of this LWR 4+
is 0.05 mm, the Cartesian reachable space volume in 3-D is

1.7 m3 , and the maximum joint velocity is 112.5–180 ◦/s. The
robot is controlled in joint positions at 500 Hz.

In the experiments with the iCub simulator, we use a hammer
and a tennis racket. For the experiments with the real LWR 4+,
we used one empty bottle and one partially filled bottle, a tennis
racket, and a cardboard box.

A. Learning the Dynamics of a Moving Object

We begin by briefly reviewing the method we developed to
estimate the dynamics of motion of the object. A complete
description of the method with a detailed comparison across
different techniques for the estimation is available in [22].

In its most generic form, the dynamics of a free-flying object
follows a second-order autonomous DS:

ξ̈ = f
(
ξ, ξ̇

)
(1)

where ξ ∈ RD denotes the state of the object (position and
orientation vector of the point of interest attached to the ob-
ject). We use quaternions to represent orientations, thus to avoid
the problem of gimbal lock and numerical drift compared with
Euler angles, and to allow for a more compact representa-
tion than rotational matrices. ξ̇ ∈ RD and ξ̈ ∈ RD denote the
first and second derivatives of ξ, respectively. N training tra-
jectories with T data points are used to model the dynamics
{{ξt,n , ξ̇t,n , ξ̈t,n}t=1...T }n=1...N .

We use support vector regression (SVR) [8] to model the
unknown function f(.). SVR [8] performs nonlinear regression
from a multidimensional input ζ = [ξ; ξ̇] ∈ R2×D to a unidi-
mensional output. As our output is multidimensional, here, we
train D SVR models, which are denoted dfSVR , d = 1, . . . , D.
After training, we obtain a regression estimate given by

ξ̈ = fSVR (ζ) =
[
dfSVR (ζ)

]
d=1...D

(2)

dfSVR (ζ) =
M∑

m=1

dαm K
(
ζ, dζm

)
+ db. (3)

Only the subset of data points ζm , m = 1 . . . M , M <=
(N × T ) is used in the regression. They are called the support
vectors and have associated coefficient αm $= 0, |αm | < C

M . C
is a regularized constant that determines a tradeoff between the
empirical risk and the regularization. In this paper, the opti-
mal value of C is determined through a grid search. The kernel
function K : RD ×RD → R is a nonlinear metric of distance
across data points. It is a key to the so-called kernel machines
such as SVR and enables the features to be extracted across
data points that would not be visible through Euclidian metrics,
such as norm 2. The choice of kernel is, therefore, of paramount
importance. In this study, we use the radial basis function (RBF)
kernel, K(ζ, ζm ) = exp(−γ‖ζ − ζm‖2) with radius γ ∈ R and
determine the optimal values for the open parameters of these
kernels through grid search.

To enable real-time tracking, the estimated model of the ob-
jects dynamics is coupled with an EKF [3] for robustness against
noisy sensing.

For the trajectory estimation of a free-flying object, simpler
models, such as a rigid-body dynamics model, can estimate very

[Kim, Shukla, Billard, 2014]
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Fig. 5. Variation of obtained trajectorieswith↵ and� . Vertical red line shows the instant of perturbationwhen the target is suddenly pushed away along positive ⇠x direction.
Negative velocities are generated in ⇠f in order to track ⇠̃f . Speed of retracting is proportional to ↵ (left) and amplitude is proportional to � (right). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Change in ↵ affecting the nature of streamlines. Larger ↵ will tend to bring the system more quickly toward the (⇠x, ⇠f ) locations seen during demonstrations.
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Fig. 7. Task reproduction with explicit and implicit coupling shown in (a) state space, (b) time variation. Dotted lines show the implicitly coupled task execution. Note the
difference in the directions from which the convergence occurs in the two cases. In the explicitly coupled execution, convergence is faster in ⇠x than in ⇠f .

At this point, it is important to distinguish our approach from
the single GMM approach of [8] mentioned in Section 3.2. Fig. 7
shows a comparison of the CDS trajectories with those obtained
using the single GMM approach, where the coupling is only

implicit. It shows the behavior when a perturbation is introduced
only on the abscissa. Clearly, in the implicitly coupled case, the
perturbation is not appropriately transferred to the unperturbed
dimension ⇠f and the motion in that space remains unchanged.
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sequences of timed actions to intercept ball
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Autonomous Robot Hitting Task Using Dynamical System Approach

Farid Oubbati, Mathis Richter, Gregor Schöner
Institut für Neuroinformatik, Ruhr-Universität Bochum

Universitätsstr. 150, 44780 Bochum, Germany
Email: {farid.oubbati, mathis.richter, gregor.schoener}@ini.rub.de

Abstract—We propose a model that autonomously generates
and flexibly organizes sequences of timed actions. The timing
of the movements is controlled by non-linear oscillators. Their
activation and deactivation is organized by a hierarchical neural-
dynamic architecture. We demonstrate the features of our model
in an exemplary robotic task where the manipulator arm keeps
hitting a ball up an inclined plane. The autonomous generation
of movement sequences is tightly coupled to visual sensory
information about the ball motion and able to adapt, on-line, to
perturbations introduced in the ball trajectory. The performance
of the proposed model is evaluated and the reactions to different
perturbations are discussed.

