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The problem

move about in a 
2D world, which 
is occupied by 
objects/stuff


constraints


reach targets


avoid collisions


via points


orientations



Non-holonomic constraints

Vehicles have typically non-
holonomic constraints


fewer variables can be varied freely (e.g. 
velocities chosen) than variables that 
describe the physical state


state depends on the history of 
movement
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Figure 13.1: The simple car has three degrees of freedom, but the velocity space
at any configuration is only two-dimensional.

to park a car. The complicated maneuvers for parking a simple car arise because
of rolling constraints.

The car can be imagined as a rigid body that moves in the plane. Therefore,
its C-space is C = R2 × S1. Figure 13.1 indicates several parameters associated
with the car. A configuration is denoted by q = (x, y, θ). The body frame of the
car places the origin at the center of rear axle, and the x-axis points along the
main axis of the car. Let s denote the (signed) speed2 of the car. Let φ denote
the steering angle (it is negative for the wheel orientations shown in Figure 13.1).
The distance between the front and rear axles is represented as L. If the steering
angle is fixed at φ, the car travels in a circular motion, in which the radius of the
circle is ρ. Note that ρ can be determined from the intersection of the two axes
shown in Figure 13.1 (the angle between these axes is |φ|).

Using the current notation, the task is to represent the motion of the car as a
set of equations of the form

ẋ = f1(x, y, θ, s,φ)

ẏ = f2(x, y, θ, s,φ)

θ̇ = f3(x, y, θ, s,φ).

(13.11)

In a small time interval, ∆t, the car must move approximately in the direction
that the rear wheels are pointing. In the limit as ∆t tends to zero, this implies
that dy/dx = tan θ. Since dy/dx = ẏ/ẋ and tan θ = sin θ/ cos θ, this condition can

2Having a signed speed is somewhat unorthodox. If the car moves in reverse, then s is
negative. A more correct name for s would be velocity in the x direction of the body frame, but
this is too cumbersome.

[from LaValle 2010]

position in the plane

turning rate

forward
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orientation



What is needed to autonomously 
move in an environment? 

sense something about the environment


know about the environment


plan movement in the environment that is 
collision-free


control vehicle to achieve planned movement


estimate what vehicle actually did



local vs. global


planning based on information only about the local 
environment of the robot 


vs. based on global map information about the 
environment


reactive vs. planning 


motion planning “on the fly” in response to sensory 
inputs 


vs. motion planning for an entire action from initial to 
goal state 

Concepts for planning



exact vs. heuristic


exact: guarantee that a path that fulfills the constraints is 
found when one exists 


vs. generate a plan based on ad hoc approach that is 
likely to fulfill constraints 


continuous vs. discrete: 


continuous state space variables 


vs. grid state spaces, graph state spaces

Concepts for planning



sense-plan-act vs 
behavior-based


based on world 
representation that informs 
all planning


vs. based on low-level sensory 
information that is specific to 
each individual behavior, 
planning emerges from how 
behaviors interact 

Concepts for planning
world

sense

plan

model

act

world

obstacle avoidance

target acquisition

roaming

create a map



classical planning approaches


potential field approach 


Borenstein & Koren


(dynamic window approach)�

Approaches to vehicle path planning



standard reference: Latombe: Robot motion 
planning, 1991


very good general review: LaValle: Planning 
algorithms, 2006, 2010
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Figure 1.1: A simple illustration of the two dimensional path planning problem:
a) The obstacles, initial position, and goal positions are specified as input; b) A
path planning algorithm will compute a collision free path from the initial position
to the goal position.

configuration of a robot, the locations of tiles in a puzzle, or the position
and velocity of a helicopter. Both discrete (finite, or countably infinite)
and continuous (uncountably infinite) state spaces will be allowed. One
recurring theme through most of planning is that the state space will usually
be represented implicitly by a planning algorithm. In most applications,
the size of the state space (in terms of number of states or combinatorial
complexity) is much too large to be explicitly represented. Nevertheless, the
definition of the state space is an important component in the formulation
of a planning problem, and in the design and analysis of algorithms that
solve it.

