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Sequential behaviors or mental acts

behaviors/mental states are attractors

that resist change…

to induce change in sequential behavior/
thinking: induce an instability 



[Sandamirskaya, Zibner, Schneegans, Schöner: New Ideas in Psychology (2013)]

an action or thought is 
represented by an 
“intentional” node

or an “intentional field” 
that represents specific 
actions/thoughts within 
low-dimensional feature 
spaces

Condition of Satisfaction

movement to be executed, and d = xtarget − xreal is the
remaining distance.

To summarize, a single timed movement consists of
three separate behaviors: the postural, movement, and
update behavior. In order to function properly, these be-
haviors must be activated and deactivated in the correct
sequence: the initial position must be memorized before
starting to move and the movement has to suppress the
postural behavior. The necessity of organizing behaviors
in time becomes even more apparent when building entire
architectures based on discrete behaviors.

The framework for behavioral organization is based on
DFT, which we now briefly review.

B. Dynamic Field Theory
Dynamic Field Theory (DFT) [16] is a neural variant

of the attractor dynamics approach. We use it here as
an integrating framework between the low level sensory-
motor streams of the robot and the higher level cognitive
functions of the model, for instance its perceptual repre-
sentations and its organization of behaviors.

Within DFT, dynamic neural fields (DNFs) are used to
represent neural activity patterns over continuous, metric
feature dimensions (e.g., color or space). The activation
pattern evolves in continuous time t, as described by the
following dynamic equation, which can be traced back to
Grossberg [17] and was analyzed by Amari [18]

τ u̇(x, t) = −u(x, t) + h + S(x, t)

+
∫

ω(x − x′)f(u(x, t))dx′. (5)

In Eq. 5, u(x, t) describes the activation of a DNF
at feature location x and time t. Without external
input S(x, t), the activation will relax to the resting
level h < 0 and the output of the DNF, given by
the sigmoidal function f(u(x, t)), will be zero. With
sufficient external input, the DNF will produce output as
well as lateral interaction within the feature dimension.
The type of interaction is governed by the interaction
kernel ω(∆x) and comprises local excitation and global
or mid-range inhibition, promoting the formation of
localized peaks of activation. Within DFT, such peaks
are the units of representation for motor parameters,
perceptual items, and memory items.

A zero-dimensional DNF is a dynamical node that
represents a discrete instance of a percept or behavior.

C. Behavioral organization
A framework for behavioral organization based on

DFT, previously introduced and implemented on a hu-
manoid robot in a grasping task [19], is extended to
flexibly organize timed behaviors.

1) Elementary behaviors: Within DFT, the behaviors
that are organized are elementary behaviors (EB). EBs
consist of two parts, an intention and a condition of
satisfaction (CoS), each of which is represented by a
dynamical node and a dynamic neural field (DNF) (see

Fig. 2. Elementary behavior (EB) in Dynamic Field Theory.
Each EB consists of two parts: the intention represents the desired
change of the EB in the world, while the condition of satisfaction
(CoS) represents the sensory signal expected for the successful
completion of the EB.

Fig. 2). While the intention node simply determines
whether the EB is active or inactive, the intention field
describes the EB’s connection to the world. For instance,
the intention field of an EB ‘move arm’ would represent
desired movement parameters of the arm (e.g., the target
position) and would be connected to its motors.

The CoS field of an EB receives input from the in-
tention field, describing the desired outcome of the EB
(e.g., the end-effector of the arm at the target posi-
tion). Additionally, the CoS field receives input from the
sensory system, describing the current state of the EB
(e.g., the current position of the end-effector). If the two
inputs overlap, a peak forms in the CoS field, signaling
the successful completion of the EB. This peak activates
the CoS node, which in turn inhibits the intention node,
switching off the EB. Explicitly modeling the beginning
and end of an EB in this way allows us to close the
gap between discrete actions and the continuous sensory-
motor streams they are connected to.