Index Terms—timed motor acts, attractor dynamics, behavior
sequences.

I. INTRODUCTION

Humans exhibit natural skills in all kinds of ball games
and racket sports where it is crucial to coordinate multiple
actions in time and adapt the movements, on-line, to a quickly
changing environment. For example, a typical table tennis
player needs to produce in a fraction of time a hole sequence of
actions that starts by tracking and predicting the ball trajectory,
initiating ‘at the right time’ a timed movement to hit the
ball while adapting, on the fly, the movement parameters to
changing perceptual information until executing the hit, and
finally returning to an awaiting stage to be ready for the next
interception. These actions are continuously chained together
and may be reproduced, at any time, in a new sensorial context
with new movement parameters.

In fact, this was and remains a tremendous challenge
for roboticist, because this kind of problems exemplify core
elements of autonomous actions. Many robotic demonstration
of ball batting, ball juggling, or robot table tennis often rely on
fast and accurate algorithms that fail to adapt on-line to chang-
ing sensory information (see e.g., [1], [2]). Other approaches
reproduce movements learned from human demonstrations
(e.g., for catching a moving object [3]). Although able to adapt
the movements to a changing perception are unable to generate
distinct sequence of movements. Non-linear oscillators has
been also used to generate periodic timed actions (e.g., [4]) that
can be fully synchronized with sensed events but such systems
generate, essentially, a single motor act in rhythmic fashion and
so, limited with respect to the complexity of the timed actions.
In previous robotic implementations, timed motor acts were
generated from oscillators and stabilized against sensory input
[5], [6].

In this paper, we show, in a simplified hitting task scenario,

how a set of different timed actions can be organized in
sequences and coordinated autonomously using a behavioral
organization architecture that is sensitive to timing.

II. ROBOTIC SCENARIO

An overview of our experimental setup for the ball hitting
task is shown in Fig. 1. The hitting task involves the eight
degrees of freedom (DoFs) robot arm CoRA and a colored
rubber ball (of radius 3 cm and weight 66 g) rolling on an
inclined plane placed in front of the robot. The robotic arm
holds a small racket (10.5 cm in diameter) that is used to hit
the ball. The robot is equipped with a vision system that tracks
and predicts the ball trajectory. The hitting on the approaching
ball occurs at a virtual hitting line “just in time” driving the
ball back up the inclined plane.

Fig. 1. Graphical overview of the experimental setup.

Ideally, the ball is hit continuously and kept in play or on
the inclined plane at all times. The hitting region is constrained
by safety limits set on both sides of the hitting line (marked
with a checkerboard pattern in Fig. 1) to prevent the real robot
from colliding the inclined plane left and right borders.

During task execution, different measures of the ball motion
are continuously monitored or updated by the robot’s vision
system. These include a prediction of the ball landing position
along the hitting line, which specify the ball hitting point (xhp).
In addition, the hitting movement is initiated only if the xhp is
tested to be inside the reachable hitting region of the robot by
the parameter breachable ∈ [−1, 1]. The last measure expresses
the time needed for the ball to reach the hitting line and refered
here as the time-to-impact (ttim). These parameters control the
initiation of the hitting movement when the xhp time is within
a ttim criterion and the ball is inside the robot’s hitting region.

A. Task Movements Description

The task movements are designed to accommodate the
hardware setup while respecting the manipulator’s limitations
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timing from oscillator, whose cycle time is adjusted 
to perceived time to contact 

H(x, y) =

(

λ −ω
ω λ

)(

x− r − xinit

y

)

−
(

(x− r − xinit)
2 + y2

)

(

x− r − xinit

y

)

,

(4)

Where r = 1

2
(xtarget − xinit) is the oscillator radius which

defines the harmonic trajectory range of the timing variable
x. In phase space, the Hopf cycle is shifted along the x-
axis by r and the initial movement state xinit, so that the
variable x smoothly rises from xinit to the movement target
xtarget during the oscillatory regime. The parameter λ = r2

sets the oscillator radius and the oscillator intrinsic frequency
ω defines the movement full cycle time T = 2π

ω
.

The dynamics in Eq. 3 are augmented by a Gaussian white
noise term, η, that guarantees escape from unstable states and
assures robustness to the system.

B. Movement Time Adaptation

The target location xtarget of a timed movement is usually a
varying prediction based on low level and often noisy sensory
information. Therefore, to ensure the correct timing, the move-
ment must be parametrically updating while it is in execution.
While xtarget can be updated in Eq. 4, the cycle time T is
adapted to accelerate or decelerate the movement accordingly
so that the overall execution time is stabilized. Assuming a
linear time to space relationship during the oscillatory regime,
T is set to satisfy the ratio

T

2dinit
=

ttim

d(t)
. (5)

where dinit is the initial distance to the target as the
movement starts, and d(t) = |xtarget − x| is the remaining
distance to the target.

C. Neural Dynamic Architecture for Behavioral Organization

In terms of movements generation, the timed movements
described in in Section II-A represent timed behaviors. In order
to initiate and terminate the different behaviors at appropriate
instants in time, a form of behavioral organization is required.
For that purpose, a neural dynamic architecture is built upon
a framework for behavioral organization previously introduced
in a grasping task [7]. The framework is based on Dynamic
Field Theory (DFT) which is a variant of the attractor dynam-
ics approach to embodied cognition [8].

