Timing and
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In vehicle motion planning

B movement is generated through a
“behavioral dynamics™ that is in closed loop
with the environment

M taking into account (possibly time varying)
constraints from the perceived environment

B time to reach the target was not a
constraint.. and not controlled/stabilized



Reaching movements of an arm

B reaching movements may be generated in
open loop.. by an internal “neural” dynamics

M generate movements that are “timed”, that is,

M they arrive “on time”
B the are coordinated across different effectors

M the are coordinated with moving objects (e.g., catching)

B timing implies some form of anticipation...



How is timing done in
conventional robotics?

® conventional motion planning:

B compute/design the movement plan, parameterized by a
path variable

B then rescale that path variable to generate a desired
timing profile

B which the robotic controller must track



Conventional robotic timing

B paths may be planned in joint or end-effector space
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[Lynch, Park, 2017 (Chapter 9)] X(5) = Xtart + 5(Xend — Xstart), s € [0, 1].



Conventional robotic timing

B paths are more generally planned in the space of
robot arm reconfigurations “screws”
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Conventional robotic timing

B time scaling

S(t) — Qo -+ Cth -+ CL2t2 —+ a3t3. X (s) = Xstart +8(Xend — Xstart), s € [0,1].
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B compute parameters to achieve a particular
movement time T, with zero velocity at target

[Lynch, Park, 2017 (Chapter 9)]



Conventional robotic timing

B time scaling: 5th order polynomial
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B compute parameters to achieve a particular
movement time T, with zero velocity and zero
acceleration at target

[Lynch, Park, 2017 (Chapter 9)]



Conventional robotic timing
B time scaling: ramps
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Figure 9.5: Plots of s(t) and $(¢) for a trapezoidal motion profile.

B time scaling: smoothed ramps
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[Lynch, Park, 2017 (Chapter 9)]



Conventional robotic timing

B time scaling: taking limits on acceleration into

account
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How is timing done in
autonomous robotics!?

M all of these methods require detailed models
of the task and make demands on the
control system... to guarantee soft
arrival....

M in autonomous robotics: use more robust
heuristics



Timing in autonomous robotics

B Koditschek’s juggling robot:

M physical dynamics of bouncing ball modeled... state estimated
based on vision, actuator inserts a perturbation so that a periodic
solution (limit cycle) results

M ball is kept within reach by conventional P control from contact
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Timing in autonomous robotics

B Raibert’s hopping robots

B dynamics bouncing robot
modeled... actuator inserts a
term into that dynamics so
that a periodic solution (limit

cycle) results

M robot is kept upright by
controlling leg angle to
achieve particular horizontal
position for Center of Mass




Generalization to bipedal/
quadrupedal locomotion

B template...oscillator at macro-level..

M anchor... kinematics at joint/actuator level

[Full Koditschek 99]
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Timing in autonomous robotics

® Raibert’s bio-dog
B expand that idea to coordination among limbs

M => technical variant
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Timing in autonomous robotics

https://www.youtube.com/
watch?v=M8YjvHYb./Z9w



https://www.youtube.com/watch?v=M8YjvHYbZ9w
https://www.youtube.com/watch?v=M8YjvHYbZ9w

Some ideas from human
movement

B timing
M absolute vs relative timing
B coordination

B coupled oscillators



Relative vs. absolute timing

activation

threshold A

relative phase=DT/T



Absolute timing

B examples: music, prediction,
estimating time

B typical task: tapping

B self-paced vs. externally paced



Human performance
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Theoretical account for absolute timing

B (neural) oscillator autonomously
generates timing signal, from which
timing events emerge

B => |imit cycle oscillators

B = clocks



Limit cycle oscillator: Hopf
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Neural oscillator

M relaxation = —u+ h,+ w,f@) — w,f(v)
oscillator W= —v+ h + w, fQ),
AU (solid), v (dashed) A u (solid), v (dashed)
. - [Amari 77]
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Clocks

B hour glasses are also oscillators

B but:it is critical to include the “resetting”

A activation a clock
threshold
time
>
event | event 2 event 3

[from: Schoner, Brain & Cogn 48:31 (2002)]



Neural oscillator
accounts for variance
of absolute timing

[Schoner 2002]
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Relative timing: movement
coordination

B |ocomotion, interlimb and intralimb
B speaking

B mastication

B music production

B .. approximately rhythmic



Examples of coordination of
temporally discrete acts:

B reaching and grasping
® bimanual manipulation

B coordination among fingers during
grasp
B catching, intercepting



Definition of coordination

B Coordination is the maintenance of
stable timing relationships between
components of voluntary movement.

B Operationalization: recovery of
coordination after perturbations

B Example: speech articulatory work
(Gracco,Abbs, 84; Kelso et al, 84)

B Example: action-perception patterns



Is movement always timed/
coordinated?

® No, for example:

B [ocomotion: whole body
displacement in the plane

M in the presence of obstacles takes longer

B delay does not lead to compensatory acceleration

B but coordination is pervasive...