2) Generating sequences: By default, all EBs relevant
for a task are activated at the same time. The sequential
organization of EBs derives from constraints that are
represented by dynamic coupling terms and are defined
within pairs of EBs. A precondition constraint prevents
a first EB (e.g., here, the update EB) from becoming
active until a second EB (e.g., here, the movement
EB) is completed. The constraint is represented by a
precondition node, a dynamical node that is activated by
task input and inhibits the intention node of the second
EB. As soon as the first EB is finished, its CoS node
will activate and inhibit the precondition node, releasing
the intention node of the second EB from inhibition and
thereby allowing its execution.

A suppression constraint between two other EBs pre-
vents one of them (e.g., here, the postural EB) from
becoming active while the other (e.g., here, the move-
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the intention pre-
activates a “condition of 
satisfaction” field with 
the predicted sensory 
information

the CoS field goes 
through a detection 
instability as sensory 
input matches the 
prediction

Condition of Satisfaction

movement to be executed, and d = xtarget − xreal is the
remaining distance.

To summarize, a single timed movement consists of
three separate behaviors: the postural, movement, and
update behavior. In order to function properly, these be-
haviors must be activated and deactivated in the correct
sequence: the initial position must be memorized before
starting to move and the movement has to suppress the
postural behavior. The necessity of organizing behaviors
in time becomes even more apparent when building entire
architectures based on discrete behaviors.

The framework for behavioral organization is based on
DFT, which we now briefly review.

B. Dynamic Field Theory
Dynamic Field Theory (DFT) [16] is a neural variant

of the attractor dynamics approach. We use it here as
an integrating framework between the low level sensory-
motor streams of the robot and the higher level cognitive
functions of the model, for instance its perceptual repre-
sentations and its organization of behaviors.

Within DFT, dynamic neural fields (DNFs) are used to
represent neural activity patterns over continuous, metric
feature dimensions (e.g., color or space). The activation
pattern evolves in continuous time t, as described by the
following dynamic equation, which can be traced back to
Grossberg [17] and was analyzed by Amari [18]

τ u̇(x, t) = −u(x, t) + h + S(x, t)

+
∫

ω(x − x′)f(u(x, t))dx′. (5)

In Eq. 5, u(x, t) describes the activation of a DNF
at feature location x and time t. Without external
input S(x, t), the activation will relax to the resting
level h < 0 and the output of the DNF, given by
the sigmoidal function f(u(x, t)), will be zero. With
sufficient external input, the DNF will produce output as
well as lateral interaction within the feature dimension.
The type of interaction is governed by the interaction
kernel ω(∆x) and comprises local excitation and global
or mid-range inhibition, promoting the formation of
localized peaks of activation. Within DFT, such peaks
are the units of representation for motor parameters,
perceptual items, and memory items.

A zero-dimensional DNF is a dynamical node that
represents a discrete instance of a percept or behavior.

C. Behavioral organization
A framework for behavioral organization based on

DFT, previously introduced and implemented on a hu-
manoid robot in a grasping task [19], is extended to
flexibly organize timed behaviors.

1) Elementary behaviors: Within DFT, the behaviors
that are organized are elementary behaviors (EB). EBs
consist of two parts, an intention and a condition of
satisfaction (CoS), each of which is represented by a
dynamical node and a dynamic neural field (DNF) (see

Fig. 2. Elementary behavior (EB) in Dynamic Field Theory.
Each EB consists of two parts: the intention represents the desired
change of the EB in the world, while the condition of satisfaction
(CoS) represents the sensory signal expected for the successful
completion of the EB.

Fig. 2). While the intention node simply determines
whether the EB is active or inactive, the intention field
describes the EB’s connection to the world. For instance,
the intention field of an EB ‘move arm’ would represent
desired movement parameters of the arm (e.g., the target
position) and would be connected to its motors.