Within DFT, behaviors are considered as elementary behav-

iors (EB) and modeled in a common way based on elements of
DFT. An EB consists of two parts, intention and a condition of

satisfaction (CoS) each of which represented by a dynamical
node and a dynamical neural field (DNF) pair. The intention
node, when active, models the intention to execute the EB.
The intention field encodes the EB target location and permits
the agent to execute the behavior. The CoS field receives
inputs both from the intention field (representing the behavior
target) and from the sensory system (describing the current
state of the agent). If the two inputs overlap, a peak forms in
the CoS field signaling the successful completion of the EB.

Fig. 4. A movement module is used to generate the timed movement behavior.
The “update” and “move” EBs can be activated or deactivated through the
colored intention ‘i’ and CoS ‘c’ nodes while the “fix” EB is always active
by task input ‘t’. Behavioral constraints are set through a supression ‘s’ and
preconiditon ‘p’ nodes.

The peak activates the CoS node, which in turn inhibits the
intention node, switching off the EB.

1) Movement Module: The two dynamic regimes described
in Section III-A express two behaviors. (1) A movement
behavior where the end-effector executes the timed trajectory
during the oscillatory regime. (2) A fixation behavior that
stabilizes the end-effector at a postural state after a movement.
Furthermore, we need to update the initial state xinit of the
movement before starting the behavior. The update process
allows to start the behavior from the current real end-effector
state xreal (read from the hardware sensory) and so, start the
timed movement from any position along the movement di-
mension. The update can be performed by an update behavior.

These three EBs are integrated in a movement module (see
Fig. 4). To generate a timed movement behavior, the movement
module must be activated. First, the “update” EB updates
the initial state of the movement through the intention node
output (i.e., the sigmoided activation) cupdate = 1 by the single
attractor dynamical system

ẋinit = −cupdate a(xinit − xreal), (6)

where a > 0 sets the attraction strength. The initial
oscillator radius rinit in Eq. 5 is memorized similarly. Then,
the “move” EB switches the timed movements dynamics in
Eq. 3 from the postural to the oscillatory regime by the
intention node output chopf = 1 (while cpost = 0) to generate
the timed behavior. Moreover, the “move” EB intention field
u(x, t) encodes the movement target location xtarget which can
extracted by reading the peak position [9] using

ẋtarget = −

(
∫

σ(u(x, t))dx

)

xtarget+

∫

xtarget×σ(u(x, t))dx,

(7)
where σ(.) is a sigmoid function. Finally, the “fix” EB

intention node cpost = 1 (while chopf = 0) switches back
the dynamics to the postural regime when the target state is
reached or if the movement module is deactivated. Structurally,
the “fix” EB does not have a CoS node and field since it
caracterizes a postural state. To ensure the correct sequencing
of the EBs, behavioral constraints modeled as dynamical nodes
are set. A precondition constraint is set between the “update”
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sets the oscillator radius and the oscillator intrinsic frequency
ω defines the movement full cycle time T = 2π

ω
.

The dynamics in Eq. 3 are augmented by a Gaussian white
noise term, η, that guarantees escape from unstable states and
assures robustness to the system.

B. Movement Time Adaptation

The target location xtarget of a timed movement is usually a
varying prediction based on low level and often noisy sensory
information. Therefore, to ensure the correct timing, the move-
ment must be parametrically updating while it is in execution.
While xtarget can be updated in Eq. 4, the cycle time T is
adapted to accelerate or decelerate the movement accordingly
so that the overall execution time is stabilized. Assuming a
linear time to space relationship during the oscillatory regime,
T is set to satisfy the ratio

T

2dinit
=

ttim

d(t)
. (5)

where dinit is the initial distance to the target as the
movement starts, and d(t) = |xtarget − x| is the remaining
distance to the target.

C. Neural Dynamic Architecture for Behavioral Organization

In terms of movements generation, the timed movements
described in in Section II-A represent timed behaviors. In order
to initiate and terminate the different behaviors at appropriate
instants in time, a form of behavioral organization is required.
For that purpose, a neural dynamic architecture is built upon
a framework for behavioral organization previously introduced
in a grasping task [7]. The framework is based on Dynamic
Field Theory (DFT) which is a variant of the attractor dynam-
ics approach to embodied cognition [8].

Within DFT, behaviors are considered as elementary behav-

iors (EB) and modeled in a common way based on elements of
DFT. An EB consists of two parts, intention and a condition of

satisfaction (CoS) each of which represented by a dynamical
node and a dynamical neural field (DNF) pair. The intention
node, when active, models the intention to execute the EB.
The intention field encodes the EB target location and permits
the agent to execute the behavior. The CoS field receives
inputs both from the intention field (representing the behavior
target) and from the sensory system (describing the current
state of the agent). If the two inputs overlap, a peak forms in
the CoS field signaling the successful completion of the EB.

Fig. 4. A movement module is used to generate the timed movement behavior.
The “update” and “move” EBs can be activated or deactivated through the
colored intention ‘i’ and CoS ‘c’ nodes while the “fix” EB is always active
by task input ‘t’. Behavioral constraints are set through a supression ‘s’ and
preconiditon ‘p’ nodes.

