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Core of DFT

field dynamics 
combines input 

with strong 
interaction: 

local excitation

global inhibition

=> generates stability 
of peaks
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Core of DFT

attractor states 

input driven solution (sub-threshold) 

self-stabilized solution (peak, supra-threshold)

instabilities 

detection instability (from localize input or boost)

reverse detection instability

selection instability 

memory instability 



“embodying” DFT

link to real sensors

link to real motor systems



Linking fields to sensors
orientation toward 
sound sources



Sensory surface

each microphone samples heading direction

heading
direction

sensitivity cone of each microphone



Input to the field

activation
field

heading
direction

two sound sources

input from sensory surface

heading
direction

each microphone provides input to the field



Detection instability induced by increasing  
intensity of sound source



Target selection in the presence of two sources



Robust estimation in the presence of outliers



Tracking when sound source moves



Memory (and forgetting) when sound source is turned 
off



Illustration of instabilities



Motor behavior

so far, the neural field was in open loop: 
received input from sensors, but didn’t drive 
around and thus did not influence its own 
sensor input



Braitenberg

source1 source2

in terms of the Braitenberg 
vehicle, we only looked at 
the “inner” neural dynamics 



Braitenberg

we did not yet look at the 
emergence of (motor) 
behavior given a representation 
of sensory information

heading

intensity

source

heading

turning rate
of vehicle

attractor



Braitenberg

overt movement behavior is 
generated by a behavioral 
dynamics

how may the neural 
representations of DFT couple 
into behavioral dynamics 
“standing in for” sensory 
inputs? 

heading

intensity

source

heading

turning rate
of vehicle

attractor



Braitenberg

two problems

how do we go from a field to an 
attractor dynamics? => space to rate 
code issue

how does the field emulate “closed 
loop” behavior? => coordinate 
transforms

heading

intensity

source

heading

turning rate
of vehicle

attractor



behavioral variables

time courses from dynamical system: 
attractors

tracking attractors

bifurcations for flexibility

Basic ideas: behavioral dynamics



vehicle moving in 
2D: heading 
direction

Behavioral variables: example

robot

heading
direction 

fixed (but
irrelevant)
world axis



constraints as 
values of the 
behavioral variable: 
direction to target 

Behavioral variables: example

vehicle

target

Y



describe desired motor behavior

“enactable”

express constraints as values/value ranges

appropriate level of invariance

Behavioral variables



generate behavior by generating time 
courses of behavioral variables

generate time course of behavioral variables 
from attractor solutions of a (designed) 
dynamical system

that dynamical system is constructed from 
contributions expressing behavioral 
constraints

Behavioral dynamics



behavioral constraint: target acquisition

Behavioral dynamics: example

vehicle

target

Y

Y
tar

F

dF/dt

attractor



multiple constraints: superpose “force-lets” 

fusion

Behavioral dynamics

vehicle

target 1

target 2

F

dF/dt

fused attractor

individual
attractors



decision making

Behavioral dynamics

vehicle

target 1

target 2

F

dF/dt repellor=
attractor 
boundary

individual
attractors=
resultant
attractors
=> bistable



Braitenberg

bistable dynamics for 
bimodal intensity 
distribution

=> nonlinear dynamics 
makes selection decision

intensity

heading
direction

turning rate
of vehicle

source1 source2

source2source1

heading
direction



Bifurcations 
switch between 
fusion and 
decision making

Behavioral dynamics

increasing distance
between targets

bifurcation&

repellor=
attractor
boundary

attractor

attractor

attractor



Steering the behavioral dynamics

so far, we took for granted 
that there is perceptual 
information about the 
constraints: targets, 
obstacles

these constraints emerge 
from a neural dynamics: 
couple a peak in the neural 
field of target bearing into 
the dynamics of heading 
direction as an attractor

Behavioral Dynamics

behavioral dynamics ⌅̇ is driven by the motor
planning field
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Problem number 1: 
“Reading out” from the neural field? 

peak specifies value of 
the field dimension 
over which it is 
located… 

but how to “read out” 
that value? 

dimension

activation
field

specified value

peak position



“reading out” from the neural field? 
standard idea: treat 
supra-threshold field as 
a probability density 

but: need to normalize 
the activation pattern 

=> problem when there 
is no peak: divide by 
zero! 