The CoS field of an EB receives input from the in-
tention field, describing the desired outcome of the EB
(e.g., the end-effector of the arm at the target posi-
tion). Additionally, the CoS field receives input from the
sensory system, describing the current state of the EB
(e.g., the current position of the end-effector). If the two
inputs overlap, a peak forms in the CoS field, signaling
the successful completion of the EB. This peak activates
the CoS node, which in turn inhibits the intention node,
switching off the EB. Explicitly modeling the beginning
and end of an EB in this way allows us to close the
gap between discrete actions and the continuous sensory-
motor streams they are connected to.

2) Generating sequences: By default, all EBs relevant
for a task are activated at the same time. The sequential
organization of EBs derives from constraints that are
represented by dynamic coupling terms and are defined
within pairs of EBs. A precondition constraint prevents
a first EB (e.g., here, the update EB) from becoming
active until a second EB (e.g., here, the movement
EB) is completed. The constraint is represented by a
precondition node, a dynamical node that is activated by
task input and inhibits the intention node of the second
EB. As soon as the first EB is finished, its CoS node
will activate and inhibit the precondition node, releasing
the intention node of the second EB from inhibition and
thereby allowing its execution.

A suppression constraint between two other EBs pre-
vents one of them (e.g., here, the postural EB) from
becoming active while the other (e.g., here, the move-
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this detection instability 
in CoS triggers the 
sequential transition by 
inhibiting the intention
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movement to be executed, and d = xtarget − xreal is the
remaining distance.

To summarize, a single timed movement consists of
three separate behaviors: the postural, movement, and
update behavior. In order to function properly, these be-
haviors must be activated and deactivated in the correct
sequence: the initial position must be memorized before
starting to move and the movement has to suppress the
postural behavior. The necessity of organizing behaviors
in time becomes even more apparent when building entire
architectures based on discrete behaviors.

The framework for behavioral organization is based on
DFT, which we now briefly review.

B. Dynamic Field Theory
Dynamic Field Theory (DFT) [16] is a neural variant

of the attractor dynamics approach. We use it here as
an integrating framework between the low level sensory-
motor streams of the robot and the higher level cognitive
functions of the model, for instance its perceptual repre-
sentations and its organization of behaviors.

Within DFT, dynamic neural fields (DNFs) are used to
represent neural activity patterns over continuous, metric
feature dimensions (e.g., color or space). The activation
pattern evolves in continuous time t, as described by the
following dynamic equation, which can be traced back to
Grossberg [17] and was analyzed by Amari [18]

τ u̇(x, t) = −u(x, t) + h + S(x, t)

+
∫

ω(x − x′)f(u(x, t))dx′. (5)

In Eq. 5, u(x, t) describes the activation of a DNF
at feature location x and time t. Without external
input S(x, t), the activation will relax to the resting
level h < 0 and the output of the DNF, given by
the sigmoidal function f(u(x, t)), will be zero. With
sufficient external input, the DNF will produce output as
well as lateral interaction within the feature dimension.
The type of interaction is governed by the interaction
kernel ω(∆x) and comprises local excitation and global
or mid-range inhibition, promoting the formation of
localized peaks of activation. Within DFT, such peaks
are the units of representation for motor parameters,
perceptual items, and memory items.

A zero-dimensional DNF is a dynamical node that
represents a discrete instance of a percept or behavior.

C. Behavioral organization
A framework for behavioral organization based on

DFT, previously introduced and implemented on a hu-
manoid robot in a grasping task [19], is extended to
flexibly organize timed behaviors.

1) Elementary behaviors: Within DFT, the behaviors
that are organized are elementary behaviors (EB). EBs
consist of two parts, an intention and a condition of
satisfaction (CoS), each of which is represented by a
dynamical node and a dynamic neural field (DNF) (see

Fig. 2. Elementary behavior (EB) in Dynamic Field Theory.
Each EB consists of two parts: the intention represents the desired
change of the EB in the world, while the condition of satisfaction
(CoS) represents the sensory signal expected for the successful
completion of the EB.

