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Core of DFT
field dynamics 
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with strong 
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Dimensionality of fields

all this was done primarily in fields defined 
over a single dimension… 

multi-dimensional fields are not per se 
fundamentally different…. 

in particular, they have the same kind of 
dynamics as one-dimensional fields 



example: retinal space
obviously two-dimensional

visual field location, although the RF of each neuron might be
broadly tuned to stimulus location.

For extrapolation, DPAs were obtained by replacing the neural
activity observed in other time intervals or in response to com-
posite stimuli.

Temporal evolution of the DPAs of elementary stimuli
The main emphasis of this study was to explore cortical interac-
tion processes. It appears conceivable that such processes can be
traced during the entire temporal structure of neuron responses
because of differences of time constants of excitatory and inhib-
itory contributions (Bringuier et al., 1999) and because of time-
delayed feedback (Dinse et al., 1990). Accordingly, as an impor-
tant prerequisite, time-resolved DPAs were constructed for a
number of subsequent time intervals after stimulus onset using
the firing rates within each time slice as weights. Figures 3 and 4

illustrate the temporal evolution of the DPAs from 30 to 80 msec
after stimulus onset for two selected elementary stimuli. There is
a remarkable spatial coherence of activity within the ensemble.
The gradual build-up and decay of activation were quite uniform
across the distributions of all elementary stimuli.

On average, the DPAs constructed by Gaussian interpolation
reached maximal level of activation 54 ! 4 msec after stimulus
onset as compared to 53 ! 5 msec for the OLE-derived DPAs
(see Fig. 9B). To quantitatively assess the accuracy with which the
DPAs represent the location of the elementary stimuli position
during the entire time course of responses analyzed (30–80
msec), we compared the position of the maximum of each DPA to
the respective stimulus position. Figure 5 plots these constructed
positions against the real stimulus positions. Results from both
reconstruction methods revealed that the DPAs represent stimu-
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Figure 3. Two-dimensional DPAs of adjacent elementary stimuli (top and bottom) derived by Gaussian interpolation. The DPAs were obtained for
consecutive intervals of 10 msec duration covering the period from 30 to 80 msec after stimulus onset. Same conventions as in Figure 2 B. Each example
was normalized separately. As for the OLE-derived DPAs (compare Fig. 4), the distributions grow and decay gradually, and their maximum is always
located near the position of the stimulus. Although the two stimuli are at neighboring locations, differences of the spatial representations are apparent
throughout the time course of the response. For all elementary stimuli, the average latency of maximal activation was 54 ! 4 msec.
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Figure 4. The temporal evolution of two OLE-derived DPAs of the same elementary stimuli (A, B, vertical lines indicate position) as shown in Figure
3. The DPAs are depicted in 10 msec time intervals covering the period from 30 to 80 msec. The distributions grow and decay, gradually reaching
maximum activity at 53 ! 5 msec (average of all seven elementary stimuli) after stimulus onset. The position of the maximum of each distribution closely
approximates the stimulus position of the elementary stimulus throughout the time course of the neural population response, yet less accurately in the
late time epoch.

9020 J. Neurosci., October 15, 1999, 19(20):9016–9028 Jancke et al. • Population Dynamics within Parametric Space
time

[Jancke et al., 1999]



example: visual feature map
orientation-retinal location

[Jancke, JNeursci (2000)]



example: visual feature maps

the neural field 
representation a single 
feature (e.g. orientation) as 
well as retinal location is at 
least three-dimensional

cannot be mapped onto 
cortical surfaces without 
cuts ... 



Dynamic fields of varying 
dimensionality

2-dimensional1-dimensional0-dimensional

0-dimensional: nodes, “on” vs 
“off” states

1, 2, 3, 4… dimensions: peak/
blob states  
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Fig. 6 The feature extraction pathway in illustrated in the blown up portion on the left and bottom. The pathway is

positioned within the complete neural dynamic architecture. See text for an explanation.

From the scene space/feature maps input is generated into a single central salience map, represented

by the scene spatial salience field. That input is obtained by integrating along each feature dimension

within each space-feature field (conspicuity) and summing across the three conspicuity representations.

