Timing and coordination

Gregor Schöner

In vehicle motion planning

- movement is generated through a "behavioral dynamics" that is in closed loop with the environment
- taking into account (possibly time varying) constraints from the perceived environment
- time to reach the target was not a constraint.. and not controlled/stabilized

Reaching movements of an arm

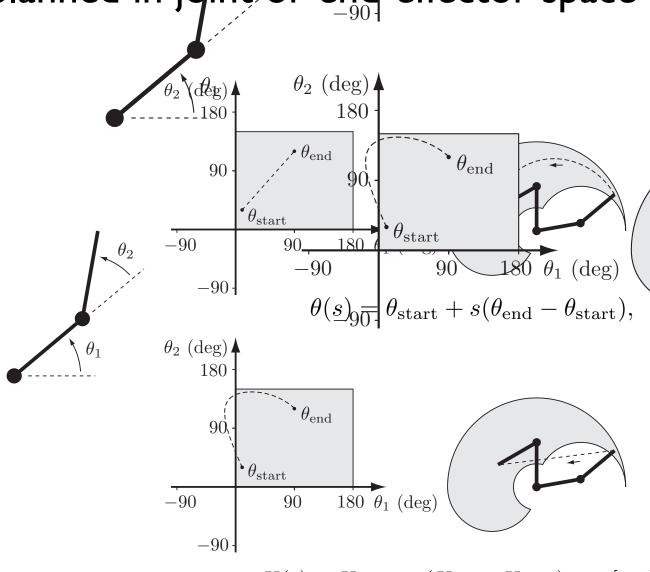
- reaching movements may be generated in open loop.. by an internal "neural" dynamics
- generate movements that are "timed", that is,
 - they arrive "on time"
 - the are coordinated across different effectors
 - the are coordinated with moving objects (e.g., catching)
- timing implies some form of anticipation...

How is timing done in conventional robotics?

- conventional motion planning:
 - compute/design the movement plan, parameterized by a path variable
 - then rescale that path variable to generate a desired timing profile
 - which the robotic controller must track

Conventional robotic⁹⁰

paths may be planned in joint or end-effector space



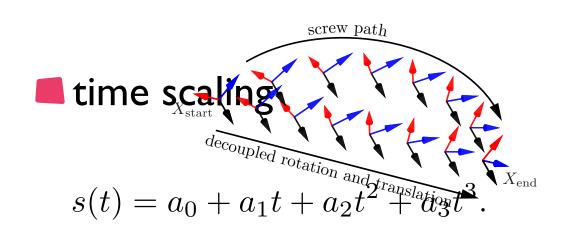
$$X(s) = X_{\text{start}} + s(X_{\text{end}} - X_{\text{start}}), s \in [0, 1].$$

Conventional robotic timing

paths are more generally planned in the space of robot arm reconfigurations "screws"

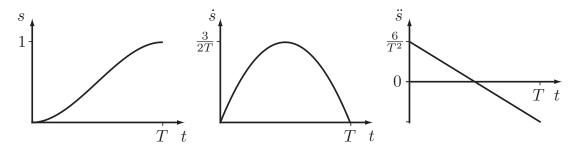


Conventional robotic-timing



$$X(s) = X_{\text{start}} + s(X_{\text{end}} - X_{\text{start}}), s \in [0, 1].$$

$$\theta(s) = \theta_{\text{start}} + s(\theta_{\text{end}} - \theta_{\text{start}}),$$

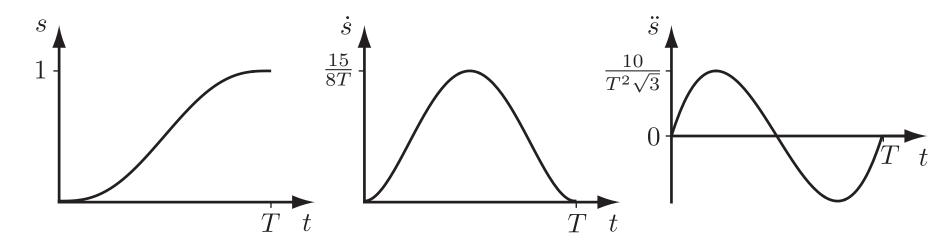


compute parameters to achieve a particular movement time T, with zero velocity at target

[Lynch, Park, 2017 (Chapter 9)]

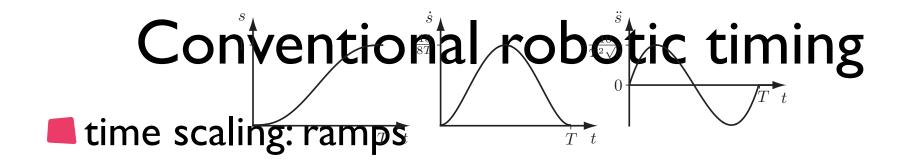
Conventional robotic timing

time scaling: 5th order polynomial



compute parameters to achieve a particular smovement time T, with zero velocity and zero acceleration at target

[Lynch, Park, 2017 (Chapter 9)]



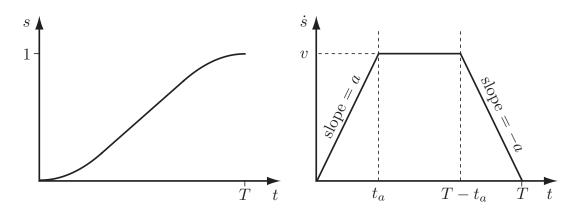
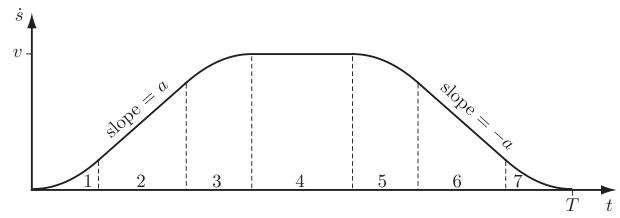


Figure 9.5: Plots of s(t) and $\dot{s}(t)$ for a trapezoidal motion profile.

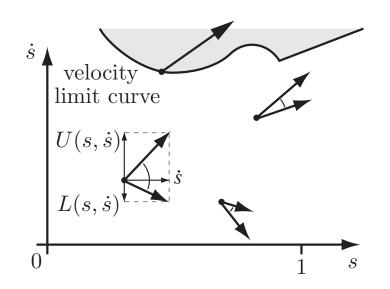
time scaling: smoothed ramps

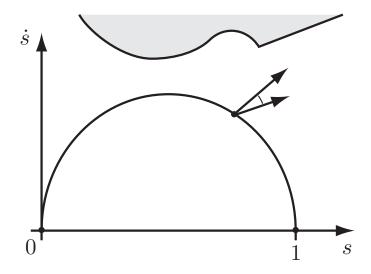


[Lynch, Park, 2017 (Chapter 9)]

Conventional robotic timing

time scaling: taking limits on acceleration into account



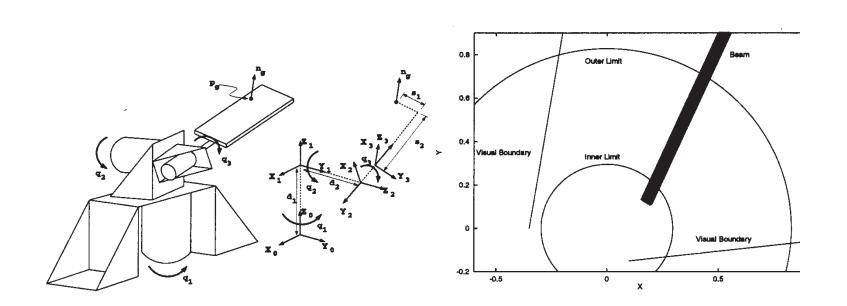


How is timing done in autonomous robotics?