Fig. 2). While the intention node simply determines
whether the EB is active or inactive, the intention field
describes the EB’s connection to the world. For instance,
the intention field of an EB ‘move arm’ would represent
desired movement parameters of the arm (e.g., the target
position) and would be connected to its motors.

The CoS field of an EB receives input from the in-
tention field, describing the desired outcome of the EB
(e.g., the end-effector of the arm at the target posi-
tion). Additionally, the CoS field receives input from the
sensory system, describing the current state of the EB
(e.g., the current position of the end-effector). If the two
inputs overlap, a peak forms in the CoS field, signaling
the successful completion of the EB. This peak activates
the CoS node, which in turn inhibits the intention node,
switching off the EB. Explicitly modeling the beginning
and end of an EB in this way allows us to close the
gap between discrete actions and the continuous sensory-
motor streams they are connected to.

2) Generating sequences: By default, all EBs relevant
for a task are activated at the same time. The sequential
organization of EBs derives from constraints that are
represented by dynamic coupling terms and are defined
within pairs of EBs. A precondition constraint prevents
a first EB (e.g., here, the update EB) from becoming
active until a second EB (e.g., here, the movement
EB) is completed. The constraint is represented by a
precondition node, a dynamical node that is activated by
task input and inhibits the intention node of the second
EB. As soon as the first EB is finished, its CoS node
will activate and inhibit the precondition node, releasing
the intention node of the second EB from inhibition and
thereby allowing its execution.

A suppression constraint between two other EBs pre-
vents one of them (e.g., here, the postural EB) from
becoming active while the other (e.g., here, the move-
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Conclusion
the CoS organizes the transition away from on ongoing 
behavior/mental state 

based on a signal from perception or from an inner 
state of a neural architecture that is predicted to be 
indicative of successful completion of the behavior/
mental act
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next challenge:

the CoS does NOT organize yet, how the next 
behavior/mental state is selected 



Serial order of a sequence

three fundamental concepts for how this happens 

1 gradient based

2 chaining 

3 positional 
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Gradient based 
serial order

Kazerounian and Grossberg Learning to categorize working memory sequences

sequence of item chunks, and are fully unitized as a list chunk.
Thus, the model in Figure 1 first compresses spatial patterns of
feature detectors into item chunks, and then sequences of these
item chunks that are spatially stored in WM are compressed into
list chunks.

A primacy gradient stores items in WM in the correct tempo-
ral order. In a primacy gradient, the first item in the sequence
activates the corresponding item chunk with the highest activ-
ity, the item chunk representing the second item has the second
highest activity, and so on, until all items in the sequence are
represented. For example, a sequence “1-2-3” of items is trans-
formed into a primacy gradient of activity with cells encoding
“1” having the highest activity, cells encoding “2” with the second
highest activity, and cells encoding “3” having the least activity
(Figure 3A). Item-and-Order working memories can easily store
sequences composed of the same items presented in different
orderings. For example, if the sequence “3-2-1” is presented, then
“3” has the highest activity, and so on (Figure 3B). Phonemes,
syllables, and words can all be coded as sequences of item chunks,
before they are unitized into list chunks at the next level of
processing.

2.2. REHEARSAL AND INHIBITION OF RETURN
How is a stored spatial pattern in WM used to recall a sequence of
items performed through time? A rehearsal wave that is delivered
uniformly, or non-specifically, to the entire WM enables read-out
of stored activities. The node with the highest activity is read out
fastest and self-inhibits its WM representation. By inhibiting the
item that is currently being read out, such self-inhibition realizes
the cognitive concept of inhibition of return, which prevents perse-
veration on the earliest item to be performed. This self-inhibition
process is repeated until the entire sequence is reproduced in its
correct order and there are no active nodes left in the WM.