dimension
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field
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peak position
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dimension

activation
field

specified value

dimension

activation
field

no value specified

x

dx/dt

x

dx/dt

“reading out” from the neural field? 



from DFT to DST
solution: peak sets attractor

location of attractor: peak location

strength of attractor: summed supra-threshold activation

xpeak =
∫ dx x g(u(x, t))
∫ dx′ g(u(x′ , t))

·x = − ∫ dx′ g(u(x′ , t)) (x − xpeak)

·x = − ∫ dx′ g(u(x′ , t)) x + ∫ dx′ g(u(x′ , t))
∫ dx′ ′ x′ ′ g(u(x′ ′ , t))
∫ dx′ ′ ′ g(u(x′ ′ ′ , t))

·x = − ∫ dx′ g(u(x′ , t)) (x − x′ )



Problem number 2:
closed loop

the target representation is 
invariant in space, defined 
over heading direction 

and so is the motor 
dynamics… 

how does the “heading 
direction” then capture the 
physical state of the body in 
the world ~ behavioral 
dynamics? 

Behavioral Dynamics

behavioral dynamics ⌅̇ is driven by the motor
planning field
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Answer

the target representation must be invariant under a 
change of heading because it is in that frame that 
working memory about the target and neural state 
about target selection is meaningful… this is a 
property of the world 

and the same argument applies to the motor 
dynamics: only when the dynamics is invariant under 
change of heading is it a meaningful dynamics 



Answer

to makes this consistent 
with coupling to sensory 
information, we must 
perform a a coordinate 
transform from the 
sensory surface (“retina”) 
to the invariant world 
frame!

and that requires knowing 
the heading direction in 
the world… 

Frame Transformation:
Retinal ⇥�World Coordinates
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Answer

this is a steerable 
neural map… 

=> lecture later in 
the course

Frame Transformation:
Retinal ⇥�World Coordinates
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Embodied A not B

implementing the A not B model on a autonomous 
robot with continuous link to sensory and motor 
surfaces...

The A-not-B Task for the Robot

ego-position �

start specific cue delay turns to target

six A trials are presented: response is typically correct

ego-position �

start specific cue delay turns to target

on the B trial: perseveration or A-not-B error

ICPA–June 14, 2007 5

vehicle colored cues



Visual input
color-based segmentation

summing color pixels within color slot along 
the vertical 

spatially filter at two resolutionsPerception: Vision

retinal �

vi
su

al
in

pu
tS

(�
)

S2(�)

S1(�)

low level visual input is the sum of two
point-spread functions S = S1 + S2:
localized input S1 specifies target positions & amplitudes

broad smeared input S2 general scene attractiveness
ICPA–June 14, 2007 6





A not B robot

=> video
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result: reproduce fundamental 
age-delay trade-off in A not B

young old

AUTONOMOUS ROBOT: A -NOT-B—JUNE 13, 2010 7

(a) mid-aged robot (b) older robot

Fig. 7. Motor planning field on trial B 1 for the mid-aged (hrest = �9, at 7
sec. delay) and older (hrest = �7, at 11 sec. delay) robot.

Compared to the youngest robot (hrest = �12, Fig. 6b), the
mid-aged robot (hrest = �9, Fig. 7a)) sustains cue activation
for a longer period. In both cases the cue peak decays com-
pletely during the given delay, which is 7 seconds for the mid-
aged robot but only 3 seconds for the youngest one. Therefore,
solely the preshape at A provides some input that makes a
decision peak likely at A when at the end of the delay, the
task-flags are moved close and induce a homogeneous boost.
In contrast, the oldest robot (hrest = �7, Fig. 7b) responds
correctly because the cue peak remains above threshold even
after a long delay of 11 seconds. Note that the peak drops
off early in the delay but remains unchanged thereafter. The
robot’s dynamics operates in a qualitatively different regime
in which a peak is a stable state solution. This arises when
the neural interactions are strong enough to overcome the pull
from the less negative resting level. An even higher resting
level brings the dynamics into a different regime where it can
self-sustain an activation peak even without additional input
[16]. This is the case for the old robot (Fig. 7b). Such a peak
directs a turn to B after any delay and despite a strong motor
trace at A .