- all of these methods require detailed models of the task and make demands on the control system... to guarantee soft arrival....
- in autonomous robotics: use more robust heuristics

Timing in autonomous robotics

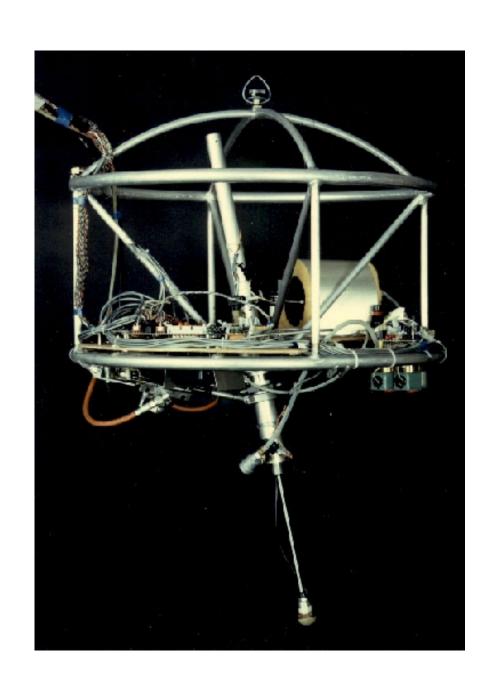
- Koditschek's juggling robot:
 - physical dynamics of bouncing ball modeled... state estimated based on vision, actuator inserts a perturbation so that a periodic solution (limit cycle) results
 - ball is kept within reach by conventional P control from contact



Timing in autonomous robotics

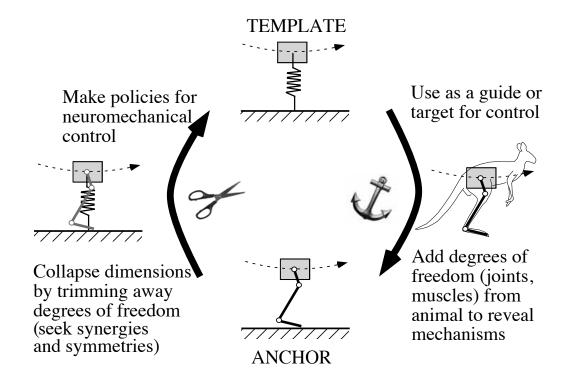
Raibert's hopping robots

- dynamics bouncing robot modeled... actuator inserts a term into that dynamics so that a periodic solution (limit cycle) results
- robot is kept upright by controlling leg angle to achieve particular horizontal position for Center of Mass



Generalization to bipedal/ quadrupedal locomotion

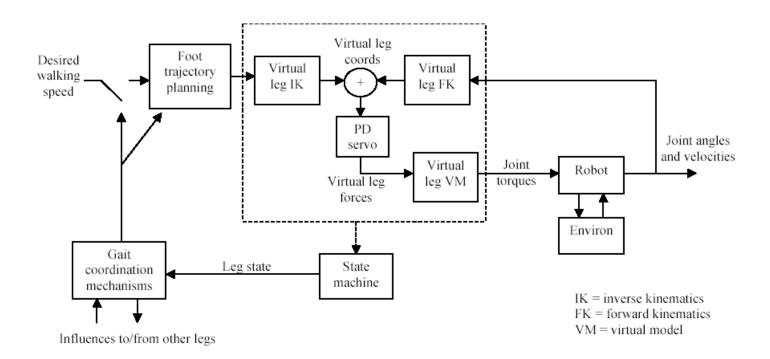
- template...oscillator at macro-level..
- anchor... kinematics at joint/actuator level



[Full Koditschek 99]

Timing in autonomous robotics

- Raibert's bio-dog
 - expand that idea to coordination among limbs
- => technical variant



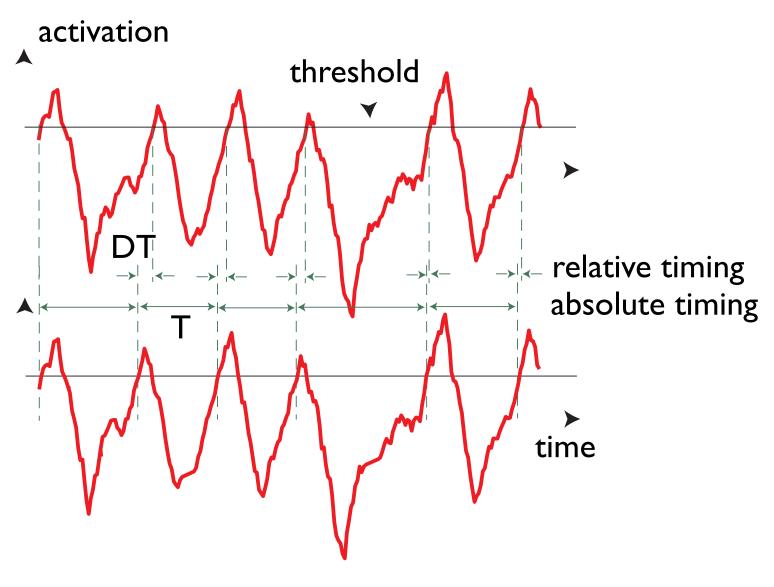
Timing in autonomous robotics

https://www.youtube.com/
watch?v=M8YjvHYbZ9w

Some ideas from human movement

- timing
- absolute vs relative timing
- coordination
- coupled oscillators

Relative vs. absolute timing



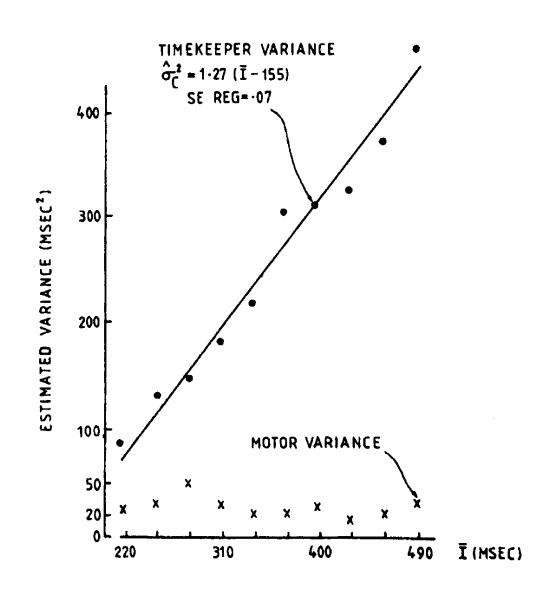
relative phase=DT/T

Absolute timing

- examples: music, prediction, estimating time
- typical task: tapping
- self-paced vs. externally paced

Human performance

- on absolute timing is impressive
- smaller variance than5% of cycle time in continuation paradigm



[Wing, 1980]

Theoretical account for absolute timing

- (neural) oscillator autonomously generates timing signal, from which timing events emerge
- => limit cycle oscillators
- = clocks

Limit cycle oscillator: Hopf

normal form

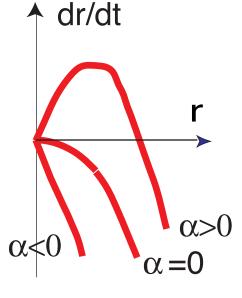
$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} \alpha & -\omega \\ \omega & \alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - (x^2 + y^2) \begin{pmatrix} x \\ y \end{pmatrix}$$

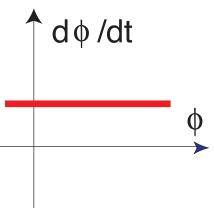
$$x = r \cos(\phi)$$

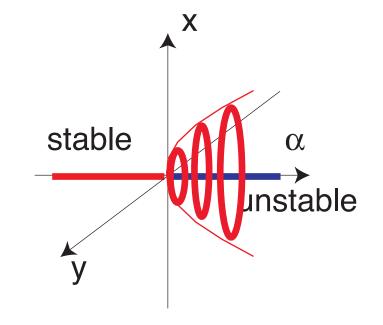
$$y = r \sin(\phi)$$

$$\dot{r} = \alpha r - r^3$$

$$\dot{\phi} = \omega$$







$$x(t) = \sqrt{\alpha} \sin(\omega t)$$

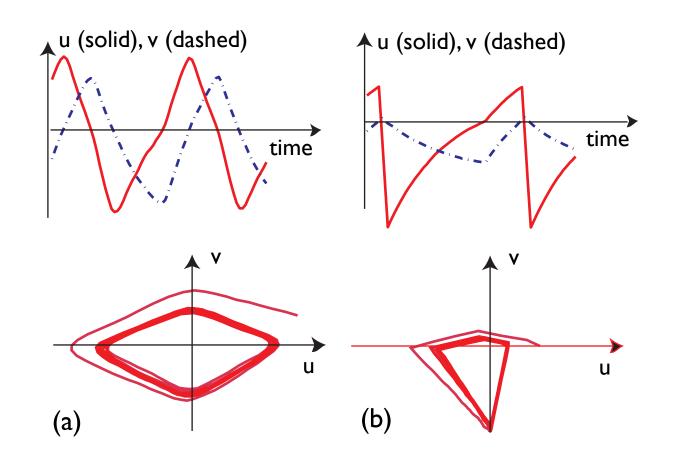
amplitude $A = \sqrt{\alpha}$
cycle time $T = 2\pi/\omega$,