2.3. COMPETITIVE QUEUING AND PRIMACY MODELS
Since the Grossberg (1978a,b) introduction of this type of
model, many modelers have used it and variations thereof
(e.g., Houghton, 1990; Boardman and Bullock, 1991; Bradski
et al., 1994; Page and Norris, 1998; Bullock and Rhodes, 2003;
Grossberg and Pearson, 2008; Bohland et al., 2010). In particu-
lar, the Item-and-Order WM is also known as the Competitive
Queuing model (Houghton, 1990). Page and Norris (1998) pre-
sented a Primacy model to explain and simulate cognitive data
about immediate serial order working memory, notably experi-
mental properties of word and list length, phonological similarity,
and forward and backward recall effects.

2.4. DATA ABOUT ITEM-AND-ORDER STORAGE AND RECALL
Both psychophysical and neurophysiological data have supported
the Grossberg (1978a,b) predictions that neural ensembles repre-
sent list items, encode the order of the items with their relative
activity levels, and are reset by self-inhibition. For example,
Farrell and Lewandowsky (2004) did psychophysical experiments
in humans that study the latency of responses following serial
performance errors. They concluded that (p. 115): “Several com-
peting theories of short-term memory can explain serial recall
performance at a quantitative level. However, most theories to
date have not been applied to the accompanying pattern of
response latencies. . . Data from three experiments show that
latency is a negative function of transposition displacement, such
that list items that are reported too soon (ahead of their cor-
rect serial position) are recalled more slowly than items that
are reported too late. We show by simulation that these data
rule out three of the four representational mechanisms. The data
support the notion that serial order is represented by a pri-
macy gradient that is accompanied by suppression of recalled
items.”

FIGURE 3 | (A) A primacy gradient is stored in response to the sequence of items “1-2-3” is shown, with activities in a solid line corresponding to “1,” activities
in dashed lines corresponding to “2,” and activities in dotted lines corresponding to “3.” (B) A primacy gradient is stored in response to the sequence “3-2-1.”

www.frontiersin.org October 2014 | Volume 5 | Article 1053 | 3
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Kazerounian and Grossberg Learning to categorize working memory sequences

Providing this crucial missing piece is the current article’s main
accomplishment.

The article justifies the choice of its particular working mem-
ory and list chunk models by reviewing a subset of the psycho-
logical and neurobiological data that have been explained and
predicted by these models, and the larger cognitive and neural
literatures to which the models contribute. The new results about
list chunk learning clarify how these models can learn the cate-
gorical representations that have been previously used to explain
these various data.

The model that is further developed in the current article
describes an Item-and-Order, or competitive queuing, work-
ing memory, and a Masking Field list chunking network. The
working memory activates list chunks through an adaptive filter
whose weights learn to activate different categories in response
to different stored sequences of items in the working memory
(Figure 1).

Sections 2–4 provide scholarly background about working
memory and list chunking data and models. Section 5 describes
six new properties that enable learning of list chunks by the
model in real time. Section 6 defines the model mathematically.
Section 7 describes the computer simulations of list chunk learn-
ing. Section 8 describes model extensions, other data explained
by the model, and a comparative analysis of other neural mod-
els, notably models of speech. Section 9 describes some future
directions for additional model development.

2. ITEM-AND-ORDER WORKING MEMORY
2.1. PRIMACY GRADIENT IN WORKING MEMORY
When we experience sequences of events through time, they
may be temporarily stored in a working memory (WM). Tests

FIGURE 1 | Macrocircuit of the list chunk learning model simulated in
the current article. An Item-and-Order working memory for the short-term
sequential storage of item sequences activates a Masking Field network
through an adaptive filter whose weights learn to selectively activate
Masking Field nodes in response to different stored item sequences and to
thereby convert them into list chunks.

of immediate serial recall (ISR), in which subjects are pre-
sented with a list of items and subsequently asked to reproduce
the items in order, were among the early probes of the prop-
erties of WM (e.g., Nipher, 1878; Ebbinghaus, 1913; Conrad,
1965; Murdock, 1968; Healy, 1974; Henson, 1996; Wickelgren,
1966).