The peak activates the CoS node, which in turn inhibits the
intention node, switching off the EB.

1) Movement Module: The two dynamic regimes described
in Section III-A express two behaviors. (1) A movement
behavior where the end-effector executes the timed trajectory
during the oscillatory regime. (2) A fixation behavior that
stabilizes the end-effector at a postural state after a movement.
Furthermore, we need to update the initial state xinit of the
movement before starting the behavior. The update process
allows to start the behavior from the current real end-effector
state xreal (read from the hardware sensory) and so, start the
timed movement from any position along the movement di-
mension. The update can be performed by an update behavior.

These three EBs are integrated in a movement module (see
Fig. 4). To generate a timed movement behavior, the movement
module must be activated. First, the “update” EB updates
the initial state of the movement through the intention node
output (i.e., the sigmoided activation) cupdate = 1 by the single
attractor dynamical system

ẋinit = −cupdate a(xinit − xreal), (6)

where a > 0 sets the attraction strength. The initial
oscillator radius rinit in Eq. 5 is memorized similarly. Then,
the “move” EB switches the timed movements dynamics in
Eq. 3 from the postural to the oscillatory regime by the
intention node output chopf = 1 (while cpost = 0) to generate
the timed behavior. Moreover, the “move” EB intention field
u(x, t) encodes the movement target location xtarget which can
extracted by reading the peak position [9] using

ẋtarget = −

(
∫

σ(u(x, t))dx

)

xtarget+

∫

xtarget×σ(u(x, t))dx,

(7)
where σ(.) is a sigmoid function. Finally, the “fix” EB

intention node cpost = 1 (while chopf = 0) switches back
the dynamics to the postural regime when the target state is
reached or if the movement module is deactivated. Structurally,
the “fix” EB does not have a CoS node and field since it
caracterizes a postural state. To ensure the correct sequencing
of the EBs, behavioral constraints modeled as dynamical nodes
are set. A precondition constraint is set between the “update”
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and workspace constraints. As the approaching ball becomes
reachable (breachable = 1), a timed movement is initiated and
brings the racket positions xeef and yeef to the predicted xhp.
When the ball ttim reaches a time threshold, a second timed
movement moves the racket azimuth orientation φeef and hit
the ball.

Once the ball is hit, the racket φeef is brought to the initial
orientation while yeef position moves back to the base line.
Simultaneously, a tracking movement is executed along the
base line with the aim to be as close possible to the predicted
xhp for the next ball hitting. While in the tracking movement,
the robot is ready to start another timed movements sequence
to hit the ball whenever the vision system signals a predicted
xhp and ttim satisfying the task conditions.

The timed movements sequence is interrupted if the ball
falls out of the inclined plane after a miss, thus no more
detected by the vision system, or if the ball is reflected before a
hit occurs. Furthermore, these timed movements are sequenced
autonomously (see Section III) allowing a flexible re-initiation
able to accommodate any sudden change in the ball perceptual
information.

B. Ball Tracking and Prediction

The robot’s cameras module tracks the ball on the inclined
plane by means of a color based tracking process (see Fig. 2).
Based on the position measurements and on a discrete model
of the ball motion, a linear Kalman filter is used to estimate
the ball velocity and predict the ball motion. The hitting point
xhp is computed as the intersection between the ball heading
vector and the hitting line while the time-to-impact ttim is
approximated using the motion model.

Fig. 2. Overview of the color-based segmentation process.

C. Inverse Kinematics

CoRA is composed of a series of roll and pitch joints (see
Fig. 3). This special structure allows the use of a closed from
solution for the inverse kinematics. Such a solution is always
preferable for real time control of robots.

Fig. 3. CoRA arm configuration with the relevant coordinate systems.

To respect CoRA’s work space constraints during hitting,
the end-effector elevation ϑeef is set to 0◦ while the elbow
posture, defined through the elbow angle β, is set to 102.5◦.

Given the desired racket positions xeef and yeef, the wrist
vector $rwst can be computed and from which the joint angles
θi=0..4 are determined using a straight forward solution.

Having the robot’s maximum speed limitation and to
achieve higher speed in the timed hitting movements, the
manipulator hand segment $rh is controlled alone to perform
the actual hit so that only two joints, θ5 and θ6, are involved.
The desired azimuth φeef controls separately the hand segment
$rh orientation using the formula

$rh = Rφeef
z · (êxlh), (1)

where lh denotes the hand segment length, Rz is a rotation
matrix around z-axis of a coordinate frame Σwst attached to
the wrist, and êx ∈ R3 represents the x-axis unit vector. The
orientation of the hand segment $rh permits to compute the joint
angles θ5 and θ6.

To continuously ensure that the racket is correctly oriented
during the hitting, the normal unit vector n̂ must be kept always
parallel to the inclined plane. The joint θ7 is computed from
the gripper vector $rg given by

$rg = $rh × (Rα
x · êz), (2)

where α defines the plane inclination, Rx is a rotation
matrix about the world frame Σb x-axis, and êz ∈ R3

represents the z-axis unit vector.

III. MOVEMENTS TRAJECTORIES GENERATION

To implement the task movements described in Sec-
tion II-A, We propose a model able to generate autonomously
sequences of timed movements.