Neural oscillator

relaxation oscillator

$$\tau \dot{u} = -u + h_u + w_{uu} f(u) - w_{uv} f(v)$$

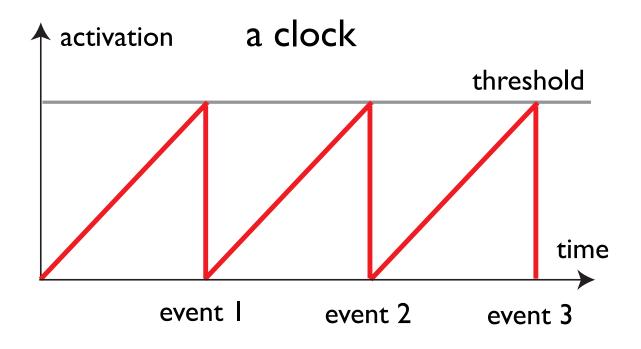
$$\tau \dot{v} = -v + h_v + w_{vu} f(u),$$



[Amari 77]

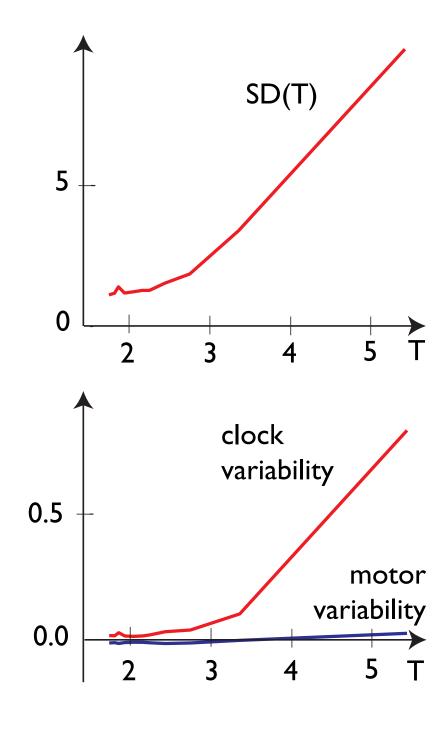
Clocks

- hour glasses are also oscillators
- but: it is critical to include the "resetting"



[from: Schöner, Brain & Cogn 48:31 (2002)]

Neural oscillator accounts for variance of absolute timing



Relative timing: movement coordination

- locomotion, interlimb and intralimb
- speaking
- mastication
- music production
- ... approximately rhythmic

Examples of coordination of temporally discrete acts:

- reaching and grasping
- bimanual manipulation
- coordination among fingers during grasp
- catching, intercepting

Definition of coordination

- Coordination is the maintenance of stable timing relationships between components of voluntary movement.
- Operationalization: recovery of coordination after perturbations
- Example: speech articulatory work (Gracco, Abbs, 84; Kelso et al, 84)
- Example: action-perception patterns

Is movement always timed/coordinated?

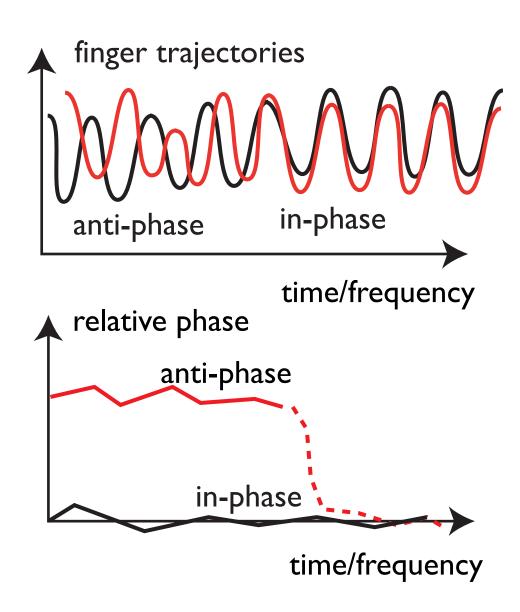
- No, for example:
- locomotion: whole body displacement in the plane
 - in the presence of obstacles takes longer
 - delay does not lead to compensatory acceleration
- but coordination is pervasive...
 - e.g., coordinating grasp with reach

Two basic patterns of coordination

- in-phase
 - synchronization, moving through like phases simultaneously
 - e.g., gallop (approximately)
- anti-phase or phase alternation
 - syncopation
 - e.g., trott

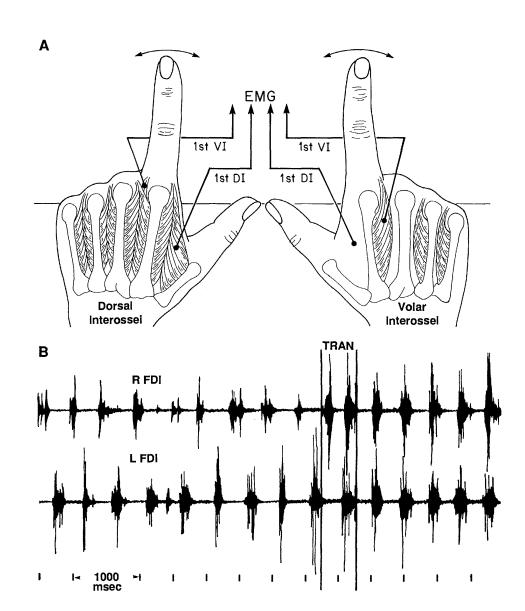
An instability in rhythmic movement coordination

switch from anti-phase to in-phase as rhythm gets faster



Instability

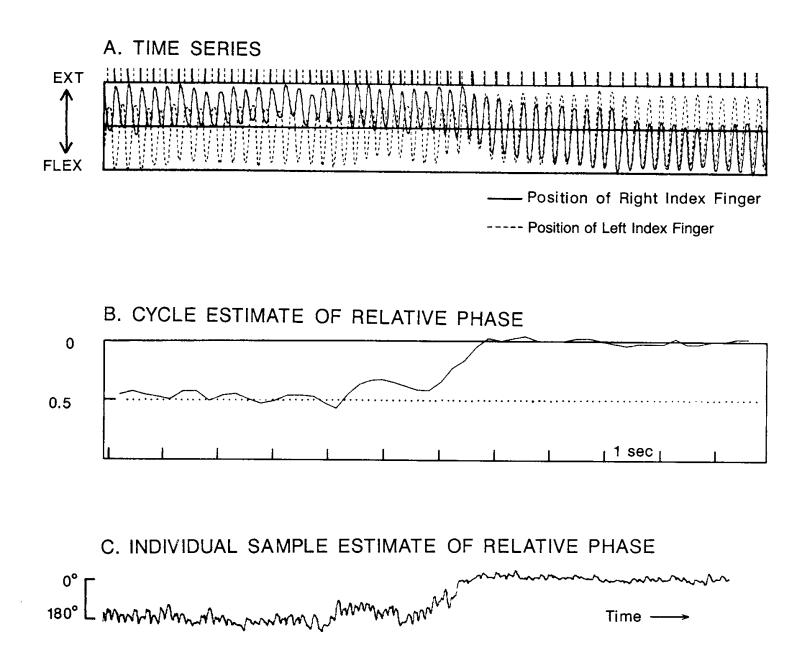
- experiment involves finger movement
 - no mechanical coupling
 - constraint of maximal frequency irrelevant
 - => pure neurally based coordination



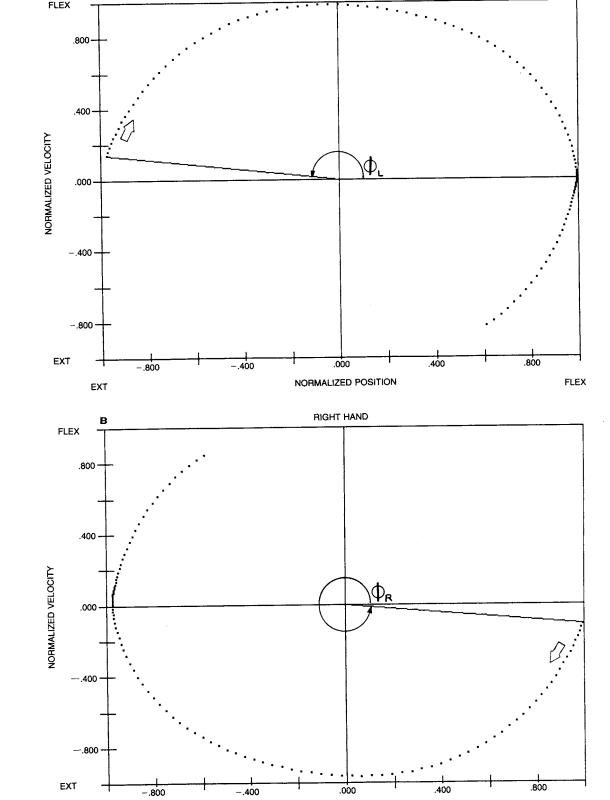
Schöner, Kelso (Science, 1988)