As data accumulated from studies involving ISR and similar
tasks, models of WM were developed to explain them. Lashley
(1951) suggested that items are retained in parallel in spatially
separable neural populations, thus transforming the tempo-
ral problem of serial order into a spatial problem. Grossberg
(1978a,b) developed a rigorous neural model of WM through
which a temporal stream of inputs could be stored as an evolv-
ing spatial pattern of item representations (Figure 2), before these
patterns are unitized through learning into list chunk representa-
tions that can be used to control context-sensitive behaviors. This
WM model is called an Item-and-Order model. In it, individ-
ual nodes, or cell populations, represent list items and the order
in which the items are presented is stored by an activity gradient
across the nodes. An item is more properly called an item chunk,
which, just like any chunk, is a compressed representation of a
spatial pattern of activity within a prescribed time interval. In
the case of an item chunk, the spatial pattern of activity exists
across acoustical feature detectors that process sounds through
time. The prescribed time interval is short, and is commensurate
with the duration of the shortest perceivable acoustic inputs, of
the order of 10–100 msec. Some phonemes may be coded as indi-
vidual items, but others, in which two or more spatial patterns are
needed to identify them, are coded in working memory as a short

FIGURE 2 | In an Item-and-Order working memory, acoustic item
activities C (I)

1 , C (I)
2 , C (I)

3 , are stored in working memory by a gradient of
activity. A correct temporal order is represented by a primacy gradient,
with the most active cell activity Xi corresponding to the first item
presented, the second most active corresponding to the second item
presented, and so on. (Reprinted with permission from Grossberg and
Kazerounian, 2011).

Frontiers in Psychology | Language Sciences October 2014 | Volume 5 | Article 1053 | 2



Gradient-based 

in many DFT architectures, this is effectively the 
mechanism in the sense that a new peak is 
generated within a field at a location that wins 
the selective competition

based on inputs… 

e.g. salience map for visual search

e.g. selecting the most activated location in a 
relational field 



Int. CoSCoS CoSInt. Int.

Sensorimotor DFs

environment

Gradient-based 

each behavior/
process is self-
terminating

which behavior/
process is activated 
next depends on its 
inputs or on chance



Chaining

as in many “fixed action patterns”

e.g. reach-grasp

e.g. locomotory patterns 

in our models: e.g fixed order of processing steps 
in some models 



i. c.c. c.i. i.

p. p.

Sensorimotor DFs

environment

Chaining

pre-condition 
nodes implement 
chaining directly 



Chaining

inherent limitation: difficulty when states may be 
followed by different successors 

not obvious this is particularly flexible 



Positional representation

in which a neural representation of “ordinal 
position” is organized to be sequentially 
activated… 

while the contents at each ordinal position is 
specified by neural projections from each ordinal 
node…
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positional
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Figure 11: One run of the robotic demonstrations. A: Time-courses of activation of five ordinal nodes during
sequence learning and production. B: Time-course of activation in the action field. Positive activation in the
field encodes the color currently searched for. C: Time-course of activation in the condition of satisfaction
field. Arrows mark the times when condition of satisfaction signals were emitted (detection instabilities in
the field). D: The projection of the perceptual color-space field onto the spatial dimension (horizontal axis of
the image plane). The arrows mark times when the object of interest in each ordinal position first appeared
in the visual array of the robot. The “random search” behavior changed to “approach target” behavior at
these points.
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Positional representation

amounts to chaining… if the projections are 
fixed.. 

potential realization in Hippocampus

is used in DFT models when serial order is 
learned..