3.2 Attentional selection

Visual cognition always entails attentional selection decisions. Figure 7 highlights the sub-system of the

neural dynamic architecture that generates such selection decisions.

Central is the scene spatial selection field that represents the localization of spatial attention. It re-

ceives multi-peak input from the salience field and singles out the most salient location by being in the

dynamic regime of selection, in which a single supra-threshold peak may be stable at any moment in

time. The selection decision is biased toward previously unattended positions by additional input from

the inhibition of return memory trace, which reflects the recent history of activation of the scene spatial

selection field. The self-sustained spatial working memory field reinforces that e↵ect, but its representa-

3-dimensional



New cognitive functions 
emerge as dimensionality 

is varied 



Binding

a joint representation of 
space and color

Space-Color Field
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dimension and one color dimension

color processing in visual cortex not
fully understood, but population
code over hue values is a reasonable
simplification

qualitatively same e↵ects as in 3D
field, but easier to visualize in 2D
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Extract bound features

by projecting to lower-
dimensional fields 

summing along the 
marginalized dimensions

(or by taking the soft-
max)

Read-out from high-dimensional field
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fields of di↵erent dimensionality
can interact with each other

read-out of one feature
dimension: integrate over
discarded dimensions

e.g. spatial readout:

IS(x) =

Z
f (uv (x , y))dy

often additional Gaussian
convolution in read-out for
smoothness (reflects synaptic
spread in biological system)
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Assembling bound representations
projecting into higher-dimensional field by 
“ridge input”
Ridge Inputs to Multi-Dimensional Fields
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projection from 1D to 2D: ridge input
does only specify value in one dimension, homogeneous in the other
should typically not induce a peak by itself
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Assembling bound representationsRidge Intersections
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intersection of 1D ridges can
specify location in 2D

binding problem when multiple
items are present
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Feature Conjunctions and Feature Binding
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multiple ridges create additional
intersections

1D fields with multiple peaks do
not specify which features
belong together

combined representation
necessary to resolve feature
binding problem
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binding problem: 
multiple ridges lead to a 
correspondence 
problem

=> assemble one object 
at a time… sequentiality 
bottle-neck!

Assembling bound representations

[Schneegans et al.,Ch 5 of DFT Primer, 2016]



visual search

combine 1D (ridge) input 
with 2D input.. 

so that only those 2D 
locations can form peaks that 
overlap with ridge (boost 
driven detection)

activates objects consistent 
with 1D feature value

Visual Search
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combine top-down feature input
(1D) with bottom-up localized
input (2D)

read out spatial position of
matching item
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see Schneegans,  Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP, 2015]



visual search

the selection 
from visual 
search can be 
propagated to 
the 1D feature 
representations
… 

Coupled Selection
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joint selection in separate 1D fields, coupled via 2D field
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see Schneegans,  Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP, 2015]



contrast: synaptic association

in conventional 
connectionist 
networks associative 
relationships are 
learned by adjusting 
synapses between 
those color and 
space neurons that 
have been co-
activated

space encoding neurons
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connections must be 
learned, so does not 
account for how 
“where is the red 
square” works from 
current stimulation 
(seen for the first time 
ever)

limitations of synaptic association

space encoding neurons
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learning multiple 
associations poses a 
binding problem: 

connectionist 
associators learn 
one item at a time 
and need separate 
presentation of 
individual items!

limitations of synaptic association

space encoding neurons
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the network may associate blue with left and read with right



Binding by joint representations

a “neuro-anatomical” 
form of binding 

=> very costly

Space-Color Field
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for now: 2D field, one spatial
dimension and one color dimension

color processing in visual cortex not
fully understood, but population
code over hue values is a reasonable
simplification

qualitatively same e↵ects as in 3D
field, but easier to visualize in 2D
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example: bind orientation, color, texture, scale, 
and 2D visual space => 6-dimensional field

100 neurons per dimension =>  neurons ~ 
the entire brain!  