Instability

- frequency imposed by metronomes and varied in steps
- either start out in-phase or antiphase



data example (Scholz, 1990)



computation of continuous relative phase (Scholz, 1990)

Measures of stability

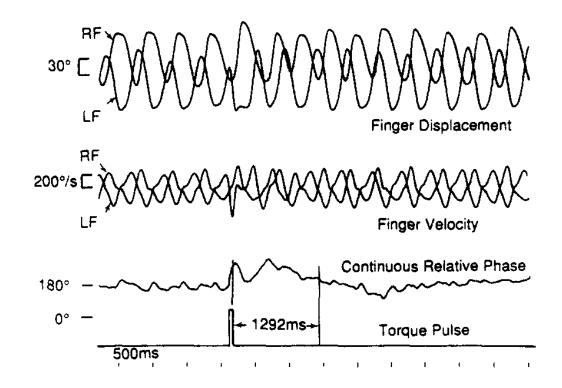
- variance: fluctuations in time are an index of degree of stability
 - stochastic perturbations drive system away from the coordinated movement
 - the less resistance to such perturbations, the larger the variance

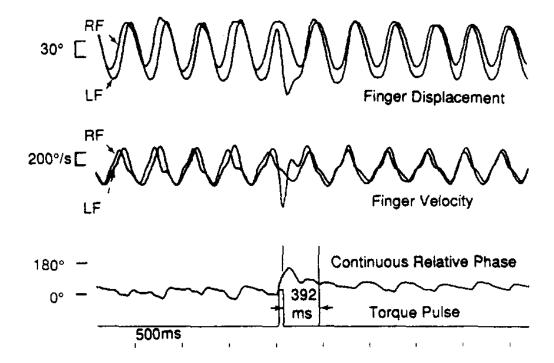
Measures of stability

relaxation time

- time need to recover from an outside perturbation
- e.g., mechanically perturb one of the limbs, so that relative phase moves away from the mean value, then look how long it takes to go back to the mean pattern
- the less stable, the longer relaxation time

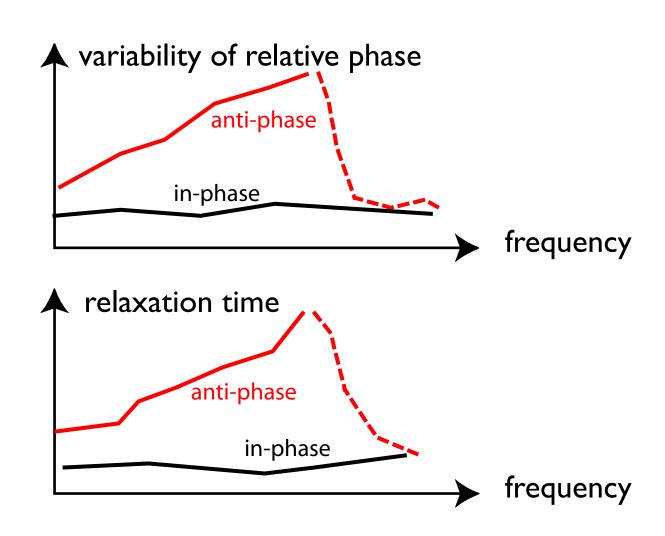
data example perturbation of fingers and relative phase

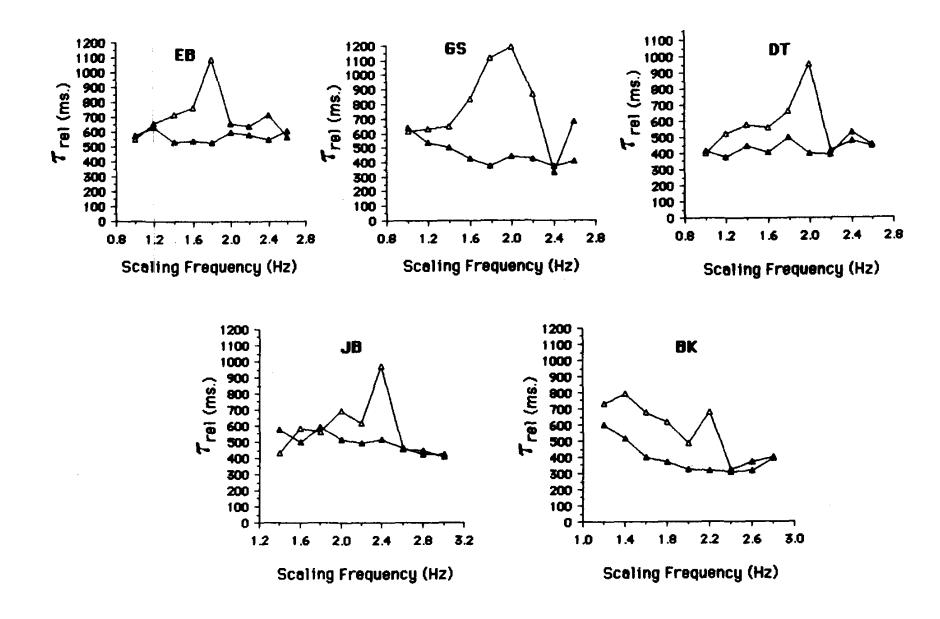




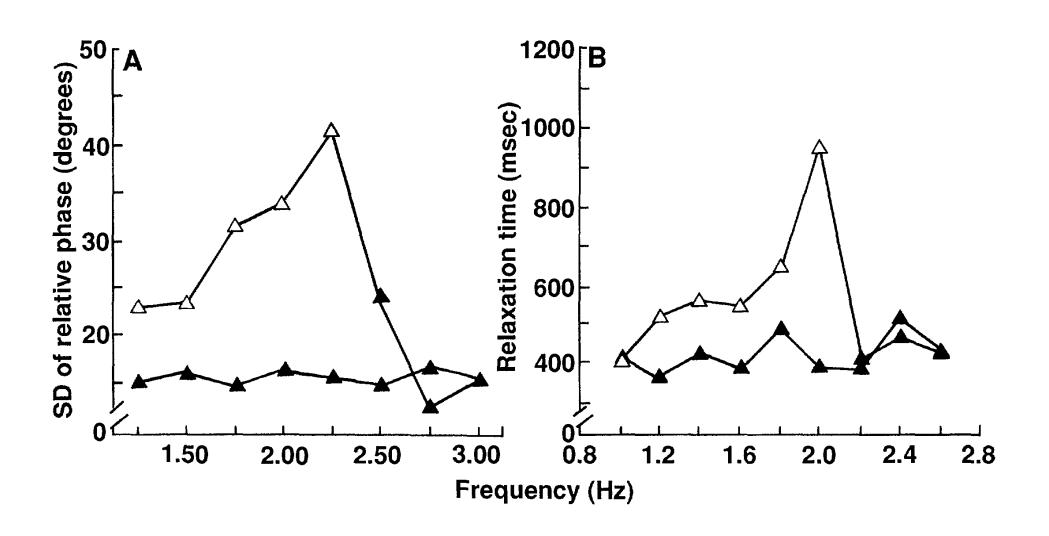
Signatures of instability

loss of stability indexed by measures of stability





relaxation times, individual data



data (averaged across subjects)

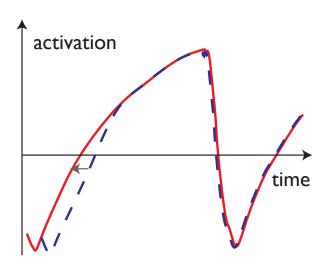
Schöner, Kelso (Science, 1988)

Neuronal process for coordination

- each component is driven by a neuronal oscillator
- their excitatory coupling leads to inphase
- their inhibitory coupling leads to anti-phase