B e.g., coordinating grasp with reach



Two basic patterns of
coordination

B in-phase

B synchronization, moving through like phases
simultaneously

B e.g, gallop (approximately)

® anti-phase or phase alternation
B syncopation

Beg,trott



An instability in rhythmic
movement coordination

B switch from
anti-phase to
in-phase as
rhythm gets
faster

Kelso, 1984

A finger trajectories
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Instability

EMG

-

1stDI st DI

B experiment
involves finger
movement

B no mechanical coupling B

R FDI

M constraint of maximal
frequency irrelevant Lol

M => pure neurallly based
coordination

Schoner, Kelso (Science, 1988)



Instability

B frequency imposed by metronomes
and varied in steps

B either start out in-phase or anti-
phase
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computation
of continuous

relative phase
(Scholz, 1990)
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Measures of stability

B variance: fluctuations in time are an
index of degree of stability

B stochastic perturbations drive system away from the
coordinated movement

M the less resistance to such perturbations, the larger
the variance



Measures of stability

B relaxation time

M time need to recover from an outside perturbation

M e.g., mechanically perturb one of the limbs, so that
relative phase moves away from the mean value, then
look how long it takes to go back to the mean pattern

B the less stable, the longer relaxation time



data example
perturbation of
fingers and
relative phase

Scholz, Kelso, Schoner, 1987
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Signatures of instability

A variability of relati\(e phase
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Neuronal process for coordination

B each component is driven by a
neuronal oscillator

B their excitatory coupling leads to in-
phase

B their inhibitory coupling leads to
anti-phase



Coordination from coupling

A
activation

® coordination=stable relative /\
timing emerges from coupling 4 /,
/

time

of neural oscillators ,

/
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[Schoner:Timing, Clocks, and Dynamical Systems. Brain and Cognition 48:31-51 (2002)]



Movement timing

® marginal stability of phase 4 do/dt =1(0)

enables stabilizing relative
timing while keeping trajectory
unaffected

phase neutrally
stable (l)

>

phase
stabilized
by coupling

[Schoner:Timing, Clocks, and Dynamical Systems. Brain and Cognition 48:31-51 (2002)]



Dynamical systems account of
instability

4 rate of change of relative phase
low
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- <=
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high
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Predicts increase in variance

rate of change of relative phase :
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Predicts increase in relaxation time

B “critical
slowing
down’

rate of change of relative phase

A
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phase movement
frequency

relaxation time
A

>
movement
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=> coordination from coupled
oscillators



Learn from these ideas for
robotics’

Btimed reaching that stabilizes timing in
response to perturbations



Timed movement to intercept ball

Btiming from an oscillator
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[Schoner, Santos, 2001 ]




B the oscillator is turned on and off for a
single cycle
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timing variables
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[Schoner, Santos, 2001 ]



Timed movement to intercept ball

EMturn oscillator on in response to detected
ball at right time to contact

timing variables
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Compensating for lost time

Bplan to reach target at fixed time

Brecover time as obstacle forces longer
path
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[ Tuma, lossifidis, Schoner, ICRA 2009]




Compensating for lost time

Phase plot Velocity profile
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Catching

(1) Object trajectory
prediction o, o

.. ﬂ..‘
Reachable space Measurement point %
of iCub robot ‘
-«
\ (2) Best catching pose

prediction

(3) Hand-arm control

[Kim, Shukla, Billard, 20 14]



Broadcasting object postures
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[Kim, Shukla, Billard, 2014]



B coupled dynamical systems approach
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[Shukla, Billard, 2012]



video

B https://youtu.be/M4 | 3[LWvrbl?t=3



Timing and behavioral organization

H sequences of timed actions to intercept ball

4, Camera system

robot manipulator CoRA

inclined plane

A\

- 0.98m

[Oubatti, Richter, Schoner, 201 3]



Timing and behavioral organization

® timing from oscillator, whose cycle time is adjusted
to perceived time to contact

T r—x
- <> = Cpon @ ( Post> + chopt H (x,y) + 1,

Y Y
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[Oubatti, Richter, Schoner, 201 3]



Timing and behavioral organization

® coupled neural dynamics to organize the sequence
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Timed movement with online
updating [Faroud Oubatti]
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Timing and reorganization of
movement

hitting action f |
after ball reflection




Conclusion

® timing in autonomous robotics is best
framed as a problem of stable oscillators and
their coupling



Conclusion

B timing is linked to many
problems

B arriving “just in time”, estimating time to
contact

B on line updating: planning and timing i - o
AN

absolute
timing

tightly connected o

to timing

B timed movement sequences: behavioral
organization

coordination:
relative timing

external

. . .. mal

. coordlnatlng tlmlng aCross movements, U g)‘j]‘ingmfoa
coarticulation to timing

biomechanical
contribution to
timing

B timing and control