Time: All planning problems involve a sequence of decisions that must be
applied over time. Time might be explicitly modeled, as in a problem such as
driving a car as quickly as possible through an obstacle course. Alternatively,
time may be implicit, by simply reflecting the fact that actions must follow
in succession, as in the case of solving the Rubik’s cube. The particular
time is unimportant, but the proper sequence must be maintained. Another
example is a solution to the Piano Mover’s Problem; the solution to moving
the piano may be converted into an animation over time, but the particular
speed of motions is not specified in the planning problem. Just as in the
case of state, time may be either discrete or continuous. In the latter case,

[LaValle, 2006]

Classical global path planning



mathematical theories of constraint 
satisfaction and decision theory


searching spaces, sampling approaches

Classical global path planning
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reference: Cox, Wilfong:  Autonomous Robot 
Vehicles, 1990


based on a known world (e.g., represented 
as a polygonial model of surfaces)


taking into account a kinematic model of the 
vehicle


add smoothness constraints 

Classical local path planning



invented by Khatib, 1986 (similar earlier 
formulation: Neville Hogan's impedance control)


the trajectory of a manipulator or robot vehicle 
is generated by moving in a potential field to a 
minimum


the manipulator 3D end-position or vehicle 2D 
position is updated by descending within that 
potential field


obstacles are modeled as hills of potential field; 
target states are valleys/minima of the potential 
field

Potential field approach



need a mathematical representation of target 
and obstacle configuration


make potential minimum at target


make potential maximum at obstacles


compute downhill gradient descent for path 
generation

Potential field approach as a 
heuristic planning approach



Potential field approach

[Barranquand, Langlois, Latombe, 1989]

obstacle 
configuration



[Barranquand, Langlois, Latombe, 1989]

contours of 
associated 
obstacle 
potential field

Potential field approach



[Barranquand, Langlois, Latombe, 1989]

contours of 
target potential 
field

Potential field approach



[Barranquand, Langlois, Latombe, 1989]

contours of 
improved 
target potential 
field (by adding 
bubbles around 
obstacles)

Potential field approach



[Barranquand, Langlois, Latombe, 1989]

adding all 
contributions 
leads to solution: 
gradient descent 
for vehicle

Potential field approach



[Barranquand, Langlois, Latombe, 1989]

generalization 
to higher-
dimensional 
configuration 
spaces

Potential field approach



Comparison to human behavior

Fajen/Warren compared the fit of a potential 
field approach to the fit of the attractor 
dynamics approach of human locomotion 
data
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Figure 15. (a) Artificial potential field inside the room and (b) and vector magnitudes.

rotational acceleration, which also acts to smooth the
path. In contrast, the potential field method can gener-
ate rapid changes in the direction of the velocity vector
resulting in frequent sharp turns, depending on the com-
plexity of the artificial potential field (which usually is
composed of many hills and valleys even if there are
only three or four obstacles; see Fig. 15).

The Obstacle Function. A second reason for
smoother, shorter paths stems from another important
difference between the two methods. Whereas the ef-
fect of the target is similar in both, serving to draw
the agent toward the goal, the effect of an obstacle is
very different. In the potential field method, the ob-
stacle function depends only on the shortest distance
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Figure 14. A typical performance example. Large tick marks indi-
cate 1 m intervals.

1984). Potential field methods have been applied to off-
line path planning (Thorpe, 1985) and in mobile robots
with real sensory data (for example by Arkin, 1989).

A Typical Performance Example

We tested both methods in a sample environment con-
taining five obstacles (see Fig. 14), using Khatib’s
(1986) original potential field formulation. The envi-
ronment consisted of a 5 m × 6.5 m room with a start-
ing location (indicated by the circle), a target location
(labeled goal), and five randomly positioned obstacles
(shown as dots). The circles around the obstacles in-
dicate the limit distance of repulsive influence for the
potential field model (0.8 m). The agent was assumed to
have a diameter of 0.5 m, similar to a human, and an ini-
tial heading of 0◦ (parallel to the x-axis). Although the
potential field is often used to control the agent’s veloc-
ity (direction and speed), in all our simulations we used
the resultant force vector to control the agent’s direc-
tion only, while holding speed constant, analogous to
the dynamical model. The straightforward application
of the potential field method to mobile robot naviga-
tion treats the robot as a particle; however, most mobile
robots are non-holonomic, which means they cannot
move in arbitrary directions (e.g., without first stop-
ping and turning). In our simulations and robot exper-
iments, we used a controller based on the idea that the
front point of a differential-drive robot can be treated
as holonomic (Temizer, 2001; Temizer and Kaelbling,
2001). An alternative approach, used by Arkin (1989),
for example, is to have the robot repeatedly: stop, turn

in the direction of the local force, traverse a short lin-
ear segment, stop, reorient, etc. The details of the paths
resulting from this method would differ from those we
show here, but will be qualitatively similar.