1012

Binding by joint representations



Binding through space

separate 3 to 4 dimensional feature 
fields

all of which share the dimension 
visual space (~all neurons have 
receptive fields)

bind through space à la Feature 
Integration Theory (Treisman) 
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Fig. 6 The feature extraction pathway in illustrated in the blown up portion on the left and bottom. The pathway is

positioned within the complete neural dynamic architecture. See text for an explanation.

From the scene space/feature maps input is generated into a single central salience map, represented

by the scene spatial salience field. That input is obtained by integrating along each feature dimension

within each space-feature field (conspicuity) and summing across the three conspicuity representations.

3.2 Attentional selection

Visual cognition always entails attentional selection decisions. Figure 7 highlights the sub-system of the

neural dynamic architecture that generates such selection decisions.

Central is the scene spatial selection field that represents the localization of spatial attention. It re-

ceives multi-peak input from the salience field and singles out the most salient location by being in the

dynamic regime of selection, in which a single supra-threshold peak may be stable at any moment in

time. The selection decision is biased toward previously unattended positions by additional input from

the inhibition of return memory trace, which reflects the recent history of activation of the scene spatial

selection field. The self-sustained spatial working memory field reinforces that e↵ect, but its representa-

[Grieben et al. Attention, Perception & Psychophysics 2020]



Binding through space

bind through 
space à la 
Feature 
Integration 
Theory 
(Treisman) 

Atten Percept Psychophys

Fig. 8 The fields involved in the exploration and memorization sub-task are highlighted within the complete neural dynamic architecture

while in visual working memory and beyond item location
is represented independently of gaze. The coordinate
transform that achieves this invariance is prohibitively
costly if performed directly on the bound visual objects
(Schneegans et al., 2016). Instead, the transformation is
only performed for the spatial dimension of the fields, and
the feature information is added back in as modeled here.
For this paper, however, we omit coordinate transforms by
assuming that all representations share the original retinal
frame (i.e., that of the fixed camera), which is equivalent to
assuming the absence of eye or head movements.

The memory space/feature maps provide three-
dimensional input to an analogous set of three memory
space/feature selection fields (G). In these fields, one item
from the input is selected and brought above threshold,
again based on overlap with column input from the scene
spatial selection field. The result is an isolated representa-
tion of the memory item at the attended location. Projections
from both this representation and the scene space/feature
selection fields converge onto a neural feature matching
mechanism (H , see “Match and mismatch detection”),
which detects whether the attended item’s features have
been successfully committed to scene working memory.
When this detection occurs, the task node is deactivated
through an inhibitory connection (red line in Fig. 8). This
concludes one step in the exploration sequence. By default,
that is, unless another task becomes active (see below),
the task node is then reactivated, thus initiating another

cycle of attentional selection and commitment to working
memory.

Task 2: Retaining feature cues

Figure 9 highlights the sub-network that is responsible for
retaining a feature cue for visual search. It is activated by
the “retain” task node, which may itself be activated from
different sources depending on the cognitive task at hand. In
the current context, the task node is activated by the onset
detector (D3 in Fig. 9) when it detects a change in the visual
scene.

Analogously to exploration, the retain process consists
of storing currently attended feature values in self-sustained
fields, the search cue fields (I ), which are one-dimensional
since only the feature values of the cue are relevant (not its
position).

To forward feature values from the scene space/feature
selection fields to the search cue fields, the retain node
homogeneously boosts activation in the retain gate fields
(I1), enabling them to build peaks and thus pass on
activation.

The retain sub-task is terminated once the content of
the search-cue fields matches the features of the currently
attended item. Upon deactivation of the retain node, peaks
in the attention field and the gating fields decay, whereas in
the search cue fields the cue’s feature values are retained for
later use.