A. Timed Movement Dynamics

To generate the trajectory of a timed movement, a dynam-
ical system is used. The dynamical system for the pair of
timing variables (x , y) combines two regimes of operation
controlled by the “neurons” cpost, chopf ∈ [0, 1] and permits the
end-effector to start a movement from a postural state toward a
target position within a desired movement duration. The time
course of the variables x and y is governed by

τ

(

ẋ
ẏ

)

= −cpost a

(

x− xpost

y

)

+ chopf H(x, y) + η, (3)

where the timing variable x defines the end-effector state at
any time (here, the end-effector xeef, yeef positions and azimuth
orientation φeef) and y is an auxiliary variable. These states
are characterized by a time scale τ . In the postural regime
(cpost = 1; chopf = 0), the timing variable x relaxes to the
fixed point attractor xpost with a strength set by the term a > 0.
Through the Hopf term H(x, y), the oscillatory regime (cpost =
0; chopf = 1) stabilizes a periodic solution along a limit cycle
attractor. The term H(x, y) specifies the normal form of the
Hopf bifurcation and is modified as follows

404940494043
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Timing and behavioral organization

coupled neural dynamics to organize the sequence

Fig. 5. The neural dynamic architecture for timed movements generation and behavioral organization.

where v̂i is the predicted velocity of the ball at the hitting
point. From n̂ = (nx , ny)T we can compute the desired racket
orientation φdes = arctanny/nx at the hitting point. To obtain
the correct orientation φdes, the cycle time of the “Move hand
forward” EB is adpated using Eq. 5 with d(t) = |φdes − φeef|.

IV. EVALUATION & RESULTS

In this section, we will illustrate the core properties of the
proposed model both in a physically realistic Matlab simula-
tion of the complete setup and in a hardware implementation.
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Fig. 6. Trajectories of the ball and the racket in a successful ball hit.

From simulation, Fig. 6 shows that the robot was able to hit
the ball successfully. The detailed time courses of the relevant
variables and parameters are shown in Fig. 7. When the ball
becomes reachable for hitting at t ≈ 2.56 s (i.e., breachable set
to 1), the intention node of the ‘move to ball (mtb)’ EB turns
on and drives the end-effector xeef and yeef positions toward
the predicted xhp. Then, as the ball approaches, the current
time-to-impact becomes smaller then the variable threshold
about t ≈ 3.95 s at which the intention node of the ‘move
hand forward (mhf)’ EB gets activated and starts the end-
effector φeef movement that hits the ball at t ≈ 4.42 s. Once
the hitting occures, the ball is driven backup and becomes no
more reachable (i.e., breachable set to -1). Finally, the intention
nodes of the ‘move hand backward (mhb)’ and ‘move to base
line (mtbl)’ EBs switch on and drive the end-effector φeef and
yeef back to their initial postures.
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Fig. 7. Trajectories of the relevant parameters and variables for the
autonomous successful ball hit and return to the base line. The top three plots
represents ball reachability test parameter, time-to-impact and time courses of
the sequential EB intention nodes. The bottom three plots illustrate the timed
end-effector xeef, yeef and φeef trajectories.

In Fig. 8(a), we can see how the model allowed the robot
to abort the hitting movements sequence when a ball reflection
occurred during the robot movement. The robot was also
able to re-initiate a supplementary hitting sequence when the
ball became again reachable after a hit with a non-sufficient
momentum as can be seen in Fig. 8(b). In the case the the ball
is deviated as in Fig. 8(c), the robot was able to accelerate the
movement and successfully hit the ball.

In the hardware implementation , the robot was able to
keep the ball in play and perform several consecutive hitting
sequences as shown in Fig. 9 and in TABLE I where some
statistical data are gathered for 25 trials. Fig. 10 shows
snapshots of the robot manipulator during a successful ball
hit.
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rolls down the inclined plane. It is stored in a neural
activation field, which serves as a low-pass filter and is
used to control the ‘approach’ ECU. The time-to-impact
is used to control the ‘hit’ ECU, activating it whenever
the time-to-impact falls below a threshold.
E. Motor system

The motor system (lower right box in Fig. 2) re-
ceives input from the dynamical systems that control the
robotic arm. The dynamical systems described in Eq. 5
generate trajectories for the racket movement variables
x, y and φ in task space that are defined in the coordinate
system of the inclined plane. They are first transformed
to a world reference frame centered at the base of the
robot and then converted into joint angles using an
inverse kinematics transformation. Those joint angles
drive joint servo-controllers for the robot arm.

IV. Evaluation & Results
We have implemented the architecture both on a

real robotic platform (see Fig. 1) and in a physically
realistic Matlab simulation.1 Experimental results from
the robotic implementation are demonstrated in the
video associated with this paper. We used the simulation
environment to evaluate the performance of the system
both quantitatively, for many trials, and qualitatively, in
single situations that demonstrate its core properties.

For a quantitative evaluation, we ran a trial in which
the robot had to drive the ball up the inclined plane
(without obstacles) as often as possible. The trial con-
sisted of 1000 hitting sequences, where a new sequence
was started after every failure to hit the ball. For each
such hitting sequence, the number of consecutive hits
was counted. At the beginning of each sequence, the ball
was reintroduced into the scene with a random speed
([0.6 m, 0.8 m]) and launching angle ([95◦, 120◦]). If the
ball landed inside safety margins at the left and right
borders of the inclined plane, which the real robotic arm
cannot reach due to safety provisions, the ball was re-
injected without restarting the hit counter.

