Grounding Spatial Language: A case study in Dynamic Field Theory as a framework for neurally grounded architectures for higher cognition

Gregor Schöner Institut für Neuroinformatik Ruhr-Universität Bochum, Germany gregor.schoener@rub.de

Previous lecture

higher-dimensional neural fields enable new functions

- binding different feature dimensions through space
- visual search... attentional selection
- coordinate transforms...

Visual search/scene representation

Visual search: to direct action at an object first bring it into the attentional foreground...

attentional selection

to bring a cued object into the attentional foreground

[Tekülve, 2020]

attentional selection

to bring a cued object into the attentional foreground

color cue

[Tekülve, 2020]

attentional selection

to bring a cued object into the attentional foreground

[Tekülve, 2020]

color cue

Neural dynamic architecture for visual search and scene memory

[Grieben et al. Attention, Perception & Psychophysics (2020)]

Attentional selection

[Grieben et al. Attention, Perception & Psychophysics (2020)]

Autonomous sequences of visual exploration and cued visual search

SALIENCY MAP

Coordinate transforms

[Schneegans Ch 7 of DFT Primer, 2016]

Today

- Illustrate how these functions support lifting neural dynamics to higher cognition
- in the context of the perceptual grounding of concepts/language/relations

- human communication in its simplest form is about things that are our there in our environment, perceivable, reachable by action
- e.g., this cup is brown

- this could be based by both the speaker and the listener looking at the scene and grounding the word "cup" by bringing an object of that category into the foreground
- also called "targetting" (Talmy)

that process could be mediated by other forms of communication, e.g., pointing (deictic code)

- that process could also be mediated by spatial language, e.g., "the cup to the right of the green book is brown" (spatial language)
- (which presupposes that the reference object "green book" is grounded for speaker and observer)

Perceptually grounding language vs. describing

Perceptual grounding: understanding phrases by finding in the visual array the objects to which the phrase refers

Describing: producing phrases that describe an observed scene or event

"what is to the right of the green object"

Spatial language

- such utterances as "to the left of", "on top of", "in", "in front of", "toward the south", "in front of" etc.
- a part of language that deep: evolves slowly in languages, with profound differences between languages and cultures, that is particularly challenging for "grounding"

Spatial language

Examples:

- some cultures use absolute directions "north", "south" etc. even on a local scale (e.g, "the car north of the house" rather than "the car in front of the house").
- others have special spatial language referring to geographical landmarks (e.g., islanders who have a word for "toward the beach" vs. "away from the beach, toward the inland")
- "in front of" is used differently even in different indoeuropean languages

involves necessarily reference frames... there are 4 basic and commonly used reference frames

orientation relative to speaker, position centered in speaker

"on my left"

orientation relative to world/object, position centered in speaker:

"north", "south..." or "leeward", "windward" ...

- orientation relative to speaker, position centered in object
 - "the cup to the right of the bottle"
- orientation relative to object, position centered in object
 - "leave the train on the right hand side"

reference frames are subtle

- Example: "in front of" can be in an ego-centric frame if the object has no special long axis and front end (e.g., "in front of the tree" meaning "between me and the tree")
- but can be in an object centered frame if the object has a long axis and front end (e.g. "in front of the car" meaning "on the side of the car in the direction in which its front end points")
 - (and on this count different languages differ)

spatial language often involves reference objects

Example: "to the right of the green book": this is a statement in an ego-centric reference frame for direction but that is spatially centered in an object

- spatial language often involves coordinate transforms
 - e.g., "to the right of the green book": coordinate transformation: from the speaker/observer centered reference frame into a frame centered in the reference object
 - e.g., "to my right" requires the listener to transform the reference frame from his or her own view to the directional and positional frame of the speaker

A cognitive architecture for grounded spatial language in DFT

- bring objects into foreground
- make coordinate transformation
- apply comparison operators

- bring objects into foreground
- make coordinate transformation
- apply comparison operators

bring objects into foreground

- make coordinate transformation
- apply comparison operators

- bring objects into foreground
- make coordinate transformation
- apply comparison operators

(e)

"above"

"below"

(a) "red" "green" "blue" \bigcirc 0 • Target Reference "left" "right"

Object-centered

bring objects into foreground

- make coordinate transformation
- apply comparison operators

"where is the green object relative to the red object?"

"which
object is
above the
blue
object?"

accounts for human data

Alternative: coordinate transform applied to the neural operator

based on convolution of fields with kernels

[from: Lipinski, Sandamirskaya, Schöner, 2009]

A DFT architecture that does both grounding and describing

color concepts

what is to the right of the green object?

where is the orange relative to the green object

Autonomous hypothesis testing

"the red cup that is to the left of the green cup"

[Richter, Lins et al, CogSci 2014]

"the red to the left of the green"

Grounding movement relations

[Richter, Lins, Schöner, ToPiC (2017)]

[Richter et al]

perceptual grounding

"the red moving to the right"

description

[Richter et al]

activation colormap

Conclusion

- in higher dimensional fields
- arranged in architectures...
- deliver higher cognitive functions
- such as perceptual grounding, and describing scenes