[Grieben et al. Attention, Perception & Psychophysics 2020]



FIGURE 5.11: Multi-item trial in the multifeature model with high spatial proximity and different possible outcomes. (a) 
At the start of each trial, a cue item is presented (not shown) and the color memory field is boosted concurrently. This 
causes a peak to build there, which is retained throughout the trial and ref lects the target color. The projection to the color 
attention field activates the respective value there, which in turn biases activation in the space-color field. (b) Next, the 
test display with multiple items is presented. Each of the items is represented by one peak in each visual sensory field. The 
activation ridge from the color attention field enhances the space-color peak of the target item (the green S), causing this 
peak to determine peak position in the spatial attention field. The spatial attention peak projects back into both visual 
sensory fields, enhancing the space-shape peak at that location (and less so the peaks of close-by items). (c) Brief boosts to 
the shape memory field and the spatial read-out field force these fields to form peaks, which correspond to the shape and 
spatial response of the model, respectively. In most cases, the correct shape and location are chosen, as shown here. (d) 
In some cases, the feature-space peak of a distractor item spatially close to the target item (here, the space-shape peak of 
the yellow O) is overly enhanced by the ridge from the spatial attention field. In this case, the erroneously enhanced peak 
may prevail in determining peak position in the shape attention field and, thus, the shape response, resulting in an illusory 
conjunction. Illusory conjunctions are also associated with a shift of peak position in the spatial attention field, which is 
why the location response is as well displaced toward the spatial midpoint between the involved items.

FIGURE 5.11: Multi-item trial in the multifeature model with high spatial proximity and different possible outcomes. (a) 
At the start of each trial, a cue item is presented (not shown) and the color memory field is boosted concurrently. This 
causes a peak to build there, which is retained throughout the trial and ref lects the target color. The projection to the color 
attention field activates the respective value there, which in turn biases activation in the space-color field. (b) Next, the 
test display with multiple items is presented. Each of the items is represented by one peak in each visual sensory field. The 
activation ridge from the color attention field enhances the space-color peak of the target item (the green S), causing this 
peak to determine peak position in the spatial attention field. The spatial attention peak projects back into both visual 
sensory fields, enhancing the space-shape peak at that location (and less so the peaks of close-by items). (c) Brief boosts to 
the shape memory field and the spatial read-out field force these fields to form peaks, which correspond to the shape and 
spatial response of the model, respectively. In most cases, the correct shape and location are chosen, as shown here. (d) 
In some cases, the feature-space peak of a distractor item spatially close to the target item (here, the space-shape peak of 
the yellow O) is overly enhanced by the ridge from the spatial attention field. In this case, the erroneously enhanced peak 
may prevail in determining peak position in the shape attention field and, thus, the shape response, resulting in an illusory 
conjunction. Illusory conjunctions are also associated with a shift of peak position in the spatial attention field, which is 
why the location response is as well displaced toward the spatial midpoint between the involved items.
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attend to this itemshared space

[Schneegans et al.,Ch 8 of DFT Primer, 2016]



[Schneegans et al.,Ch 5 of DFT Primer, 2016]



bound 
through 
space

[Schneegans et al.,Ch 5 of DFT Primer, 2016]



Coordinate transforms

fundamental element of sensori-motor, but 
also of mental operations! 



eye movement: from retinal to body-centered 
representation (e.g. for reaching)Eye Movements and Reference Frames

visual image visual image

visual scene visual scene

eye with 
ocular muscles

limited visual acuity in periphery of the retina, eye movements to
perceive larger scenes, read, etc.

gaze direction depends on eye and head orientation, considered as
single variable in the following
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Coordinate transforms



eye movement: from retinal to body-centered 
representation (e.g. for reaching)

Coordinate transforms



Coordinate transforms

hand movement: from body-centered to 
hand-centered representation

Movement preparation
movement is prepared before it is initiated: 

movement parameters like movement direction, amplitude, time, or 
force level can be predicted from the first 10 to 20 ms of 
movement  

movement parameters are about the hand’s 
movement in space 

[Erlhagen, Schöner, Psych Rev 2002]

movement
direction

movement
extent



relational concepts: from 
visual space to frame centered 
in reference object

e.g. “vertical object to the left 
of horizontal object”

Coordinate 
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Coordinate transforms

a mapping between two reference frame: e.g. retino-
centric (moving with the eye) to body-centered (gaze-
invariant) 

mapping=shift operation with amount of shift 
depending on current gaze direction

but how to implement such functions neurally? 