The graded nature of decision-making can be observed
when for the younger robots the delay at which they persever-
ate is shortened. This leads to a situation where a persistent
preshape trace at A competes with some residual cuing
activation at B . The shorter the delay is, the more activation
is at B , and the more likely is a correct response when the
boost translates the differences of sub-threshold activation into
a selection decision. For example, for the mid-aged robot
(Fig. 7a) activation at B is quite strong at 3 seconds after
cuing. Thus, if the delay were interrupted then or earlier by
placing task-flags close, a correct response is very likely (not
so for youngest robot in Fig. 6b, where interactions are weak
and the peak has decayed entirely after 3 seconds). As the
delay progresses, the peak at B gradually decays. Thus, an A -
not-B error becomes more and more likely the later a decision
is induced. The decay of cuing peak translates into a graded
dependence of perseveration on the delay. The younger the
robot is, the weaker are its neural interactions, and the quicker
the cue peak decays . This is younger robots more A -not-B
errors at shorter delays.

2) Statistical Results: Implementing the DFT account of
infant development in A -not-B [1] on the robot—neuronal in-
teractions strengthen over development—replicates the infant
age-delay effect [10], [15]. Its major characteristics result from
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Fig. 8. Fig. 4 in SpontErrorsCompetition of specific cue and preshape
activation in the motor planning field during the delay period of the first
B trial in a simulation of the young model (hrest = �12) without noise.
Snapshots of the motor planning field at different fixed times (gray scale
coded, cf. legend) demonstrate the decay of cuing activation. Without delay,
the strong peak at B (darkest solid curve) is induced by the just-recent cue
presentation. This activation decays (lighter solid curves) and converges to the
task and preshape inputs (doted curve) that are persistent during the delay.
Because of previous reaches to A , the maximum of preshape plus task input is
at A (it is marked by the dashed line for better comparison with the decaying
peak at B ). The field activation at the recently cued B location fades away
during the delay and eventually drops slightly below the preshape plus task
input maxim at A (lightest solid curve at B is below the dashed line). How
the differences of activation at A and B translate into probabilities to reach
at either location is explained in the text.

Thus, the longer the delay is, the more likely is a
�
A similar mechanism leads to a graded dependence of

perseveration on the delay. When the delay is short, there
stolen from spontaneous errors paper with minor edits:

A similar mechanism leads to a graded dependence of perse-
veration on the delay, as illustrated for the mid-aged robot in
Figure 8. It shows the average activation pattern for different
delay durations. Field activation has two sub-threshold peaks,
one at A and one at B (from task and preshape input
plus decaying cue activation). However, perceptual and neural
noise distorts the actual activation levels. When the boost
rises activation in the entire system homogeneously, piercing
the interaction threshold will set up a cascade of neural
interactions that then will stabilize a localized peak where the
threshold is hit first. The location with higher sub-threshold
activation is likely to be selected simply because it is closer to
the interaction threshold. The less activated sub-threshold peak
is selected with lower probability, because it needs a larger
and thus less likely stochastic kick to win the competition.
The difference in sub-threshold activation levels thus translates
into a difference in selection probabilities. Given that shorter
delays lead to more activation at the cued side, this explains
how the probability of selecting the cued B location increases
with shorter delays.

An even higher resting level brings the dynamics into a
different regime where it can self-sustain an activation peak
even without additional input [16]. This is the case for the old
robot (Fig. 7b). Such a peak directs a turn to B after any delay
and despite a strong motor trace at A .
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Fig. 7. Age-delay interaction for the robot. The percent perserveration on
B and correct responses on A (y-axis) are plotted for different delay lengths
(x-axis) and colors code for the different resting levels (legend for hrest). The
tested delay-hrest combinations are connected by solid lines. The dashed lines
are continuations that indicate the expected performance for other delays (see
text for discussion).

(a) mid-aged robot (b) older robot

Fig. 8. Motor planning field on trial B 1 for the mid-aged (hrest = �9, at 7
sec. delay) and older (hrest = �7, at 11 sec. delay) robot.

directly allows for a stronger self-excitation. Figure 8 shows
how fields with stronger interactions integrate the specific cue
input that comes from the cue-flag.

