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The problem

® move about in a
2D world, which

is occupied by
objects/stuff

B constraints

B reach targets

B avoid collisions

B via points

B orientations



Non-holonomic constraints

turning rate
forwarc\
speed

orientation

® Vehicles have typically non-
holonomic constraints

B fewer variables can be varied freely (e.g.
velocities chosen) than variables that
describe the physical state

B state depends on the history of
movement

[from LaValle 2010]



What is needed to autonomously
move in an environment!

B sense something about the environment
® know about the environment

& plan movement in the environment that is
collision-free

® control vehicle to achieve planned movement

B estimate what vehicle actually did



Concepts for planning

B |ocal vs. global

B planning based on information only about the local
environment of the robot

B vs. based on global map information about the
environment

B reactive vs. planning

B motion planning “on the fly” in response to sensory
inputs

B vs. motion planning for an entire action from initial to
goal state



Concepts for planning

M exact vs. heuristic

B exact: guarantee that a path that fulfills the constraints is
found when one exists

B vs. generate a plan based on ad hoc approach that is
likely to fulfill constraints

B continuous vs. discrete:

B continuous state space variables

B vs. grid state spaces, graph state spaces



Concepts for planning

® sense-plan-act vs
behavior-based

B based on world

representation that informs
all planning

B vs. based on low-level sensory
information that is specific to
each individual behavior,
planning emerges from how
behaviors interact

world

| sense

| model

| plan

| act

world

obstacle avoidance

roaming

target acquisition

[ L]

Create 2 map




Approaches to vehicle path planning

B classical planning approaches
B potential field approach
® Borenstein & Koren

® (dynamic window approach)



Classical global path planning

B standard reference: Latombe: Robot motion
planning, 1991

B very good general review: LaValle: Planning
algorithms, 2006,2010

Obstacle Region

A Solution Path

[LaValle, 2006]




Classical global path planning

B mathematical theories of constraint
satisfaction and decision theory

B searching spaces, sampling approaches

Obstacle Region

A Solution Path

[LaValle, 2006]




Classical local path planning

| reference: Cox,Wilfong: Autonomous Robot
Vehicles, 1990

® based on a known world (e.g., represented
as a polygonial model of surfaces)

B taking into account a kinematic model of the
vehicle

B add smoothness constraints



Potential field approach

® invented by Khatib, 1986 (similar earlier
formulation: Neville Hogan's impedance control)

B the trajectory of a manipulator or robot vehicle
is generated by moving in a potential field to a
minimum

® the manipulator 3D end-position or vehicle 2D
position is updated by descending within that
potential field

B obstacles are modeled as hills of potential field;

target states are valleys/minima of the potential
field



Potential field approach as a
heuristic planning approach

B need a mathematical representation of target
and obstacle configuration

B make potential minimum at target

B make potential maximum at obstacles

B compute downhill gradient descent for path
generation



Potential field approach

Al

B obstacle
configuration

[Barranquand, Langlois, Latombe, 1989]



Potential field approach

M contours of
associated
obstacle
potential field

[Barranquand, Langlois, Latombe, 1989]



B contours of

Potential field approach

N

target potential
field
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[Barranquand, Langlois, Latombe, 1989]



Potential field approach

2255

® contours of
improved
target potential
field (by adding
bubbles around
obstacles)
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[Barranquand, Langlois, Latombe, 1989]



Potential field approach

® adding all
contributions
leads to solution:
gradient descent
for vehicle

[Barranquand, Langlois, Latombe, 1989]



Potential field approach

B generalization
to higher-
dimensional
configuration
spaces

\
[

A K

EAEE)

EIEAE]

[Barranquand, Langlois, Latombe, 1989]



Comparison to human behavior

® Fajen/Warren compared the fit of a potential
field approach to the fit of the attractor
dynamics approach of human locomotion
data

Graph of artifical potential fieldl

Graph of vector magnitudes
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Comparison to human behavior

Graph of vector magnitudes

Vector magnitudes




comparison
potential field vs.
attractor
dynamics

® potential sharper
than distance
dependence of
repellor

(b)



Graph of distance parts for both methods
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spurious attractors in potential
field approach

Groal
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Path ] J'j . /" Path3




Potential fields: limitations

B spurious attractors and constraint violations

® solution: making potential field approach
exact and global: navigation functions

® potential computed such that it only has the
right maxima and minimal

® but: computational cost

B but: requires global information



Virtual force field:
Borenstein & Koren

B ultra-sound histograms: the virtual force
field concept

| vector-field histogram concept: polar
histogram (heading direction!); height
(strength) depends on both certainty and
distance

B threshold: determine free sectors

B select free direction closest to target



Virtual force field: Borenstein & Koren
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Virtual force field:
Borenstein & Koren
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Vector field histogram: Borenstein & Koren

B transform active window in world grid into
polar histogram
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Vector field histogram:

Borenstein & Koren
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Vector field histogram:

Borenstein & Koren

B |ocal polar
nistogram
dbrovides “free”
directions

Polar histogram
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Vector field histogram:

. B Select safe direction algorithmica
Borenstein & Koren

Partition
B

Target
o

Partition
C

Finding candidate
directions for safe travel
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Potential fields as reactive planners

B use potential field to plan locally based on low-level
sensory information (reactive)

| different “behaviors” generated by different vector-

fields (“schema’, slight generalization of potential
fields)

® organize the different behaviors in an architecture

[Arkin, Blach: AuRA 1997]




Learning

Plan Recognition
User Profile

Spatial Learning

Opportunism

On-line
Adaptation

Architecture

User Input

User Intentions

Spatial Goals

Mission
Alterations

Teleautonomy

Mission Planner

Spatial Reasoner

Plan Sequencer

Actuation

)y |
Schema Controller I

Motor
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The reactive component

MOTOR SCHEMAS
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ENVIRONMENTAL SCHEMAS
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RS - Receptor Schema

TS - Transmitter Schema
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BROADCAST IS - Internal Sensor
MEDIUM ES - Environmental Sensor




Motor schemata

Move-ahead: move in a particular compass direction.

