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Abstract
Several methods of estimating the mutual information of random vari-

ables have been developed in recent years. They can prove valuable for
novel approaches to learning statistically independent features. In this
paper, we use one of these methods, a mutual information neural esti-
mation (MINE) network, to present a proof-of-concept of how a neural
network can perform linear ICA. We minimize the mutual information,
as estimated by a MINE network, between the output units of a differ-
entiable encoder network. This is done by simple alternate optimization
of the two networks. The method is shown to get a qualitatively equal
solution to FastICA on blind-source-separation of noisy sources.

1 Introduction
Independent component analysis (ICA) aims at estimating unknown
sources that have been mixed together into an observation. The usual as-
sumptions are that the sources are statistically independent and no more
than one is Gaussian [1]. The now-cemented metaphor is one of a cocktail
party problem: several people (sources) are speaking simultaneously and
their speech has been mixed together in a recording (observation). The
task is to unmix the recording such that all dialogues can be listened to
clearly.

In linear ICA, we have a data matrix S whose rows are drawn from
statistically independent distributions, a mixing matrix A, and an obser-
vation matrix X:

X = AS

and we want to find an unmixing matrix U of A that recovers the sources
up to a permutation and scaling:

Y = UX

The general non-linear ICA problem is ill-posed [2, 3] as there is an infi-
nite number of solutions if the space of mixing functions is unconstrained.
However, post-linear [4] (PNL) ICA is solvable. This is a particular case
of non-linear ICA where the observations take the form
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X = f(AS)

where f operates componentwise, i.e. Xi,t = fi
(∑N

n Ai,nSn,t

)
. The

problem is solved efficiently if f is at least approximately invertible [5]
and there are approaches to optimize the problem for non-invertible f
as well [6]. For signals with time-structure, however, the problem is not
ill-posed even though it is for i.i.d. samples [7, 8].

To frame ICA as an optimization problem, we must find a way to mea-
sure the statistical independence of the output components and minimize
this quantity. There are two main ways to approach this: either minimize
the mutual information between the sources [9, 10, 11], or maximize the
sources’ non-Gaussianity [12, 13].

There has been a recent interest in combining deep learning with the
principles of ICA, usually in an adversarial framework, for example Deep
InfoMax (DIM) [14], Graph Deep InfoMax [15] and Generative adversarial
networks [16], which utilize the work of Brakel et al. [17]. Our work is
distinct from theirs as we do not rely on adversarial training.

2 Method
We train an encoder E to generate an output (z1, z2, . . . , zM ) such that
any one of the output components is statistically independent of the union
of the others, i.e. P (zi,z−i) = P (zi)P (z−i), where

z−i := (z1, . . . , zi−1, zi+1, . . . , zM )

The statistical independence of zi and z−i can be maximized by minimiz-
ing their mutual information

I (Zi;Z−i) =

∫
z

∫
z−i

p(zi,z−i) log

(
p(zi,z−i)

p(zi)p(z−i)

)
dzidz−i (1)

This quantity is hard to estimate, particularly for high-dimensional
data. We therefore estimate the lower bound of Eq. (1) using a mutual
information neural estimation (MINE) network M [18]:

I (Zi;Z−i) ≥ Li = EJ [M (zi,z−i)]− log
(
EM

[
eM(zi,z−i)

])
(2)

where J indicates that the expected value is taken over the joint and
similarly M for the product of marginals. The networks E and M are
parameterized by θE and θM . The encoder takes the observations as
input and the MINE network takes the output of the encoder as an input.

The E network minimizes L :=
∑

i Li in order for the outputs to
have low mutual information and therefore be statistically independent.
In order to get a faithful estimation of the lower bound of the mutual
information, the M network maximizes L. Thus, in a push-pull fashion
the system as a whole converges to independent output components of
the encoder network E. In practice, rather than training the E and M
networks simultaneously it proved useful to train M from scratch for a

2



few iterations after each iteration of training E, since the loss functions of
E and M are at odds with each other. When the encoder is trained, the
MINE network’s parameters are frozen and vice versa.
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Figure 1: The system learns statistically independent outputs
by alternate optimization of an encoder E and a MINE network
M parameterized by θE and θM . The MINE objective (Eq. 2) is
minimized with respect to θE for weight updates of the encoder
but it is maximized with respect to θM for weight updates of
the MINE network.

3 Results
We validate the method1 for linear noisy ICA example [19]. Three in-
dependent, noisy sources — sine wave, square wave and sawtooth signal
(Fig. 2a) — are mixed linearly (Fig. 2b):

Y =

 1 1 1
0.5 2 1
1.5 1 2

S
The encoder is a single layer neural network with linear activation with a
differentiable whitening layer [20] before the output. The whitening layer
is a key component for performing successful blind source separation for
our method. Statistically independent random variables are necessarily
uncorrelated, so whitening the output by construction beforehand simpli-
fies the optimization problem significantly.

The MINE network M is a seven-layer neural network. Each layer but
the last one has 64 units with a rectified linear activation function. Each
training epoch of the encoder is followed by seven training epochs of M.
Estimating the exact mutual information is not essential, so few iterations
suffice for a good gradient direction.

Since the MINE network is applied to each component individually, to
estimate mutual information (Eq. 2), we need to pass each sample through
the MINE network N times — once for each component. Equivalently,
one could conceptualize this as having N copies of the MINE network and
feeding the samples to it in parallel, with different components singled
out. Thus, for sample (z1, z2, . . . , zN ) we feed in (zi; z−i), for each i. Both

1Full code for the results is available at github.com/wiskott-lab/gradient-based-ica/
blob/master/bss3.ipynb
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(a) The original sources. (b) Linear mixture of sources.

(c) Sources recovered by our method. (d) Sources recovered by FastICA.

Figure 2: Three independent, noisy sources (a) are mixed linearly (b).
Our method recovers them (c) to the same extent as FastICA (d).

networks are optimized using Nesterov momentum ADAM [21] with a
learning rate of 0.005.

For this simple example, our method (Fig. 2c) is equivalently good at
unmixing the signals as FastICA (Fig. 2d), albeit slower. Note that, in
general, the sources can only be recovered up to permutation and scaling.

4 Summary
We’ve introduced a proof-of-concept implementation for training a differ-
entiable function for performing ICA. The method consists of alternating
the optimization of an encoder and a neural mutual-information neural
estimation (MINE) network. The mutual information estimate between
each encoder output and the union of the others is minimized with re-
spect to the encoder’s parameters. Although this work is in a very pre-
liminary stage, further investigation into the method is warranted. The
general nonlinear ICA problem is ill-posed, but it is an interesting question
whether this method can work for non-linear problems with low complex-
ity. We can constrain the expresiveness of our encoder by limiting for
example the number of layers or number of hidden units in the neural
network, thus constraining the solution space of the method. The method
is also trivially extended for over- or undercomplete ICA by changing the
number of output units. Higher dimensional and real-world data can also
be tested.

As this method can be used for general neural network training, it
should be investigated whether useful representations can be learned while
solving the ICA task. This method blends nicely into deep learning archi-
tectures and the MINE loss term can be added as a regularizer to other
loss functions. We imagine that this can be helpful for methods such as
deep sparse coding to enforce independence between features and disen-
tangle factors of variation.
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