Path 1 shows the trajectory generated by the potential
field method, and path 2 (which is almost a straight
line) that generated by the dynamical model. In this
simulation, the agent moved with a constant translation
speed of 0.5 m/s for both methods. Path 1 has a length of
7.55 meters and was traversed in 15.1 seconds, whereas
Path 2 was only 6.70 meters long and was traversed in
13.4 seconds. We also implemented the potential field
method in a research robot (RWI B21r indoor robot)
and we note that the software simulations closely reflect
the actual trajectories observed.

The 3D plots in Fig. 15 represent the artificial poten-
tial field and the resultant force vectors for the example
scene. The top graph (Fig. 15(a)) shows the artificial
potential field and the middle graph (Fig. 15(b)) shows
the magnitudes of the resultant force vector at each lo-
cation in the environment, with coordinates that match
those of Fig. 14. The starting point is near the high cor-
ner, the goal is near the low corner, and the obstacles
generate tall cones that extend to infinity, guaranteeing
that the agent will never collide with an obstacle.

Differences Between the Two Methods

In this section we consider high-level conceptual dif-
ferences between the dynamical model and the poten-
tial field method. A low-level quantitative comparison
would not be appropriate since the computational out-
comes of the two methods are quite different: the po-
tential field method produces a resultant vector that
directly controls the agent’s direction, whereas the dy-
namical model produces an angular acceleration that
controls the agent’s rotation.

Angular Acceleration vs. Direction Control. Look-
ing at the example in Fig. 14, it is apparent that the dy-
namical model tends to traverse smoother and shorter
paths than the potential field method. Similarly, the
fluctuations in rotation speed are smooth for the dy-
namical model (Fig. 16), in contrast to sharp, rapid
turns with the potential field method. This is partially
due to an important general difference between the
approaches: the dynamical model explicitly controls
the agent’s angular acceleration and deceleration rather
than the translation direction, and thus tends to generate
smoother trajectories. The damping term constrains the
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path. In contrast, the potential field method can gener-
ate rapid changes in the direction of the velocity vector
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composed of many hills and valleys even if there are
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The Obstacle Function. A second reason for
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difference between the two methods. Whereas the ef-
fect of the target is similar in both, serving to draw
the agent toward the goal, the effect of an obstacle is
very different. In the potential field method, the ob-
stacle function depends only on the shortest distance

Comparison to human behavior



comparison 
potential field vs. 

attractor 
dynamics

potential sharper 
than distance 
dependence of 
repellor
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(a)

(b)

Figure 18. Experiment 1: (a) distance parts of both methods and (b) simulation results.

Fat Agents and Wide Obstacles. The potential field
method inherently takes account of agent and obsta-
cle width, because distance is measured between the
boundary or envelope of the agent and that of the ob-
stacle. In contrast, the current version of the dynamical
model treats the agent and obstacles as points, and thus
does not incorporate an explicit concept of width. Hu-
mans are very sensitive to the width of openings rela-
tive to their body size (Warren and Whang, 1987). The

dynamical model implicitly expresses this relationship
in the rate of exponential decay with obstacle distance
(c4 parameter). As illustrated in the previous section
(Figs. 18 and 19), this determines how wide a berth the
agent gives to an obstacle, and can thus be adjusted for
body size.

However, the model is not yet designed to deal
with wide obstacles. One possibility is simply to in-
clude the size of each obstacle as a parameter, but in a



comparison 
potential field vs. 

attractor 
dynamics

potential softer than 
distance dependence 
of repellor
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(a)

(b)

Figure 19. Experiment 2: (a) distance parts of both methods and (b) simulation results.

biologically-inspired model we seek to define the input
in “proximal” terms such as visual angle rather than
“distal” terms such as object size. Another approach
would be to convolve the obstacle angle function over
space, so that the entire visual angle of the obstacle is
repulsive, rather than just a point at its center. It might
also be possible to scale the obstacle angle function
to the visual angle of the obstacle, which would cause
nearby or large obstacles to be weighted more heavily.