Move-to-goal (both ballistic and guarded): move towards a discrete stimulus.
Stay-on-path: move towards the center of a discernible pathway, e.g., a hall or road.
Avoid-static-obstacle: move away from non-threatening obstacles.

Dodge: sidestep approaching ballistic objects.

Escape: Evade intelligent predators.

Noise: move in a random direction for a fixed amount of time. (persistence)
Avoid-past: move away from recently visited areas.

Probe: move towards an open area.

Dock: move in a spiral trajectory towards a particular surface.

Teleautonomy - introduce a human operator at the same level as other behaviors.



behaviors
(schemata)

Vector-fields
for different
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Behavior-based sequence planner

bumpers = 0
IR beam = 0

bumpers = 0
trash_detected = 1 Move IR beam =0

> to

Trash

Wander
for
Trash

bumper_pushed = 1

Start —

trash_detected = 0
gripper_closed = 1

IR beam =1 IR beam =1
(add obstacle) d obstacle)
Move
complete = 1 Wanh trashcan_detected = 1 at_trashcan = 1 Drop
Backupl for > to
Trash
Trashcan Trashcan

trashcan_detected = 0 complete = 1

complete = 1 complete = 1

-

Backup2



Dynamic window approach

B take dynamic constraints of vehicle into account
(maximal decelerations/accelerations)... to drive fast

left wall

right wall I

right wall II

target

[Fox, Burghard, Thrun, 1996]




Dynamic window approach

B discretize motor control space: linear and angular
velocity

M => search space: circular trajectories of v, omega

VS N\ A 90 cm/sec

left wall corridor

right wall |

- —
-90 deg/sec . . 90 deg/sec
Figure 4. Velocity space



Dynamic window approach

1. Search space: The search space of the possible velocities 1s reduced in

three steps:

(a)

Circular trajectories: The dynamic window approach considers
only circular trajectories (curvatures) uniquely determined by pairs
(v,w) of translational and rotational velocities. This results in a
two-dimensional velocity search space.

Admissible velocities: The restriction to admissible velocities
ensures that only safe trajectories are considered. A pair (v,w) is
considered admissible, if the robot 1s able to stop before it reaches
the closest obstacle on the corresponding curvature.

Dynamic window: The dynamic window restricts the admissible
velocities to those that can be reached within a short time interval
given the limited accelerations of the robot.



Dynamic window approach

VS\ A 90 cm/sec
dynamic window V. \\\;
l’l . L
N
actdal velocity
Va '
- Lo —
-90 deg/sec 90 deg/sec

Figure 5. Dynamic window



Dynamic window approach

2. Optimization: The objective function

G(v,w) = o(a-heading(v,w) 4+ 3 - dist(v,w) + v - vel(v,w)) (13)

1s maximized. With respect to the current position and orientation of the
robot this function trades off the following aspects:

(a) Target heading: heading is a measure of progress towards the
goal location. It 1s maximal if the robot moves directly towards the
target.

(b) Clearance: dist is the distance to the closest obstacle on the tra-
jectory. The smaller the distance to an obstacle the higher is the
robot’s desire to move around it.

(c) Velocity: vel is the forward velocity of the robot and supports fast

movements.

The function ¢ smoothes the weighted sum of the three components and
results in more side-clearance from obstacles.



Dynamic window approach

B target cost function

target

actual position

Figure 6. Angle 0 to the
target
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Dynamic window approach

B smoothing the cost functions

evaluation function —— smoothed evaluation function —
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Dynamic window approach

B two samples of actual velocities

VS\ A 90 cm/sec
\/ %
[ )
Va1 [
, door
corridor
¢
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Va
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-90 deg/sec 90 deg/sec

Figure 12. Velocity space
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Dynamic window approach

® example RHINO

B used Borenstein Koren approach to smooth
and accumulate sonar distance data

N left wall re — N | I
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obstacle lines

robot
\ e
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Figure 18. Example environment with obstacle lines Figure 19. Determination of

and target point the distance



Dynamic window approach

B data

B ]

im | 70 cm/sec - 50 cm/sec?, 60 deg/sec?
----- 40 cm/sec - 50 cm/sec?, 60 deg/sec?
40 cm/sec - 20 cm/sec?, 30 deg/sec?

__Decision area

- oo e

Figure 20. Trajectories chosen for different dynamic
parameters



Dynamic window approach

M data
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Figure 21. Trajectory through corridor



Dynamic window approach

B data
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Figure 22. Trajectory through cluttered corridor



Summary

B powerful approaches exist for motion
planning

B the best/exact approaches make strong
demands on world representations and
computation

B heuristic “reactive” approaches are state of
the art (often combined in hybrid
architectures with deliberative planning)

B the attractor dynamics approach is
competitive as a reactive approach



Outlook

B deliberative planning...
B moving beyond the vehicle navigation problem
B planning sequences of actions to achieve goals

B searching spaces, often represented as graphs

B ... a huge field...

B not very satisfactorily included in neurally
based approaches..