Compared to the youngest robot (hrest = �12, Fig. 6b),
because of support from stronger interactions for the mid-aged
robot (hrest = �9, Fig. 8a)), the cue persists for a longer
period—note that the delay is 7 seconds for the mid-aged
robot, versus the base-line of 3 seconds for the youngest one.
In both cases, however, the cue-activation decays fully during
the given delay. Therefore, solely the preshape at A provides
some input that makes a decision peak likely at A when at the
end of the delay, the task-flags are moved close and induce
a homogeneous boost (recall that this corresponds to pushing
the hiding box into reaching space in the infant experiments).
The boost translates sub-threshold activation into a stable
selection decision that is maintained by neuronal interactions
(Eq. ref). the cue peak at B decays fully, but . For the
mid-aged robot, in contrast, a decision peak is more likely
to stabilize at the B location because cue activation at B is
stronger then the preshape activation at A .

At the end of the delay, the task-flags are moved close

and induce a homogeneous boost. The boost translates sub-
threshold activation into a stable selection decision that is
maintained by neuronal interactions (Eq. ref). For the
youngest robot, the cue peak at B decays fully, but the
preshape at A provides some input that makes a decision peak
likely at A . For the mid-aged robot, in contrast, a decision
peak is more likely to stabilize at the B location because cue
activation at B is stronger then the preshape activation at A .

For the mid-aged robot, activation at B is quite strong after
a 3 second delay, but will gradually decay for extended delays.
Thus, the longer the delay is, the more likely is a

�
A similar mechanism leads to a graded dependence of

perseveration on the delay. When the delay is short, there
stolen from spontaneous errors paper with minor edits:

A similar mechanism leads to a graded dependence of perse-
veration on the delay, as illustrated for the mid-aged robot in
Figure 9. It shows the average activation pattern for different
delay durations. Field activation has two sub-threshold peaks,
one at A and one at B (from task and preshape input
plus decaying cue activation). However, perceptual and neural
noise distorts the actual activation levels. When the boost
rises activation in the entire system homogeneously, piercing
the interaction threshold will set up a cascade of neural
interactions that then will stabilize a localized peak where the
threshold is hit first. The location with higher sub-threshold
activation is likely to be selected simply because it is closer to
the interaction threshold. The less activated sub-threshold peak
is selected with lower probability, because it needs a larger
and thus less likely stochastic kick to win the competition.
The difference in sub-threshold activation levels thus translates
into a difference in selection probabilities. Given that shorter
delays lead to more activation at the cued side, this explains
how the probability of selecting the cued B location increases
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Fig. 9. Age-delay interaction for the robot. Percent correct responses on
A and perserveration on B (y-axes) are plotted for different delay lengths
(x-axis) and resting levels (legend: hrest colors code). The tested delay-hrest
combinations are connected by solid lines. The dashed lines are continuations
that indicate the expected perserveration rate for other delays (see text for
discussion).

2) Statistical Results: The resulting statistics are shown in
Figure 9 for correct responses on the A trails (top plot) and
perseveration on the B trials (bottom plot). Responses on the
A trials are above chance correct across all age and delay
conditions, which is consistent with infant A trail behavior for
different delays and at different ages (e.g., [10]). The robot’s
responses on the B trails replicates the age-delay effect [10],
[15]. For instance, a rather young robot (hrest = �11) is correct
if there is no delay, it performs around chance for a 2 seconds
delay, and it perseverates for a 3 seconds delay. A mid-aged
robot (hrest = �9) shows a similar increase of perserveration,
but for overall longer delays—the entire curve for hrest = �9
is shifted towards longer delays to the right of that for hrest =
�11.

Note that for the mid-aged robot performance is correct
at ceiling (no perseveration) for the three second delay; and
shortening the delay will not change this since the cue-induced
peak that guides the correct decision is strong also earlier in
the delay (Fig. 7a). Similarly, perserveration is at ceiling once
the peak has decayed. The dashed lines in Fig. 9 indicate these
ceiling effects. The oldest robot with (hrest = �7) is correct
for a long delay of 11 seconds. The motor planning peak is
persistent (Fig. 7b) and will not decay unless it is actively
destructed at the end of a trial (de-boosting). Performance is
therefore always correct.

V. PARAMETRIC EFFECTS

ED recap parametric dependence of the A -not-B error
qualitative accounts for parametric effects

• cue strength ...
• training trials

Fig. 8. Age-delay interaction for the robot. Correct responses on A trails
(top) and perserveration on B trials (bottom) are plotted in percent (y-axes)
for different delay lengths (x-axis) and resting levels (legend: hrest colors
code). The tested delay-hrest combinations are connected by solid lines. The
dashed lines are continuations that indicate the expected perserveration rate
for other delays.

the above discussed precess and are reflected in the statistical
results shown in Fig. 8. Overall, A trial responses are correct
(78–100%) for all age and delay conditions because, like in
the base-line task, pre-training and preshape bias decisions to
A . The residual cuing activation A might add support for A .
Correct A trail behavior is a prerequisite for the test of B
responses.