xbody = f(xretinal, xgaze) ≈ xretinal + xgaze

[Slides adapted from Sebastian Schneegans, 
see Schneegans,  Chapter 7 of Dynamic Field Theory-A Primer, OUP, 2015]



fixed mapping: neural 
projection in a neural 
network

flexible mapping steered 
by x 

x=gaze direction

x=hand position

x=position of reference object

Reference Frame Transformation
fixed mapping between fields: easy

but how to implement variable mapping (two input fields) using just
synaptic projections?

?
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Reference Frame Transformation
fixed mapping between fields: easy

but how to implement variable mapping (two input fields) using just
synaptic projections?

?
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Coordinate transforms



a joint representation of 

the space to be mapped

the steering space

bind the two spaces

ridge/slice input

peak

project out to 
transformed space

[Schneegans Ch 7 of DFT Primer, 2016]

Reference Frame Transformation

solution:

expand into combined, higher-dimensional field

then can implement arbitrary (smooth) mappings from this field to
target representation
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steer: gaze angle retinal space

body space

Coordinate transforms



DNF Mechanism for Reference Frame Transformation
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Coordinate transforms



DNF Mechanism for Reference Frame Transformation
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Coordinate transforms



DNF Mechanism for Reference Frame Transformation

−60° −40° −20° 0° 20° 40° 60°

−60°

−40°

0°

20°

40°

60°

0

10

−10

010 −10
activation

ac
tiv

at
io

n

ga
ze

 d
ire

ct
io

n

retinal position

retinal field

ga
ze

 fi
el

d transformation field

gaze
direction

stimulus
(retinal)

stimulus
(body-

centered)

−20° 30° 10°

visual stimulus

gaze

A B

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 30 / 37

[Schneegans Ch 7 of DFT Primer, 2016]

Coordinate transforms



DNF Mechanism for Reference Frame Transformation
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DNF Mechanism for Reference Frame Transformation
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Coordinate transforms



Coordinate transforms

bi-directional 
coupling

enables new 
functions

Multi-Directional Transformations
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Coordinate transforms
predict retinal image from memorized scene

[Schneegans Ch 7 of DFT Primer, 2016]

 Sensory-Motor and Cognitive Transformations 181

each of them generates a vertical input ridge in the 
transformation field. Each of these parallel ridges 
intersects with the single ridge from the gaze input, 
resulting in multiple peaks all lined up along this 
horizontal ridge. These peaks in the transforma-
tion field can then likewise project in parallel to the 
body-centered representation, each of them creat-
ing an input to that field at a different location. The 
mappings for the different items in a multi-stimulus 
representation do not interfere with each other, 
except for the possible interactions between nearby 
peaks (repulsion and attraction/merging; see 
Chapters 5 and 6) that occur within each individual 
neural field representation.

This mapping of multiple items in parallel is a 
functionally significant extension over most previous 
models, such as the one by Denève, Latham, & Pouget 
(2001). While the architecture of that model is quite 
similar to the one described here, it uses divisive 
normalization to limit activation growth in each rep-
resentation. This has an effect comparable to global 
inhibition, and it only allows a single peak in each 
representation as a stable state. By using local sur-
round inhibition to control spread of activation, the 

DF model not only achieves a higher degree of neural 
realism but also makes an important step toward a 
more autonomous, parallel mode of processing.