Local Minima and Cancellation. The form of the
obstacle function creates another important difference
between the two approaches. In potential field methods,
the magnitude of the repulsive force tends to infinity
as the agent approaches the obstacle. This guarantees
that the agent will never run over an obstacle. In the
dynamical model, on the other hand, the obstacle influ-
ence is based on exponential decay and never produces
infinite angular acceleration—a more realistic choice



spurious attractors in potential 
field approach 

30 Fajen et al.

for physical agents and humans. Combined with the
difference in control variables (translational velocity
vs. angular acceleration), this results in a significant
advantage for the dynamical model, although it also
creates a minor disadvantage.

Advantage. The potential field approach is a local ob-
stacle avoidance method, and local minima are a seri-
ous problem. An agent using the potential field method
alone without a high level path planner can easily get
stuck in local minima, even in the simplest scenes. The
dynamical model, in contrast, has few such problems, at
least in simple scenes. Because it only controls angular
acceleration and not the agent’s speed (never stopping
the agent), local minima are avoided in two ways: the
agent either takes advantage of the canceling effect (de-
scribed below) and passes between the obstacles (if the
distance decay parameter c4 is big), or it takes a path
around the obstacle cluster (if c4 is small). In the latter
case it may overshoot the target, but it easily homes
in from another direction. Thus, with appropriate pa-
rameter settings the dynamical model can avoid local
minima in simple scenes.

Disadvantage. However, if the locations of the ob-
stacles are symmetrical about the agent’s path to the
target, then their contributions to the angular acceler-
ation will have similar magnitudes but opposite signs,
and therefore cancel each other. This canceling effect
creates a spurious attractor in the center of the obsta-
cle array, which may lead the agent into a gap that is
too small, or even to crash into an obstacle at the cen-
ter of a perfectly symmetrical array. As noted above,
one way to avoid the canceling effect is to increase
obstacle repulsion with distance by reducing the ex-
ponential decay term c4, thereby inducing an outside
path around the entire array. In cases with only a few
obstacles, adding a noise term to the model may allow
it to escape unstable fixed points.

These advantages and disadvantages are illustrated
in Fig. 20. In this example the agent starts in the lower
left corner with an initial heading of 0◦, and moves at
a constant translation speed of 1 m/s. Path 1 shows a
sample local minimum for the potential field method.
The agent is stuck in a bowl (a region of small outward-
pointing resultant vectors surrounded by large inward-
pointing vectors) and is reduced to oscillating back and
forth. Another type of local minimum is being frozen in
a location where the attractive and repulsive forces can-
cel each other, producing a resultant force of zero mag-

Figure 20. Example of a local minimum, canceling effect and out-
side path.

nitude. Path 2 is traversed with the dynamical model
(c4 = 1.6). Since there are obstacles on both sides of
the agent, their combined contribution to the angular
acceleration demonstrates the canceling effect along
the path, and the agent passes between them. Path 3 is
also traversed by the dynamical model using a more
gradual exponential decay with distance (c4 = 0.4).
The repulsive regions of the obstacles are larger, and
therefore they force the agent to take an outside path.

Agent Speed. A final difference between the two
methods is that the dynamical model assumes a con-
stant translational speed on the part of the agent. This is
indeed the case in our human data: subjects tend to ac-
celerate from a standstill and then maintain an approx-
imately constant walking speed. However, the model
produces different paths at different constant speeds,
with all other parameters fixed. The reason for this be-
havior is that, when the agent enters a region that pro-
duces a non-zero angular acceleration, the accelerating
effect lasts for a shorter time at higher speeds, induc-
ing a smaller rotation. In contrast, since the potential
field equations determine the direction of the agent’s
motion, it will always traverse the same path indepen-
dent of speed. For any physical agent with mass and
momentum, the responsiveness of trajectories to speed
may actually be a desirable effect.

