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“dynamics”

the word “dynamics”

time-varying measures  

range of a quantity 

forces causing/accounting for movement => dynamical 
systems

dynamical systems are the universal language 
of science

physics, engineering, chemistry, theoretical biology, 
economics, quantitative sociology, ... 



time-variation and rate of change

variable x(t); 

rate of change dx/dt 

t: time

dx/dt: velocity

x: position

t: time



functional relationship between a 
variable and its rate of change

time, t

x

x

time, t

x

x=> dynamical system



(linear) dynamical system

x

τ dx/dt = -x



exponential relaxation to attractors

 =>  (check!) 

=> has a well-defined time scale

τ ·x = − x x(t) = x(0)exp[−t/τ]

time

x(t)
x(0)

x(0)/e

x(τ) x(2τ)x

τ dx/dt = -x



x

dx/dt=f(x)

(nonlinear) dynamical system



dynamical system

present determines the future

given initial condition

predict evolution (or predict the past)

x

dx/dt=f(x)

initial
condition

predicts
future

evolution



dynamical systems

x: spans the state space (or phase space) 

f(x): is the “dynamics” of x (or vector-field) 

x(t) is a solution of the dynamical systems to 
the initial condition x_0 

if its rate of change = f(x) 

and x(0)=x_0



Dynamical systems

differential equation  in one 
dimension

=> an initial value of  determines the future

·x = f(x)

x



Dynamical systems

system of differential equations 

=> a vector of initial states, 
 determines the future

·x = f(x)

x = (x1, x2, . . . , xn)



Dynamical systems

partial differential equations 

 

integro-differential equations 

 

=> continuously many initial values=initial 
function  determine the future

·x(y, t) = f (x(y, t),
∂x(y, t)

∂y
, . . . )

·x(y, t) = ∫ dy′ f (y, y′ , x(y′ , t)))

x(y)



Dynamical systems

delay differential equations  

functional differential equations 

=> a past piece of trajectory determines the 
future

·x(t) = f(x(t − τ))

·x(t) = ∫
t
dt′ f(x(t′ ))



Dynamical systems

iteration equation in discrete time (map)

every dynamical system in continuous time 
=> dynamical system in discrete time 
(Poincaré)

a dynamical system in discrete time can be 
lifted to a dynamical system in continuous 
time (but not uniquely)

xn+1 = g(xn)



Resources

free online textbook by Scheinermann 

https://github.com/scheinerman/
InvitationToDynamicalSystems

send him a postcard (as instructed there)

really nice book for beginners… 

focus on the time-continuous part..

https://github.com/scheinerman/InvitationToDynamicalSystems
https://github.com/scheinerman/InvitationToDynamicalSystems


numerics

sample time discretely 

compute solution by iterating through 
time 

valid approximation for small time 
steps… 



forward Euler

 so that  

 where 

 =>  

… valid for small 

is the “worst” approximation scheme 
(needs smallest time step to achieve given  
precision…)

but useful for real-time embedded (and 
for stochastic systems)

ti = iΔt xi = x(ti)
·x = dx/dt ≈ Δx/Δt Δx = xi+1 − xi
·x = f(x) xi+1 = xi + Δt f(xi)

Δt



modern numerics

Runge-Kutte: error scales with step size 
to a power (e.g. 4) 

adaptive step size.. 

built-into numerical packages… e.g. ode45 
in Matlab 



=> simulation



qualitative theory of 
dynamical systems 

good source: 
Lawrence Perko: Differential Equations and Dynamical 
Systems, Springer 2001 (4th edition)



qualitative theory of 
dynamical systems 

the goals is to characterize the 
ensemble of solutions of the dynamical 
system (or a family of such)

= the flow

… use special invariant solutions to do 
that… fixed points, their stable/unstable 
manifolds…



attractor

fixed point, to which neighboring initial conditions 
converge = attractor

x

dx/dt=f(x)

attractor



fixed point

is a constant solution of the dynamical system

ẋ = f (x)

ẋ = 0 � f (x0) = 0



stability

mathematically really: asymptotic stability

defined: a fixed point is asymptotically stable, 
when solutions of the dynamical system that 
start nearby converge in time to the fixed 
point 



stability

the mathematical concept of stability (which 
we do not use) requires only that nearby 
solutions stay nearby

defined: a fixed point is unstable if it is not 
stable in that more general sense, 

that is: if nearby solutions do not necessarily stay nearby (may 
diverge)



linear approximation near attractor

non-linearity as a small 
perturbation/
deformation of linear 
system

=> non-essential non-
linearity

dx/dt = f(x)

x



stability in a linear system

if the slope of the 
linear system is 
negative, the fixed 
point is 
(asymptotically 
stable)