Coordination from coupling

coordination=stable relative timing emerges from coupling of neural oscillators



$$\tau \dot{u}_{1} = -u_{1} + h_{u} + w_{uu}f(u_{1}) - w_{uv}f(v_{1})$$

$$\tau \dot{v}_{1} = -v_{1} + h_{v} + w_{vu}f(u_{1}) + cf(u_{2})$$

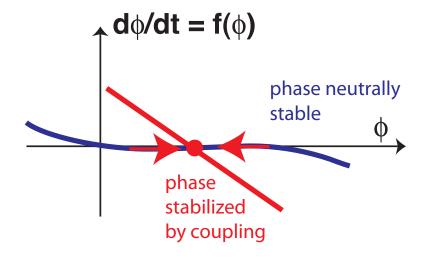
$$\tau \dot{u}_{2} = -u_{2} + h_{u} + w_{uu}f(u_{2}) - w_{uv}f(v_{2})$$

$$\tau \dot{v}_{2} = -v_{2} + h_{v} + w_{vu}f(u_{2}) + cf(u_{1})$$

[Schöner: Timing, Clocks, and Dynamical Systems. Brain and Cognition 48:31-51 (2002)]

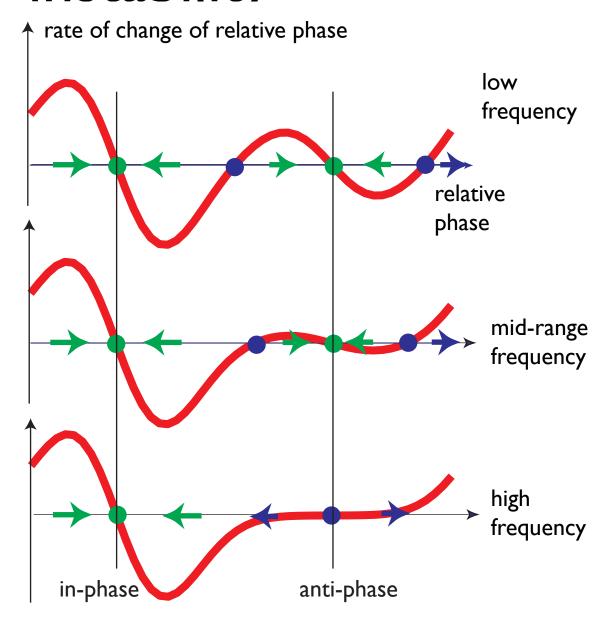
Movement timing

marginal stability of phase enables stabilizing relative timing while keeping trajectory unaffected

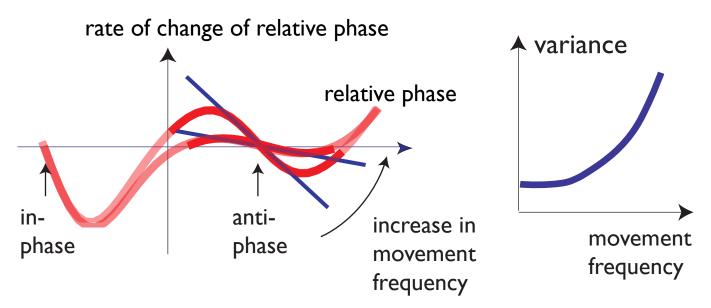


Dynamical systems account of instability

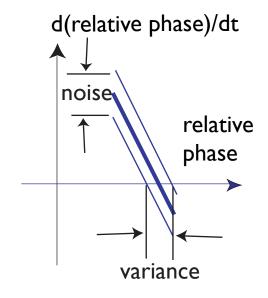
at
 increasing
 frequency
 stability of
 anti-phase
 is lost

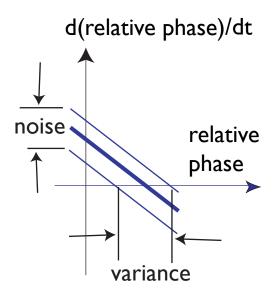


Predicts increase in variance

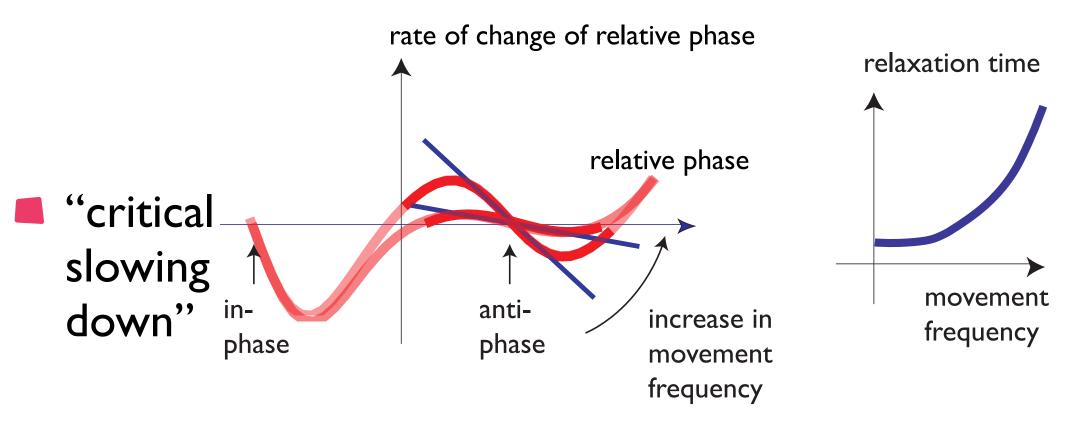


"critical fluctuations"





Predicts increase in relaxation time



=> coordination from coupled oscillators

Learn from these ideas for robotics?

timed reaching that stabilizes timing in response to perturbations

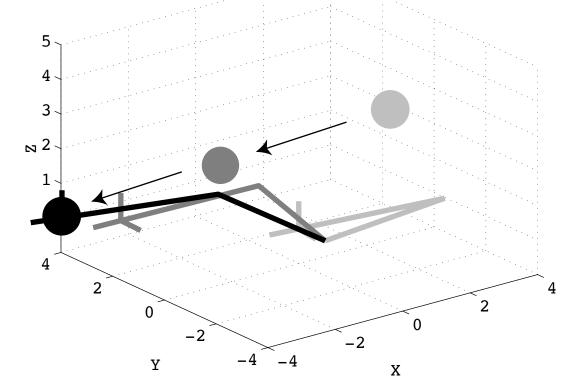
Timed movement to intercept ball

timing from an oscillator

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = -5 |u_{\text{init}}| \begin{pmatrix} x - x_{\text{init}} \\ y \end{pmatrix} + |u_{\text{hopf}}| \mathbf{f}_{\text{hopf}} - 5 |u_{\text{final}}| \begin{pmatrix} x - x_{\text{final}} \\ y \end{pmatrix} + \text{gwn}$$

$$\mathbf{f}_{\text{hopf}} = \begin{pmatrix} 2.5 - \omega \\ \omega & 2.5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - 2.5 (x^2 + y^2) \begin{pmatrix} x \\ y \end{pmatrix}$$

$$x(t) = \sin(\omega t)$$



[Schöner, Santos, 2001]

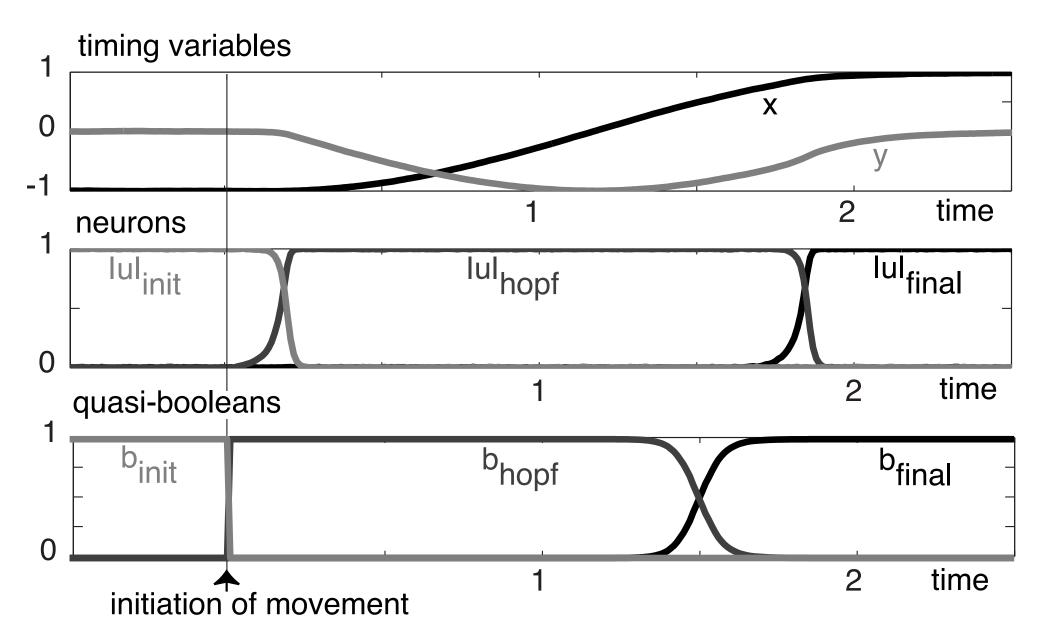
the oscillator is turned on and off for a single cycle