[Tekülve et al., 
Frontiers in 

Neurorobotics 
(2019)]

Tekülve et al. Autonomous Sequence Generation

3. MODEL

The neural dynamic architecture described here is a network
of neural fields that are coupled to a camera and a robotic
arm. These links enable online connection to a changing visual
scene and online control of the arm. Three sub-networks
(Figure 2) autonomously organize sequences of activation states
to build visual representations, learn or perform serially ordered
sequences, and generate object-oriented movements.

The perceptual sub-network, connected to the camera, creates
a working memory representation of the visual scene through
autonomous shifts of attention. A motor sub-network drives
an oscillator generating velocity commands for the robotic
arm. The cognitive sub-network represents ordinal positions
in a sequence and may autonomously shift from one ordinal
position to the next. The ordinal system may be used in
two different manners, sequence learning and sequence recall,

controlled by the activation of one of two different task
nodes. These task nodes activate behaviors by boosting fields’
resting levels and enabling fields to generate task relevant
attractor states.

The following sections describe for each sub-network the
states that drive behavior and the mechanism for how the system
switches between those states. The last section addresses the
integration of all three sub-networks for the two tasks Learn
and Recall.

3.1. Perception: Scene Representation
The scene representation sub-network is based on Grieben et al.
(2018) and creates three-dimensional (2D space and 1D color)
working memory representations of objects in the visual scene
captured by the camera. Each entry into the representation
is created sequentially as the sub-network autonomously shifts
attention across different objects in the scene.

FIGURE 2 | Sketch of the dynamic field network with its three sub-networks.
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At point t0, the Exploration intention node provides a
homogeneous boost to the Saliency Selection field leading to an
activation peak at the location of the purple object. This causes
the emergence of a three-dimensional peak in the Scene Selection
field, of which the color dimension is shown in the third row. The
WorkingMemory field contains no supra-threshold activation yet
but, at the locations of the non-background objects, the resting
level is increased across the whole color dimension.

Once the peak in the Scene Selection field has fully emerged
at t1, its color component is forwarded as a slice toward the
Working Memory, where it overlaps with the tube originating
from the Saliency Selection field and forms a three-dimensional
peak. Subsequently a peak also forms in the Memory Spatial
Selection field, which shares the same color as the peak in the
Scene Space Selection causing an overlap in the Color Match field.

The peak forming in the Color Match field activates the CoS
Explore node, which inhibits the Explore intention node. Thus
the resting level boost is removed from the Saliency Selection
field, which subsequently falls down to sub-threshold activation

at point t2. Only the self-sustained peak in the Working Memory
field remains.

The absence of a peak in the Color Match field causes the CoS
node to fall below threshold again, bringing the sub-network to
its initial state. The following activation of the Explore intention
node, depicted from t3 until t5, follows the same temporal
activation pattern as the previous one with different feature
values for spatial location and color. The spatial location in the
Saliency Selection field differs due to the inhibitory influence
from theWorking Memory field. See Supplementary Video 3 for
a different example of autonomous build-up of visual working
memory in continuous time.

4.2. Learning Demonstration
A particular color sequence is taught to the network in its
learning regime by presenting objects of a certain color one after
another. In Figure 5 activation snapshots of some points in time
during an exemplary learning episode are shown. The top row
depicts the temporal evolution of activation of the ordinal nodes

FIGURE 5 | Time course of learning a three element sequence with varying presentation time.
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and robot armwere simulated usingWEBOTS (Michel, 2004) that
can be coupled into Cedar. The same Cedar code can also link to
real sensors and robots. We did this, driving the model from a
real camera and manipulating the visual scene by placing colored
objects on a white table top. We also controlled a lightweight
KUKA arm from the same Cedar code to verify its capacity to act
out the planned movements. These informal robotic experiments
are not further documented in this paper.

4.1. Scene Representation: Autonomous
Build-up of Visual Working Memory
The build-up of the scene workingmemory is an ongoing process
that provides visual information to the network irrespective of
the currently active task node. In Figure 4 we show activation
snapshots of different points in time during working memory
build-up in an exemplary scene containing three objects and the
arm’s end-effector.