An example for the dynamical model is presented in
Fig. 21. With a constant speed of 0.25 m/s, the model
traverses path 1 to the left of the obstacle, but with a
speed of 1.0 m/s it takes path 2 to the right. In these sim-
ulations, the agent’s initial heading was 0◦ (horizontal),



spurious attractors and constraint violations


solution: making potential field approach 
exact and global: navigation functions


potential computed such that it only has the 
right maxima and minimal


but: computational cost  


but: requires global information

Potential fields: limitations



ultra-sound histograms: the virtual force 
field concept


vector-field histogram concept: polar 
histogram (heading direction!); height 
(strength) depends on both certainty and 
distance 


threshold: determine free sectors


select free direction closest to target�

Virtual force field: 

Borenstein & Koren 



Virtual force field: Borenstein & Koren 



vector toward target


active window around 
robot


use histogram within 
active window to 
compute vectors 
pointing away from 
obstacle


vector summing


~dynamic approach! 

Virtual force field: 
Borenstein & Koren 



Problem: 
oscillations 
in narrow 
passages

Virtual force field: 
Borenstein & Koren 



transform active window in world grid into 
polar histogram

Vector field histogram: Borenstein & Koren 



lab set-up

Vector field histogram: 
Borenstein & Koren 



local polar 
histogram 
provides “free” 
directions

Vector field histogram: 
Borenstein & Koren 



Select safe direction algorithmicallyVector field histogram: 
Borenstein & Koren 



works

Vector field 
histogram: 
Borenstein & 
Koren 



Potential fields as reactive planners
use potential field to plan locally based on low-level 
sensory information (reactive)


different “behaviors” generated by different vector-
fields (“schema”, slight generalization of potential 
fields)


organize the different behaviors in an architecture 

[Arkin, Blach: AuRA 1997]



Architecture

Schema Controller
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The reactive component
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Motor schemata



Vector-fields 
for different 
behaviors

(schemata)



Superposing 
potential 
fields to 
combine 
behaviors



Behavior-based sequence planner

Start

Wander
for

Trash
to

Move

Trash Trash

Grabbumper_pushed = 1 trash_detected = 1 IR_beam = 0

Backup1
Wander

for

Trashcan

IR_beam = 1
(add obstacle)

trashcan_detected = 1 at_trashcan = 1

Turn 90 Backup2

Move

to

Trashcan
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Trash

IR_beam = 1

(add obstacle)

gripper_closed = 1

IR_beam = 0

complete = 1

complete = 1 complete = 1

complete = 1

bumpers = 0

bumpers = 0

trash_detected = 0

trashcan_detected = 0



Dynamic window approach

take dynamic constraints of vehicle into account 
(maximal decelerations/accelerations)… to drive fast

1m

robot

target

right wall I right wall II

left wall

[Fox, Burghard, Thrun, 1996]



Dynamic window approach

discretize motor control space: linear and angular 
velocity 


=> search space: circular trajectories of v, omega 

Va

Vs

90 deg/sec-90 deg/sec

90 cm/sec

door

left wall corridor right wall II

right wall I



Dynamic window approach



Dynamic window approach

aV

Vs

Vr

90 deg/sec-90 deg/sec

90 cm/sec

ddynamic window V

actual velocity



Dynamic window approach



Dynamic window approach
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Dynamic window approach
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Dynamic window approach

smoothing the cost functions

evaluation function
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Dynamic window approach

two samples of actual velocities

aV

Vs

Vd2

Vd1

90 deg/sec-90 deg/sec

90 cm/sec

door
corridor



Dynamic window approach

cost function for the action velocities

dynamic window (70,0)
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Dynamic window approach

example  RHINO


used Borenstein Koren approach to smooth 
and accumulate sonar distance data

1m

robot

target

obstacle lines

left wall

right wall

γ

collision point

trajectory

r



Dynamic window approach

data
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Dynamic window approach

data
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Dynamic window approach

data

1m

humans



Summary

powerful approaches exist for motion 
planning


the best/exact approaches make strong 
demands on world representations and 
computation 


heuristic “reactive” approaches are state of 
the art (often combined in hybrid 
architectures with deliberative planning)


the attractor dynamics approach is 
competitive as a reactive approach 



Outlook

deliberative planning… 


moving beyond the vehicle navigation problem 


planning sequences of actions to achieve goals


searching spaces, often represented as graphs


… a huge field…


not very satisfactorily included in neurally 
based approaches.. 