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = -5 |u_{\text{init}}| \begin{pmatrix} x - x_{\text{init}} \\ y \end{pmatrix} + |u_{\text{hopf}}| \mathbf{f}_{\text{hopf}} - 5 |u_{\text{final}}| \begin{pmatrix} x - x_{\text{final}} \\ y \end{pmatrix} + \text{gwn}$$

$$\alpha \, \dot{u}_{\text{init}} = |\mu_{\text{init}}| u_{\text{init}} - |\mu_{\text{init}}| u_{\text{init}}^3 - 2.1 \left(u_{\text{final}}^2 + u_{\text{hopf}}^2 \right) u_{\text{init}} + \text{gwn}$$

$$\alpha \, \dot{u}_{\text{hopf}} = |\mu_{\text{hopf}}| u_{\text{hopf}} - |\mu_{\text{hopf}}| u_{\text{hopf}}^3 - 2.1 \left(u_{\text{init}}^2 + u_{\text{final}}^2 \right) u_{\text{hopf}} + \text{gwn}$$

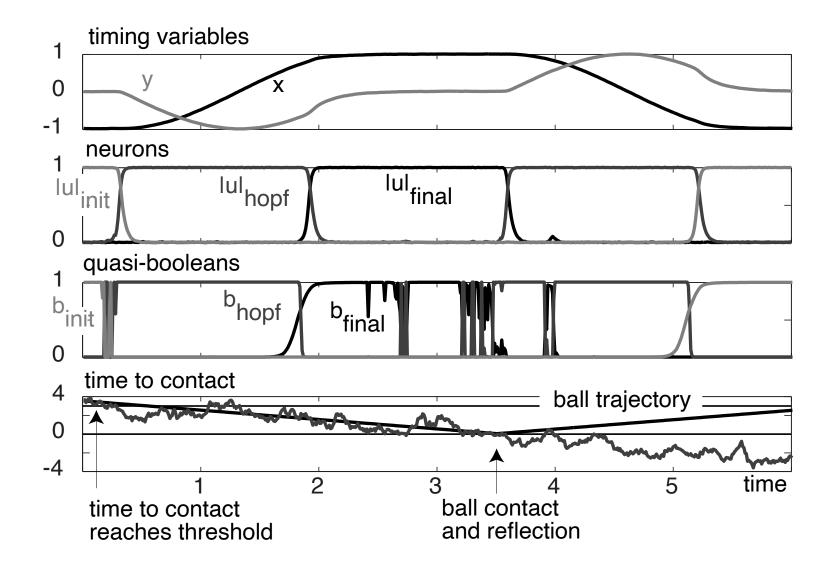
$$\alpha \, \dot{u}_{\text{final}} = |\mu_{\text{final}}| u_{\text{final}} - |\mu_{\text{final}}| u_{\text{final}}^3 - 2.1 \left(u_{\text{init}}^2 + u_{\text{hopf}}^2 \right) u_{\text{final}} + \text{gwn}$$



[Schöner, Santos, 2001]

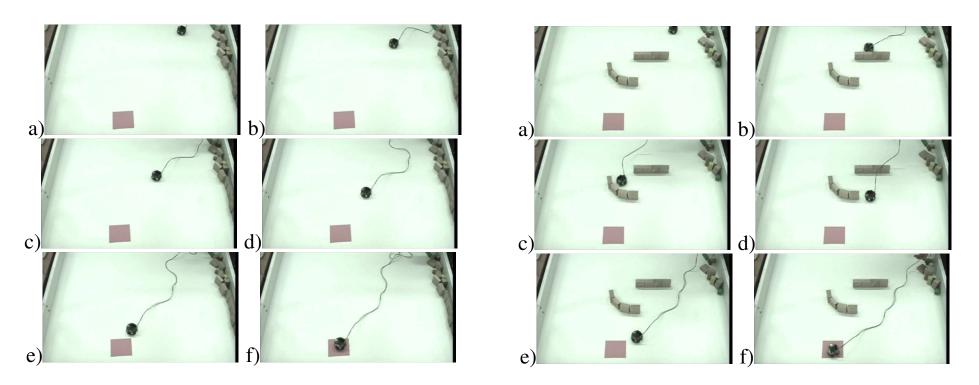
Timed movement to intercept ball

turn oscillator on in response to detected ball at right time to contact



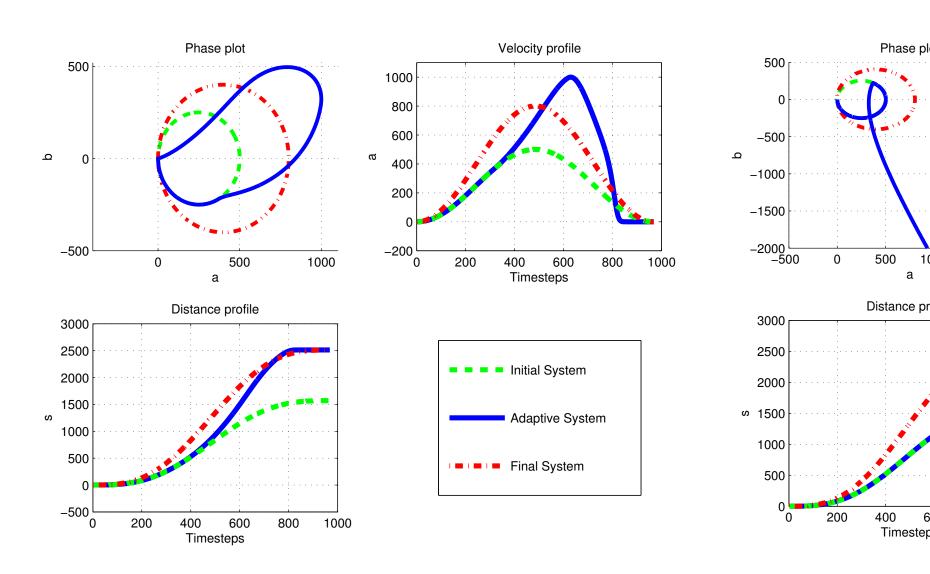
Compensating for lost time

- plan to reach target at fixed time
- recover time as obstacle forces longer path



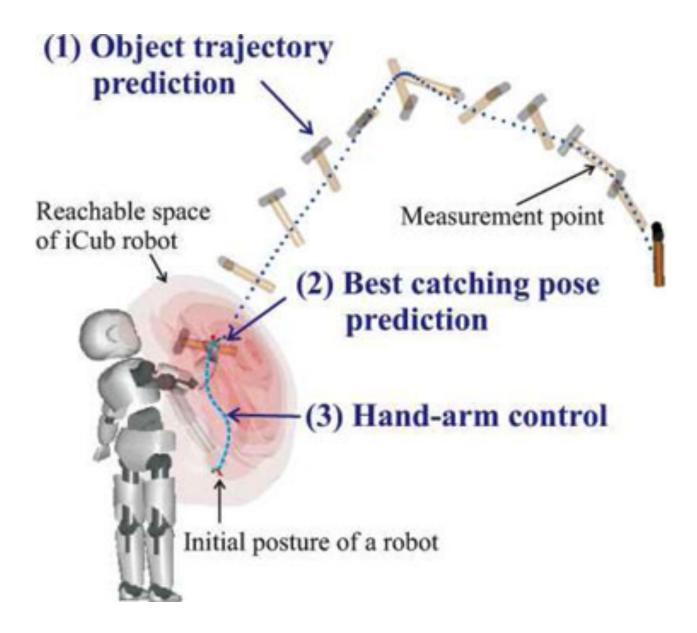
[Tuma, lossifidis, Schöner, ICRA 2009]

Compensating for lost time



[Tuma, lossifidis, Schöner, ICRA 2009]