FIGURE 4 | Time course of building a scene memory.
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FIGURE 6 | Time course of recalling a three element sequence through pointing at colored objects.

as a sub-threshold activation blob, and the blue object is entirely
absent. As the first movement is finished at t1 all three objects are
present in working memory as sub-threshold activation blobs.

Thus at t2, the second movement starts closely after the
activation of the second ordinal node with the blue object as
the target on the right side of the camera image. While the arm
is moving the object is moved to the center/top position of the
image, which results in a non-match between arm and target at
the end of the movement, which can be seen at t3. Here working
memory has updated the position of the blue object, which leads
to an extraction of a different target position that does not match
with the current position of the end effector. Only at t4 after a
second movement was generated, the blue object and the end
effector match, which concludes the recall of the second element
of the sequence.

The last movement toward the purple object is then conducted
without any further perturbations and terminates after a single
movement at t6.

4.3.2. Recall With a Missing Object
In this second recall episode demonstrating the robustness of the
field network we start the recall in a scene that lacks the second
object of the sequence. In Figure 8, activation snapshots of the

same sub-set of fields used in the previous perturbation episode
are shown.

At points t0 and t1, the network’s activation develops analog
to the previous two recall examples with a color slice used to
extract the target position and the position match to determine
the successful termination of the movement. However as the
second ordinal node activates at t2 no blue object is present in
the scene, thus no sub-threshold activation blob overlaps with
the blue color slice in the Memory Color Selection field and no
peak forms.

At point t3, the blue object is added to the scene, which
is committed to memory and afterwards extracted as a valid
target position. The movement than concludes at t4 with the
arm occluding the purple object, which is kept in working
memory due to the self-sustaining kernel. The working memory
information is then used in t5, when the third ordinal node
specifies purple as the next sequence color. Thus the sequence
ends at t6 with no further perturbations.

5. DISCUSSION

We have presented a network of dynamic neural fields that
integrates the complete pathway from the sensor surface (vision)
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FIGURE 7 | Online updating of the movement during sequence recall.

to representations of higher cognition (serial order) and to the
motor system (pointing). The network architecture enables a
robotic agent to autonomously learn a sequence of colors from
demonstration and then to act according to the defined serial
order on a scene. Both during learning and while acting out the
sequence, the transitions between elements of the sequence are
detected without the need for an external control signal (The
switch between learning and recall mode is not autonomous,
however, reflecting a similar need for task instructions when a
human operator performs such a task).

In each of the three sub-networks responsible for scene
representation, the representation of serial order, and movement
generation, sequential transitions between neural activation
states are brought about through the mechanism of the condition
of satisfaction. Thus, visual attention shifts only once a currently
attended item has been committed to working memory. A
transition to the next element in the serial order occurs only
once the robot has successfully acted on the current element. And

an arm movement terminates only once the desired movement
target has been reached. The mechanism of the condition of
satisfaction thus reconciles the capacity to autonomously act
according to learned or structurally determined plans with the
capacity to be responsive to sensory or internal information about
the achievement of goals.

5.1. What the Scenario Stands for
The scenario was simple, but meant to demonstrate
the fundamental components of any neurally grounded
autonomous robot.

(1) A representation of the visual surround is the basis for any
intelligent action directed at the world. It is also the basis for
sharing an environment with a human user. We humans are
particularly tuned to building scene representations which
form the basis of much of our visual cognition (Henderson
and Hollingworth, 1999). Scene representations need to
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Conclusion

in DFT, autonomous sequence generation 
entails two steps

1) condition of satisfaction: detection/reverse 
detection instabilities create an active 
transient that deactivates the current 
intentional state

2) the subsequent state arises from 
competitive selection (gradient approach), 
from chaining (pre-condition), or from a 
positional representation of serial order 