The next extension concerns the direction of 
the transformation. The mechanism described 
to map from the retinal to the body-centered ref-
erence frame can easily be adapted to perform 
transformations in different directions. Keeping 
the same architecture, one can perform an analo-
gous transformation from the body-centered to the 
retinal representation by reversing the direction 
of the projections between the fields (Figure 7.5). 
The body-centered field now provides input to the 
transformation field, generating ridges of activa-
tion that run diagonally through the field. These 
ridges again intersect with an input ridge from the 
gaze direction field, generating activation peaks in 
the two-dimensional field. These peaks now cre-
ate an input to the retinal representation, deter-
mined by integrating over the field output along 
the dimension of gaze direction (the vertical axis in 
Figure  7.5). Like the forward transformation, this 
mechanism can also be applied to multiple items in 
the body-centered representation in parallel.
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FIGURE 7.5: Transformation of spatial locations from the body-centered to the retinocentric reference frame for a given 
gaze direction. (a) The general architecture is the same as in Figures 7.3 and 7.4, but now the projections between the 
retinal and the transformation fields as well as between the transformation and the body-centered fields are reversed. (b) 
Illustration of the spatial values and their relationship for the example shown in the DF architecture.



Spatial 
remapping 
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saccades

Case Study: Spatial Remapping during Saccades
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[Schneegans, Schöner Biological Cybernetics 2012]

Spatial 
remapping 

during 
saccades



=> accounts for predictive updating of retinal representation

Case Study: Spatial Remapping during Saccades
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Coordinate transforms

estimate gaze by matching scene to memorizes scene
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there will be spurious intersections between the 
input ridges of non-corresponding items, but 
they will not be lined up in the same way that the 
peaks at the correct shift value are (see Figure 7.7). 
Therefore, if one projects from the transformation 
field to the gaze field (by summing the field output 
along the axes of retinal position), the location with 
the strongest input will indicate the correct shift 
between the two representations. One can select 
this location through competitive field dynamics 
that allow only a single peak. This is consistent with 
the assumption in the previous scenarios that there 
is always a single gaze direction peak.

Note that the certainty with which one shift 
value can be determined depends on the pattern 
of peaks in the retinal and body-centered fields. If 
they are highly symmetric, with equal distances 
between all peaks, the differences in activation 
level between the correct shift and the incorrect 

ones (that result from matching non-corresponding 
peaks) become smaller. This is not a weakness of 
the mechanism but ref lects a general difficulty in 
the alignment problem. Think of the boxes on the 
table again: If they are placed in highly symmetric 
pattern—for instance, four boxes placed to form a 
square around the center of the table—it becomes 
essentially impossible to determine how the table 
has been moved.

M U LT I DI R E C T IONA L 
T R A NSF OR M AT IONS
So far, I have described three different directions of 
mapping in which the transformation mechanism 
can be employed. In discussing these different sce-
narios, I  have assumed that only one direction is 
actually implemented in each variant of the architec-
ture. But that does not have to be the case: By mak-
ing the projections between the two-dimensional 
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FIGURE 7.7: Determining the alignment between a retinocentric and a body-centered representation to estimate the 
current gaze direction. (a) In the architecture for this scenario, both the retinal field and the body-centered field project 
to the transformation field, which in turn projects to the gaze field. (b) Illustration of the spatial values and their rela-
tionship for the example shown in the DF architecture. The visual (retinal) stimuli are shown as red half-circles, the 
memorized locations as gray half-circles. The task in this example may be understood as rotating the inner part of the 
half circle (changing the gaze direction and shifting the retinal stimuli) until all red and gray half-circles match with 
each other. The spurious peaks in the transformation field then correspond to rotations where only a partial match is 
achieved. Note that in the DF architecture, this match is achieved by a fully parallel process, rather than by trying out 
different rotations sequentially.

 



Case Study: Spatial Remapping during Saccades
transformation fieldA

retinocentric field

gaze field

0° 30°-30°

0°

30°

-30°

0° 30°-30°-60° 60°
-60°

0°

30°

-30°

60°

0° 30°-30°

0°

30°

-30°

B

D

C

E

body-centered field

Sebastian Schneegans (INI) Multi-Dimensional Fields December 5, 2013 35 / 37[Schneegans Ch 7 of DFT Primer, 2016]

Scaling



Scaling

joint representation of steering and 
transformed space ~ 4 dimensions

binding through space… enables transforming 
only space! 

=> coordinate transforms are linked to the 
sequentiality bottleneck! 



Summary

higher-dimensional dynamic fields enable new 
cognitive functions: binding, attentional 
selection, matching, visual search, coordinate 
transforms