Catching



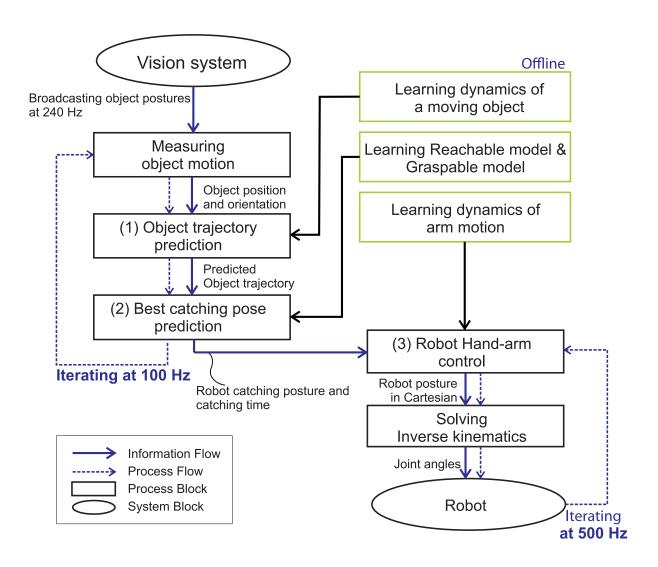
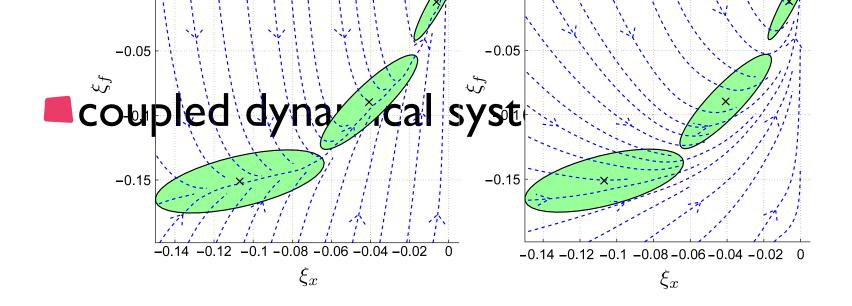
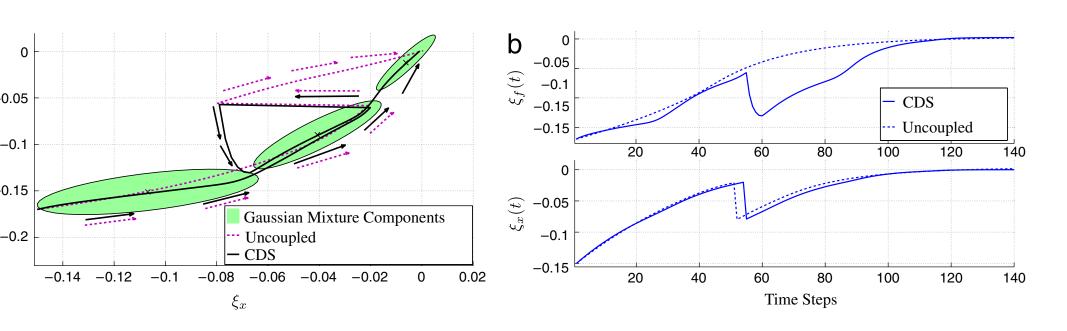


Fig. 2. Block diagram for robotic catching.





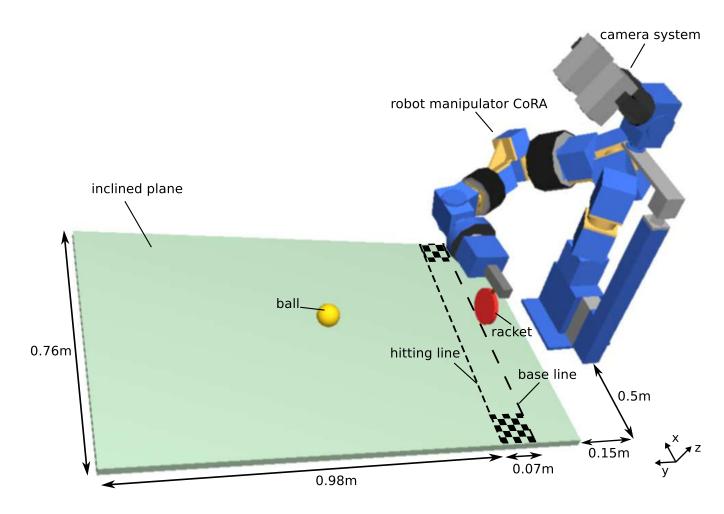
[Shukla, Billard, 2012]

video

https://youtu.be/M4I3ILWvrbl?t=3

Timing and behavioral organization

sequences of timed actions to intercept ball



[Oubatti, Richter, Schöner, 2013]

Timing and behavioral organization

timing from oscillator, whose cycle time is adjusted to perceived time to contact

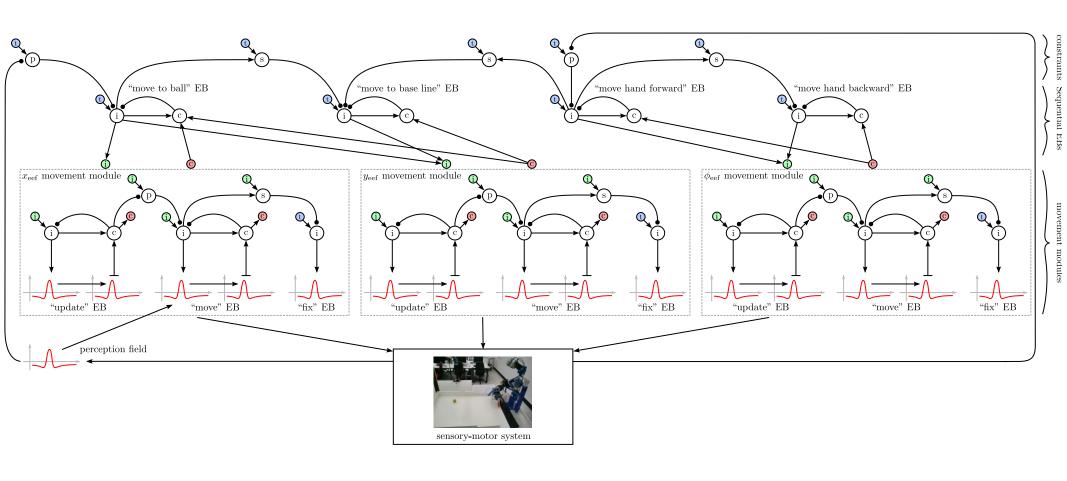
$$\tau \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = -c_{\text{post}} a \begin{pmatrix} x - x_{\text{post}} \\ y \end{pmatrix} + c_{\text{hopf}} H(x, y) + \eta,$$

$$H(x,y) = \begin{pmatrix} \lambda & -\omega \\ \omega & \lambda \end{pmatrix} \begin{pmatrix} x - r - x_{\text{init}} \\ y \end{pmatrix}$$
$$- \left((x - r - x_{\text{init}})^2 + y^2 \right) \begin{pmatrix} x - r - x_{\text{init}} \\ y \end{pmatrix}$$

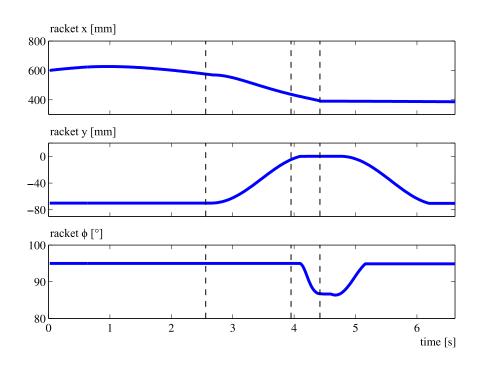
$$\frac{T}{2d_{\rm init}} = \frac{t_{\rm tim}}{d(t)}.$$