For a plane inclination of 5◦, the success rate for
hitting is 95.44 percent, with a mean of 20.94 consecutive
hits among all sequences. For a steeper inclination of 10◦,
the success rate is 92.43 percent, with a mean of 12.21
hits.

In the remainder of this section, we will illustrate
the core properties of the proposed model using results
of characteristic individual simulations of the complete
robotic scenario.

The trajectories in Fig. 5 demonstrate that the robot is
able to hit the ball successfully. Detailed time courses of
the relevant variables and parameters are shown in Fig. 6.
At t = 0 s, the ball is launched upwards from the bottom
of the inclined plane. At t ≈ 2.56 s, the ball starts rolling
down and the vision system provides a prediction of the

1The source code of the simulation is freely available for down-
load at http://neuraldynamics.eu.

0 100 200 300 400 500 600 700 800
−100

0

100

200

300

400

500

600

700

inclined plane x−axis [mm] 

in
cl

in
ed

 p
la

ne
 y
−a

xi
s [

m
m

]

 

 
racket
ball

                  hitting point
racket

Fig. 5: Trajectories of the ball and the racket for a
successful hit. The brown line shows the racket orien-
tation, φ, at the moment of the hit.

Fig. 6: Time courses of meaningful variables of the
architecture during a successful hit. From top to bottom,
the plots show (1) whether a prediction for the ball
hitting point is available, (2) the time-to-impact, (3) the
activation of the intention nodes of ECUs, (4,5) the x-
and y-positions of the racket, and (6) the orientation φ
of the racket.

rolls down the inclined plane. It is stored in a neural
activation field, which serves as a low-pass filter and is
used to control the ‘approach’ ECU. The time-to-impact
is used to control the ‘hit’ ECU, activating it whenever
the time-to-impact falls below a threshold.
E. Motor system

The motor system (lower right box in Fig. 2) re-
ceives input from the dynamical systems that control the
robotic arm. The dynamical systems described in Eq. 5
generate trajectories for the racket movement variables
x, y and φ in task space that are defined in the coordinate
system of the inclined plane. They are first transformed
to a world reference frame centered at the base of the
robot and then converted into joint angles using an
inverse kinematics transformation. Those joint angles
drive joint servo-controllers for the robot arm.

IV. Evaluation & Results
We have implemented the architecture both on a

real robotic platform (see Fig. 1) and in a physically
realistic Matlab simulation.1 Experimental results from
the robotic implementation are demonstrated in the
video associated with this paper. We used the simulation
environment to evaluate the performance of the system
both quantitatively, for many trials, and qualitatively, in
single situations that demonstrate its core properties.

For a quantitative evaluation, we ran a trial in which
the robot had to drive the ball up the inclined plane
(without obstacles) as often as possible. The trial con-
sisted of 1000 hitting sequences, where a new sequence
was started after every failure to hit the ball. For each
such hitting sequence, the number of consecutive hits
was counted. At the beginning of each sequence, the ball
was reintroduced into the scene with a random speed
([0.6 m, 0.8 m]) and launching angle ([95◦, 120◦]). If the
ball landed inside safety margins at the left and right
borders of the inclined plane, which the real robotic arm
cannot reach due to safety provisions, the ball was re-
injected without restarting the hit counter.

For a plane inclination of 5◦, the success rate for
hitting is 95.44 percent, with a mean of 20.94 consecutive
hits among all sequences. For a steeper inclination of 10◦,
the success rate is 92.43 percent, with a mean of 12.21
hits.

In the remainder of this section, we will illustrate
the core properties of the proposed model using results
of characteristic individual simulations of the complete
robotic scenario.

The trajectories in Fig. 5 demonstrate that the robot is
able to hit the ball successfully. Detailed time courses of
the relevant variables and parameters are shown in Fig. 6.
At t = 0 s, the ball is launched upwards from the bottom
of the inclined plane. At t ≈ 2.56 s, the ball starts rolling
down and the vision system provides a prediction of the

1The source code of the simulation is freely available for down-
load at http://neuraldynamics.eu.
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Fig. 5: Trajectories of the ball and the racket for a
successful hit. The brown line shows the racket orien-
tation, φ, at the moment of the hit.

Fig. 6: Time courses of meaningful variables of the
architecture during a successful hit. From top to bottom,
the plots show (1) whether a prediction for the ball
hitting point is available, (2) the time-to-impact, (3) the
activation of the intention nodes of ECUs, (4,5) the x-
and y-positions of the racket, and (6) the orientation φ
of the racket.

(a) Trajectory of the racket when the ball is reflected by an
obstacle during the racket movement. The thin black lines
show the unperturbed trajectories of the ball and the racket.

(b) A new hitting movement sequence is initiated while the
end-effector is still moving back to the reference configuration.

(c) Trajectory of the racket when the ball is deviated by an
obstacle during the racket movement. The thin black lines
show the unperturbed trajectories of the ball and the racket.

(d) Trajectory of the racket when the ball is perturbed by
many obstacles during the racket movement.