On the critical B trails, the older the robots are (higher
resting level) the longer the delay is after which they will per-
severate. Third, robots perseverate gradually less for gradually
shorter delays. For instance, a rather young robot (hrest = �11)
perseverates for a 3 seconds delay, it performs around chance
for a 2 seconds delay, and it is correct if there is no delay.
A mid-aged robot (hrest = �9) shows a similar decrease of
perserveration, but for overall longer delays—the entire curve
for hrest = �9 is shifted towards longer delays to the right
of that for hrest = �11. Finally, the oldest robot does not
perseverate even at the maximal given delay.

Note that for the mid-aged robot performance is correct
at ceiling (no perseveration) for the three second delay; and
shortening the delay will not change this since the cue-induced
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How generic is “behavioral dynamics”?

physically, all actuator 
systems are dynamical 
systems: they have 
mechanical state driven by 
forces (stable, but not 
asymptotically stable

the shoulder joint perform positive (concentric) work—they generate an abduction
moment and elevate the arm. The elbow joint extends while producing a flexion
moment against the weight of the load. The external load does the work on the elbow
flexors, forcibly stretching them. The flexors, however, actively resist the stretching;
they are spending energy for that. Therefore, it can be said that the flexors of the elbow
produce negative (eccentric) work. The work of the force exerted by the hand on the
load is zero. The direction of the gravity force is at a right angle to the direction of the
load displacement and, hence, the potential energy of the load does not change. The
total work done on the system (arm plus load) is zero. What is the total amount of
work done by the subject? How should we sum positive work/power at the shoulder
joint with the negative work/power at the elbow joint?

The problem is whether the negative work at the elbow joint cancels the positive
work at the shoulder joint (or, in other words, the positive work at the shoulder com-
pensates for the negative work at the elbow). The correct answer depends on the infor-
mation that was not provided in the preceding text.

If the joints are served by only one-joint muscles, the joint torque model is valid; the
system is operated by the “actual” joint torques and the mechanical energy expended at
one joint is lost; it does not return to other joints. Hence, if the joint powers at the
shoulder and elbow joint are P1 and!P2, respectively, the total power can be obtained
as the sum of their absolute values:

Ptot ¼ jP1jþ j!P2j ¼ 2P1 (1.5)

If the body does not spend energy for resisting at the elbow joint (e.g., the resistance
is due to friction) P2 ¼ 0, and the equation becomes Ptot ¼ jP1j.

When one two-joint muscle serves both joints, total produced power equals zero:

Ptot ¼ P1 þ ð!P2Þ ¼ 0 (1.6)

Figure 1.4 A slow horizontal arm extension with a load in the hand. The work done on the load
is zero but the work of joint torques is not.
Reprinted by permission from Zatsiorsky and Gregor (2000), © Human Kinetics.

Joint Torque 11

[Latash, Zatsiorksy 2016]



How generic is “behavioral dynamics”?

the forces are generated 
by muscles, which are 
dynamical systems, 
generating force 
dependent on current 
physical state… attractor 
states in velocity space 
(but only stable 
transiently)

The resistance does not require metabolic energy and, hence, is called “passive.” The
muscle forceedeformation curve is not linear. With increased stretching the muscles
become stiffer, that is, they demonstrate toe-in mechanical response to lengthening.
The behavior of the passive muscle in extension is often compared with the behavior
of a knitted stocking—the passive muscle elasticity is mainly due to the web of con-
nective tissues within the muscle. During small stretches the web deforms, its threads
become progressively taut, and during large stretches the threads themselves may also
deform.

When muscle fibers are stretched, resistance to extension is provided by three
main structural elements: (1) connective tissues within and around the muscle belly
(parallel elastic components); (2) stable cross-links between the actin and myosin
filaments existing even in passive muscles—the crossbridges resist the stretch a
short distance from the resting position before the contacts break and restore at
other binding sites; and (3) noncontractile proteins, mainly titin. Actin and myosin
filaments slide with respect to each other without visible length changes (this
claim was challenged in several papers, Goldman and Huxley (1994), Takezawa
et al. (1998)).

