Embodied Neural Dynamics

Gregor Schöner, INI, RUB

Core of DFT

attractor states

input driven solution (sub-threshold)

self-stabilized solution (peak, supra-threshold)

🛋 instabilities

detection instability (from localize input or boost)

reverse detection instability

selection instability

memory instability

"embodying" DFT

link to real sensors

link to real motor systems

Linking fields to sensors

orientation toward sound sources

[from Bicho, Mallet, Schöner, Int J Rob Res,2000]

Sensory surface

each microphone samples heading direction

each microphone provides input to the field

Detection instability induced by increasing intensity of sound source

[from Bicho, Mallet, Schöner: Int. J. Rob. Res., 2000]

Target selection in the presence of two sources

Robust estimation in the presence of outliers

Tracking when sound source moves

Memory (and forgetting) when sound source is turned

[from Bicho, Mallet, Schöner: Int J Rob Res 19:424(2000)]

Illustration of instabilities

Motor behavior

so far, the neural field was in open loop: received input from sensors, but didn't drive around and thus did not influence its own sensor input

- overt movement behavior is generated by a behavioral dynamics
- how may the neural representations of DFT couple into behavioral dynamics "standing in for" sensory inputs?

two problems

- how do we go from a field to an attractor dynamics? => space to rate code issue
- how does the field emulate "closed loop" behavior? => coordinate transforms

Basic ideas: behavioral dynamics

behavioral variables

- time courses from dynamical system: attractors
- tracking attractors
- bifurcations for flexibility

Behavioral variables: example

vehicle moving in 2D: heading direction

Behavioral variables: example

Constraints as values of the behavioral variable: direction to target

Behavioral variables

- describe desired motor behavior
- "enactable"
- express constraints as values/value ranges
- appropriate level of invariance

Behavioral dynamics

- generate behavior by generating time courses of behavioral variables
- generate time course of behavioral variables from attractor solutions of a (designed) dynamical system
- that dynamical system is constructed from contributions expressing behavioral constraints

Behavioral dynamics: example

behavioral constraint: target acquisition

Behavioral dynamics

multiple constraints: superpose "force-lets"

Behavioral dynamics

decision making

bistable dynamics for bimodal intensity distribution

=> nonlinear dynamics makes selection decision

Behavioral dynamics

between targets

Steering the behavioral dynamics

so far, we took for granted that there is perceptual information about the constraints: targets, obstacles

these constraints emerge from a neural dynamics: couple a peak in the neural field of target bearing into the dynamics of heading direction as an attractor

Problem number 1: "Reading out" from the neural field?

- peak specifies value of the field dimension over which it is located...
- but how to "read out" that value?

"reading out" from the neural field?

standard idea: treat supra-threshold field as a probability density

- but: need to normalize the activation pattern
- => problem when there is no peak: divide by zero!

$$x_{\text{peak}} = \frac{\int dx \ x \ \sigma(u(x,t))}{\int dx \ \sigma(u(x,t))}$$

"reading out" from the neural field?

from DFT to DST

solution: peak sets attractor

location of attractor: peak location

strength of attractor: summed supra-threshold activation

$$\dot{x} = -\int dx' \ g(u(x',t)) \ (x - x_{\text{peak}}) \qquad x_{\text{peak}} = \frac{\int dx \ x \ g(u(x,t))}{\int dx' \ g(u(x',t))}$$
$$\dot{x} = -\int dx' \ g(u(x',t)) \ x + \int dx' \ g(u(x',t)) \ \frac{\int dx'' \ x''g(u(x'',t))}{\int dx''' \ g(u(x'',t))}$$
$$\dot{x} = -\int dx' \ g(u(x',t)) \ (x - x')$$

Problem number 2: closed loop

- the target representation is invariant in space, defined over heading direction
- and so is the motor dynamics...
- how does the "heading direction" then capture the physical state of the body in the world ~ behavioral dynamics?

Answer

- the target representation must be invariant under a change of heading because it is in that frame that working memory about the target and neural state about target selection is meaningful... this is a property of the world
- and the same argument applies to the motor dynamics: only when the dynamics is invariant under change of heading is it a meaningful dynamics

Answer

to makes this consistent with coupling to sensory information, we must perform a a coordinate transform from the sensory surface ("retina") to the invariant world frame!

and that requires knowing the heading direction in the world...

Answer

- this is a steerable neural map...
- => lecture later in the course

Embodied A not B

implementing the A not B model on a autonomous robot with continuous link to sensory and motor surfaces...

Visual input

color-based segmentation

summing color pixels within color slot along the vertical

spatially filter at two resolutions

sult: reproduce fundamental age-delay trade-off in A not B

в

"young" robot

"old" robot

target

"young" robot

"young" robot with memory trace

target

physically, all actuator systems are dynamical systems: they have mechanical state driven by forces (stable, but not asymptotically stable

[Latash, Zatsiorksy 2016]

the forces are generated by muscles, which are dynamical systems, generating force dependent on current physical state... attractor states in velocity space (but only stable transiently)

[Latash, Zatsiorksy 2016]

- muscle force generation is controlled in closed loop by peripheral feedback
- e.g. the stretch reflex

[Kandel, Schartz, Jessell, Fig. 38-2]

- the stretch reflex erects a dynamical system with a fixed point attractor at an equilibrium length of the muscle
- => Feldman's equilibrium hypothesis...

[Kandel, Schartz, Jessell, Fig. 31-12]

 such peripheral dynamics changes what descending activation time courses are need to generate movement

summer
semester course....

Conclusion

- neural dynamics can be directly driven by sensory input
- fields couple into behavioral dynamics by setting attractors => no more "read-out" of neural dynamics
- coordinate systems are important!