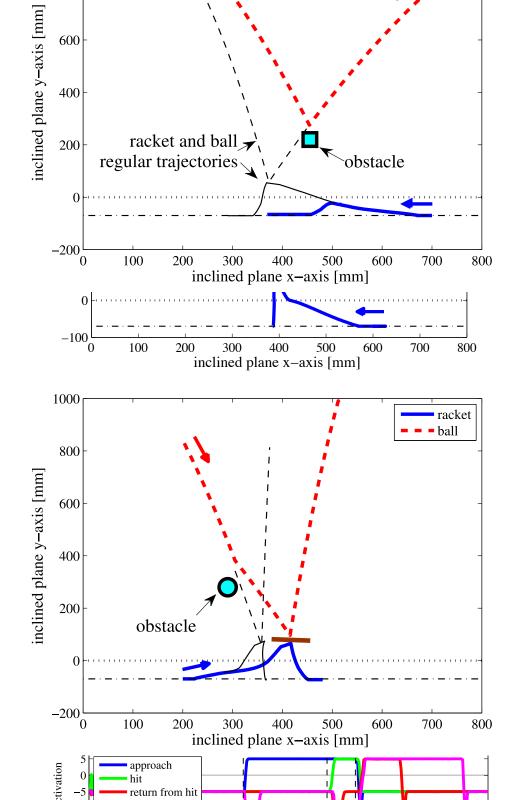
Timing and behavioral organization

coupled neural dynamics to organize the sequence



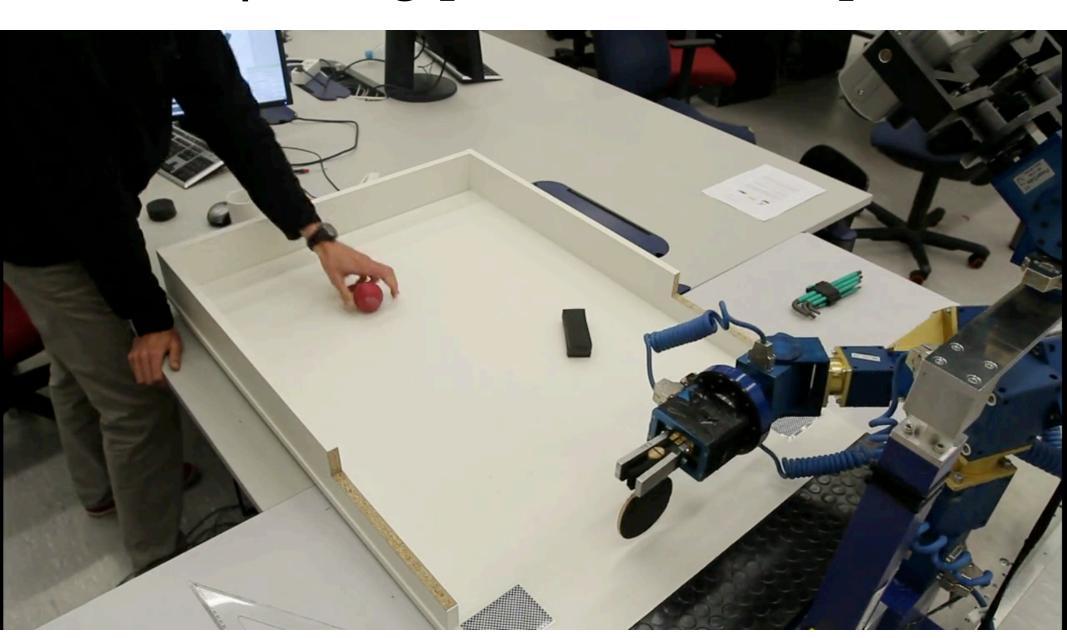
[Oubatti, Richter, Schöner, 2013]

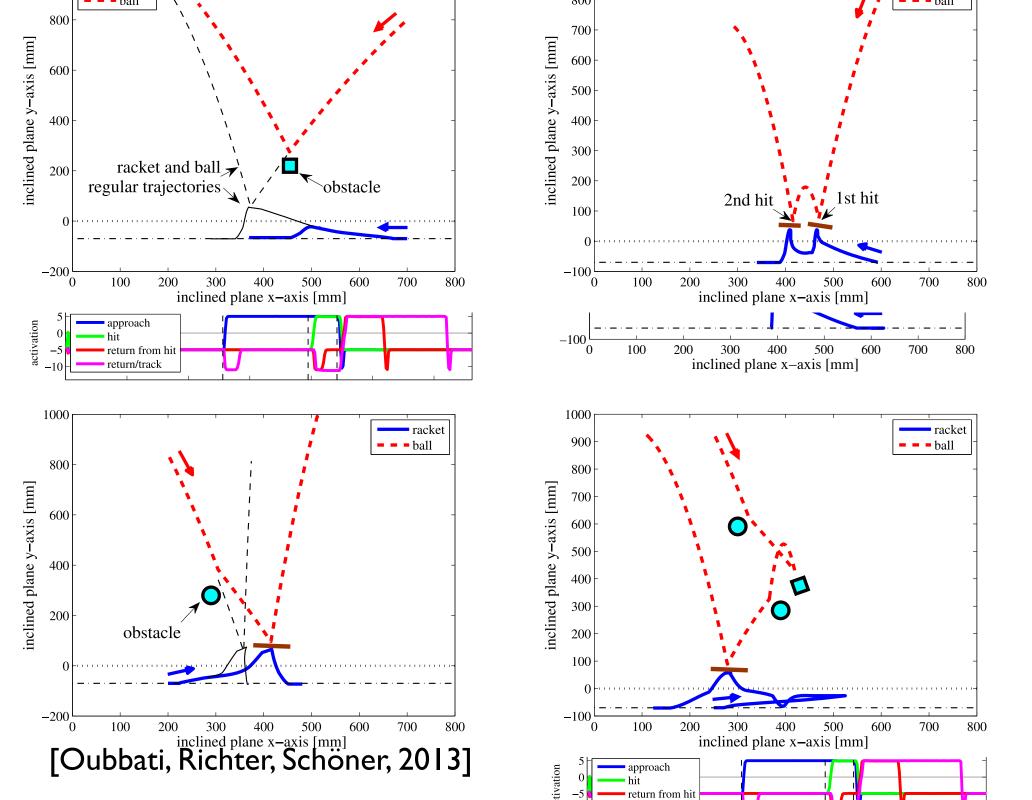




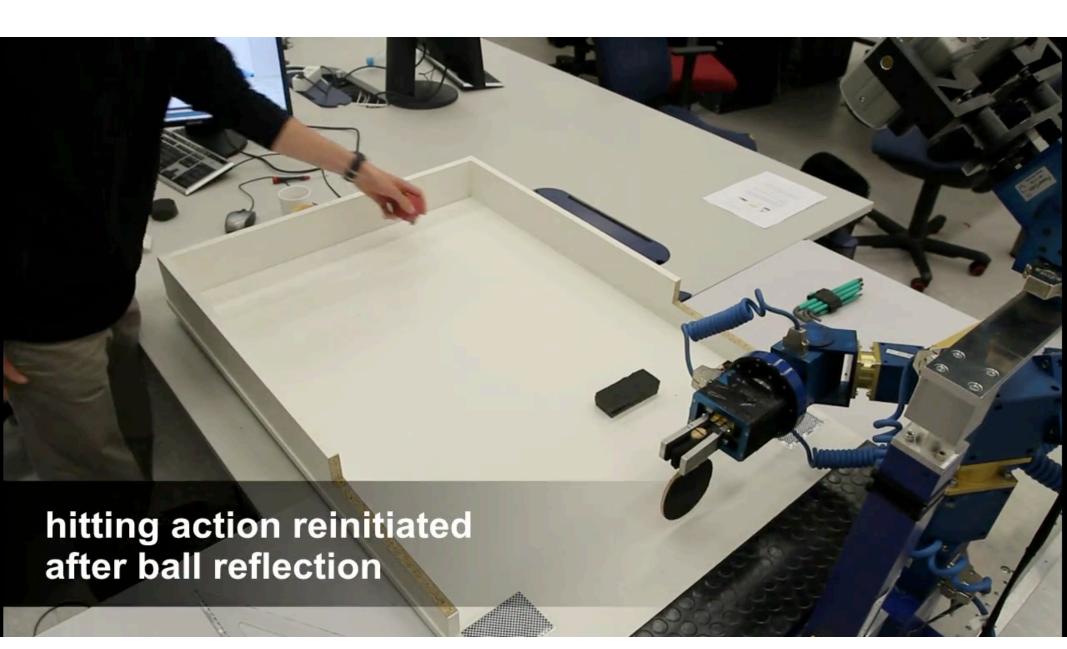
[Oubbati, Richter, Schöner, 2013]

Timed movement with online updating [Faroud Oubatti]





Timing and reorganization of movement



Conclusion

timing in autonomous robotics is best framed as a problem of stable oscillators and their coupling

Conclusion

- timing is linked to many problems
 - arriving "just in time", estimating time to contact
 - on line updating: planning and timing tightly connected
 - timed movement sequences: behavioral organization
 - coordinating timing across movements, coarticulation
 - timing and control