Fig. 7: Trajectories of the ball and racket for characteristic individual simulations of the robotic scenario.

hitting point and the time-to-impact. The intention node
of the ‘approach’ ECU turns on and drives the end-
effector toward the predicted hitting point along the x-
axis and y-axis. As the ball approaches the hitting point
and the time-to-impact falls below the variable threshold
(at t ≈ 3.95 s), the intention node of the ‘hit’ ECU gets
activated. This initiates a timed hitting movement of
the racket orientation, φ, the racket hitting the ball at
t ≈ 4.42 s. The hit drives the ball back up the inclined
plane, removing the prediction of the hitting point of
the ball prediction. The intention nodes of the ECUs
‘return from hit’ and ‘return/track’ switch on and initiate
movements that drive the racket orientation, φ, back
to the initial orientation and the x- and y-position of
the end-effector back to the initial posture. At the same
time, the end-effector starts tracking the ball along the

horizontal axis.
We now demonstrate in four scenarios the character-

istics of our model in generating and flexibly organizing
sequences of timed movements. Each scenario consists of
a different kind of perturbations on the ball trajectory.

In the first scenario, shown in Fig. 7a, the ball is
reflected by an obstacle while the end-effector is mov-
ing toward the predicted hitting point. The model au-
tonomously reacts to this perturbation by aborting the
hitting movement sequence and initiating a movement
back to the initial posture, ready to initiate the next
hitting movement.

The second scenario (Fig. 7b) shows that the model is
able to activate a new hitting sequence even while still
moving back to the initial posture. This may for instance
occur after a successful hit that was however not strong
enough to drive the ball far enough up the incline.

[Oubbati, Richter, Schöner, 2013]
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rolls down the inclined plane. It is stored in a neural
activation field, which serves as a low-pass filter and is
used to control the ‘approach’ ECU. The time-to-impact
is used to control the ‘hit’ ECU, activating it whenever
the time-to-impact falls below a threshold.
E. Motor system

The motor system (lower right box in Fig. 2) re-
ceives input from the dynamical systems that control the
robotic arm. The dynamical systems described in Eq. 5
generate trajectories for the racket movement variables
x, y and φ in task space that are defined in the coordinate
system of the inclined plane. They are first transformed
to a world reference frame centered at the base of the
robot and then converted into joint angles using an
inverse kinematics transformation. Those joint angles
drive joint servo-controllers for the robot arm.

IV. Evaluation & Results
We have implemented the architecture both on a

real robotic platform (see Fig. 1) and in a physically
realistic Matlab simulation.1 Experimental results from
the robotic implementation are demonstrated in the
video associated with this paper. We used the simulation
environment to evaluate the performance of the system
both quantitatively, for many trials, and qualitatively, in
single situations that demonstrate its core properties.

For a quantitative evaluation, we ran a trial in which
the robot had to drive the ball up the inclined plane
(without obstacles) as often as possible. The trial con-
sisted of 1000 hitting sequences, where a new sequence
was started after every failure to hit the ball. For each
such hitting sequence, the number of consecutive hits
was counted. At the beginning of each sequence, the ball
was reintroduced into the scene with a random speed
([0.6 m, 0.8 m]) and launching angle ([95◦, 120◦]). If the
ball landed inside safety margins at the left and right
borders of the inclined plane, which the real robotic arm
cannot reach due to safety provisions, the ball was re-
injected without restarting the hit counter.

For a plane inclination of 5◦, the success rate for
hitting is 95.44 percent, with a mean of 20.94 consecutive
hits among all sequences. For a steeper inclination of 10◦,
the success rate is 92.43 percent, with a mean of 12.21
hits.

In the remainder of this section, we will illustrate
the core properties of the proposed model using results
of characteristic individual simulations of the complete
robotic scenario.

The trajectories in Fig. 5 demonstrate that the robot is
able to hit the ball successfully. Detailed time courses of
the relevant variables and parameters are shown in Fig. 6.
At t = 0 s, the ball is launched upwards from the bottom
of the inclined plane. At t ≈ 2.56 s, the ball starts rolling
down and the vision system provides a prediction of the

1The source code of the simulation is freely available for down-
load at http://neuraldynamics.eu.
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Fig. 5: Trajectories of the ball and the racket for a
successful hit. The brown line shows the racket orien-
tation, φ, at the moment of the hit.

Fig. 6: Time courses of meaningful variables of the
architecture during a successful hit. From top to bottom,
the plots show (1) whether a prediction for the ball
hitting point is available, (2) the time-to-impact, (3) the
activation of the intention nodes of ECUs, (4,5) the x-
and y-positions of the racket, and (6) the orientation φ
of the racket.

rolls down the inclined plane. It is stored in a neural
activation field, which serves as a low-pass filter and is
used to control the ‘approach’ ECU. The time-to-impact
is used to control the ‘hit’ ECU, activating it whenever
the time-to-impact falls below a threshold.
E. Motor system

The motor system (lower right box in Fig. 2) re-
ceives input from the dynamical systems that control the
robotic arm. The dynamical systems described in Eq. 5
generate trajectories for the racket movement variables
x, y and φ in task space that are defined in the coordinate
system of the inclined plane. They are first transformed
to a world reference frame centered at the base of the
robot and then converted into joint angles using an
inverse kinematics transformation. Those joint angles
drive joint servo-controllers for the robot arm.