Figure 2.2 Forceelength properties of the muscles with different amount of intramuscular
connective tissues (schematics). RL—rest length, the length of the muscle in the body during a
natural posture (for humans this would be the anatomical posture—standing upright on
a horizontal surface with arms hanging straight down at the sides of the body, head erect).
EL—equilibrium length (also called initial length), the length of the passive muscle without
mechanical load. At the EL and below it the passive force is zero. The dotted curved line is the
active forceelength relation. A solid curved line—the passive forceedeformation relation.
Such relations are recorded by fixing one end of the muscle and applying incremental loads to
its free end. The load (force) is then plotted versus deformation. For an active muscle, an actual
force recorded at the muscle end (not shown in the picture) is equal to the sum of the active and
passive forces. Left panel—a muscle with large amount of connective tissue. Note: (1) the
passive forceelength is shifted to the left (to shorter muscle length), (2) there is a large
difference between the EL and RL, and (3) the passive forceelength curve exhibits high
stiffness. Right panel—a muscle with small amount of intramuscular connective tissue.
As compared with the left panel: (1) the passive forceelength curve is shifted to the right
(to longer muscle length), (2) the EL and RL are closer to each other, and (3) the passive
forceelength curve is less steep, exhibiting smaller stiffness.
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tensile strength are embedded in another material (called matrix), which glues the
fibers together and transfers external stresses. Various muscle elements possess
different mechanical properties.

A simplifying approach is to construct a lumped-parameter model, that is, to assign
the muscle mechanical properties (e.g., stiffness, damping, mechanical inertia, etc.) to a
limited number of muscle “components.” The most popular is the Hill three-component
model, according to which the muscle can be viewed as consisting of the following:

1. Contractile component (CC) whose function is to generate force. This component is damped,
that is, it provides internal resistance to length changes.

2. Serial elastic components (SEC) connected in series with the CC.
3. Parallel elastic components (PEC) that provide resistance to muscle deformation (extension)

beyond its equilibrium length (EL; see Figure 2.2).

While these elements can be associated with certain morphological structures—for
instance, SEC is mainly associated with the muscle tendon and PEC with the muscle
perimysium—the model is not intended to realistically replicate muscle architecture or
morphology. The model is intended to represent only the muscle behavior at a gross
phenomenological level.

The model can be represented by either one of two structures presented in
Figure 2.5. Both structures have similar mechanical properties.

In the model, the contractile component possesses the properties of force genera-
tion, the forceelength, and forceevelocity relations. It also possesses damping prop-
erties (a nonlinear increase of resistance with the velocity). The action of the contractile
component depends on its current length and velocity as well as on the activation level.

The elastic elements in the model, PEC and SEC, represent mainly the properties of
the connective tissues (albeit it was shown that crossbridges also possess elastic prop-
erties and some mechanical properties of structural proteins that constitute PEC, that is,
titin, are activation dependent). The model predicts the following phenomena of
muscle behavior:

1. With both muscle ends fixed, muscle activation results in CC shortening and SEC length-
ening. The muscleetendon unit as a whole exerts force.

2. At lengths longer than the rest length, muscle force is the sum of the passive force (caused by
PEC resistance to forceful stretching) and the active force generated by the CC (as illustrated
in Figure 2.2).

Figure 2.5 Element arrangements in the Hill-type models. Both arrangements have similar
mechanical properties. The actual arrangement cannot be inferred from mechanical experiments.
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[Latash, Zatsiorksy 2016]



How generic is “behavioral dynamics”?

muscle force generation is 
controlled in closed loop 
by peripheral feedback

e.g. the stretch reflex

[Kandel, Schartz, Jessell, Fig. 38-2]



How generic is “behavioral dynamics”?

the stretch reflex erects a dynamical system with 
a fixed point attractor at an equilibrium length of 
the muscle

=> Feldman’s equilibrium hypothesis…

[Kandel, Schartz, Jessell, Fig. 31-12]



How generic is “behavioral dynamics”?

such peripheral 
dynamics changes 
what descending 
activation time 
courses are need to 
generate movement

=> summer 
semester course…. 
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Conclusion

neural dynamics can 
be directly driven 
by sensory input

fields couple into 
behavioral dynamics 
by setting 
attractors => no 
more “read-out” of 
neural dynamics

coordinate systems 
are important! 
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