L

dL/dt=f(L)



stability in a linear system

if the slope of the 
linear system is 
positive, then the 
fixed point is 
unstable

L

dL/dt=f(L)



stability in a linear system

if the slope of the linear 
system is zero, then the 
system is indifferent 
(marginally stable: stable 
but not asymptotically 
stable) 

L

dL/dt=f(L)



stability in linear systems

generalization to multiple dimensions
if the real-parts of all Eigenvalues are negative: stable

if the real-part of any Eigenvalue is positive: unstable

if the real-part of any Eigenvalue is zero: marginally stable in that 
direction (stability depends on other eigenvalues)



stability in nonlinear systems

stability is a local property of the fixed point 

=> linear stability theory

the eigenvalues of the linearization around the fixed point determine 
stability

all real-parts negative: stable

any real-part positive: unstable

any real-part zero: undecided: now nonlinearity decides (non-
hyberpolic fixed point) 



stability in nonlinear systems

all real-parts negative: stable

any real-part positive: 
unstable

dL/dt = f(L)

L

dL/dt = f(L)

L



stability in nonlinear systems

any real-part zero: 
undecided: now 
nonlinearity decides 
(non-hyberpolic fixed 
point) 

dL/dt = f(L)

L

dL/dt = f(L)

L

dL/dt = f(L)

L

dL/dt = f(L)



bifurcations

look now at families of dynamical systems, which 
depend (smoothly) on parameters 

ask: as the parameters change (smoothly), how do 
the solutions change (smoothly?)

smoothly: topological equivalence of the dynamical systems at 
neighboring parameter values 

bifurcation: dynamical systems NOT topological equivalent as 
parameter changes infinitesimally 



bifurcation

x

dx/dt=f(x)

ATTRACTOR�� ATTRACTOR��



bifurcation
bifurcation=qualitative change of dynamics (change in 
number, nature, or stability of fixed points) as the 
dynamics changes smoothly

x

dx/dt=f(x)

ATTRACTOR�� ATTRACTOR��



tangent bifurcation

the simplest bifurcation (co-dimension 0): an attractor collides 
with a repellor and the two annihilate

x

dx/dt=f(x)

ATTRACTOR�� ATTRACTOR��



local bifurcation

x

dx/dt=f(x)

ATTRACTOR�� ATTRACTOR��



reverse bifurcation

changing the dynamics in the opposite direction

x

dx/dt=f(x)

ATTRACTOR�� ATTRACTOR��



bifurcations are instabilities

that is, an attractor becomes unstable before 
disappearing

(or the attractor appears with reduced stability)

formally: a zero-real part is a necessary condition 
for a bifurcation to occur



ẋ = ↵� x2

tangent bifurcation

normal form of tangent bifurcation

(=simplest polynomial equation whose flow is 
topologically equivalent to the bifurcation)

x

dx/dt

A

fixed point

A positive

A =0

A negative

unstable

stable

x0 =
p

↵



Hopf theorem

when a single (or pair of complex conjugate) 
eigenvalue crosses the imaginary axis, one of four 
bifurcations occur

tangent bifurcation

transcritical bifurcation

pitchfork bifurcation

Hopf bifurcation



ẋ = ↵x� x2

transcritical bifurcation

normal form

x

dx/dt

A

fixed point

A positive

A =0

A negative

unstable

stable



ẋ = ↵x� x3

pitchfork bifurcation

normal form

x

dx/dt

A

fixed point

A positive
A =0A negative

unstable

stable

ẋ = �2x0x = �2
p

↵x



Hopf: need higher dimensions



2D dynamical system:  
vector-field

x1

x2

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)



vector-field

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2) x1

x2

initial 
condition



fixed point, stability, attractor

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2) x1

x2

initial 
condition



ṙ = ↵r � r3

�̇ = !

Hopf bifurcation
normal form

/dt

A

x

unstable

stable

ydF

dr/dt

F

r

A��
A=0A��



forward dynamics

given known equation, determined fixed points /
limit cycles and their stability

more generally: determine invariant solutions 
(stable, unstable and center manifolds)



inverse dynamics

given solution, find the equation…

this is the problem faced in design of behavioral 
dynamics… 



inverse dynamics: design

in the design of behavioral dynamics… you may be 
given: 

attractor solutions/stable states

and how they change as a function of parameters/
conditions

=> identify the class of dynamical systems using the 
4 elementary bifurcations

and use normal form to provide an exemplary 
representative of the equivalence class of dynamics