IV. Evaluation & Results
We have implemented the architecture both on a

real robotic platform (see Fig. 1) and in a physically
realistic Matlab simulation.1 Experimental results from
the robotic implementation are demonstrated in the
video associated with this paper. We used the simulation
environment to evaluate the performance of the system
both quantitatively, for many trials, and qualitatively, in
single situations that demonstrate its core properties.

For a quantitative evaluation, we ran a trial in which
the robot had to drive the ball up the inclined plane
(without obstacles) as often as possible. The trial con-
sisted of 1000 hitting sequences, where a new sequence
was started after every failure to hit the ball. For each
such hitting sequence, the number of consecutive hits
was counted. At the beginning of each sequence, the ball
was reintroduced into the scene with a random speed
([0.6 m, 0.8 m]) and launching angle ([95◦, 120◦]). If the
ball landed inside safety margins at the left and right
borders of the inclined plane, which the real robotic arm
cannot reach due to safety provisions, the ball was re-
injected without restarting the hit counter.

For a plane inclination of 5◦, the success rate for
hitting is 95.44 percent, with a mean of 20.94 consecutive
hits among all sequences. For a steeper inclination of 10◦,
the success rate is 92.43 percent, with a mean of 12.21
hits.

In the remainder of this section, we will illustrate
the core properties of the proposed model using results
of characteristic individual simulations of the complete
robotic scenario.

The trajectories in Fig. 5 demonstrate that the robot is
able to hit the ball successfully. Detailed time courses of
the relevant variables and parameters are shown in Fig. 6.
At t = 0 s, the ball is launched upwards from the bottom
of the inclined plane. At t ≈ 2.56 s, the ball starts rolling
down and the vision system provides a prediction of the

1The source code of the simulation is freely available for down-
load at http://neuraldynamics.eu.

0 100 200 300 400 500 600 700 800
−100

0

100

200

300

400

500

600

700

inclined plane x−axis [mm] 

in
cl

in
ed

 p
la

ne
 y
−a

xi
s [

m
m

]

 

 
racket
ball

                  hitting point
racket

Fig. 5: Trajectories of the ball and the racket for a
successful hit. The brown line shows the racket orien-
tation, φ, at the moment of the hit.

Fig. 6: Time courses of meaningful variables of the
architecture during a successful hit. From top to bottom,
the plots show (1) whether a prediction for the ball
hitting point is available, (2) the time-to-impact, (3) the
activation of the intention nodes of ECUs, (4,5) the x-
and y-positions of the racket, and (6) the orientation φ
of the racket.

(a) Trajectory of the racket when the ball is reflected by an
obstacle during the racket movement. The thin black lines
show the unperturbed trajectories of the ball and the racket.

(b) A new hitting movement sequence is initiated while the
end-effector is still moving back to the reference configuration.

(c) Trajectory of the racket when the ball is deviated by an
obstacle during the racket movement. The thin black lines
show the unperturbed trajectories of the ball and the racket.

(d) Trajectory of the racket when the ball is perturbed by
many obstacles during the racket movement.

Fig. 7: Trajectories of the ball and racket for characteristic individual simulations of the robotic scenario.

hitting point and the time-to-impact. The intention node
of the ‘approach’ ECU turns on and drives the end-
effector toward the predicted hitting point along the x-
axis and y-axis. As the ball approaches the hitting point
and the time-to-impact falls below the variable threshold
(at t ≈ 3.95 s), the intention node of the ‘hit’ ECU gets
activated. This initiates a timed hitting movement of
the racket orientation, φ, the racket hitting the ball at
t ≈ 4.42 s. The hit drives the ball back up the inclined
plane, removing the prediction of the hitting point of
the ball prediction. The intention nodes of the ECUs
‘return from hit’ and ‘return/track’ switch on and initiate
movements that drive the racket orientation, φ, back
to the initial orientation and the x- and y-position of
the end-effector back to the initial posture. At the same
time, the end-effector starts tracking the ball along the

horizontal axis.
We now demonstrate in four scenarios the character-

istics of our model in generating and flexibly organizing
sequences of timed movements. Each scenario consists of
a different kind of perturbations on the ball trajectory.

In the first scenario, shown in Fig. 7a, the ball is
reflected by an obstacle while the end-effector is mov-
ing toward the predicted hitting point. The model au-
tonomously reacts to this perturbation by aborting the
hitting movement sequence and initiating a movement
back to the initial posture, ready to initiate the next
hitting movement.

The second scenario (Fig. 7b) shows that the model is
able to activate a new hitting sequence even while still
moving back to the initial posture. This may for instance
occur after a successful hit that was however not strong
enough to drive the ball far enough up the incline.

[Oubbati, Richter, Schöner, 2013]



Timing and reorganization of 
movement



Conclusion

timing in autonomous robotics is best 
framed as a problem of stable oscillators and 
their coupling 



Conclusion

timing is linked to many 
problems 


arriving “just in time”, estimating time to 
contact


on line updating: planning and timing 
tightly connected


timed movement sequences: behavioral 
organization  


coordinating timing across movements, 
coarticulation


timing and control 

coordination:
relative timing

absolute 
timing

biomechanical
contribution to
timing

external
mechanical
contribution
to timing

external 
perceptual 
contribution
to timing


