Embodied Neural
Dynamics
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Core of DFT
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Core of DFT

M attractor states

M input driven solution (sub-threshold)

I self-stabilized solution (peak, supra-threshold)

M instabilities

B detection instability (from localize input or boost)
M reverse detection instability
M selection instability

B memory instability



“embodying” DFT

B link to real sensors

M link to real motor systems



Linking fields to sensors

® orientation toward
sound sources

microphones

\

Robot ™ Microphones
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[from Bicho, Mallet, Schoner, Int J Rob Res,2000]

f g || :;;:r-’—’*t-f-'
(heading

o | |2
» direction) IR detectors




Sensory surface

® each microphone samples heading direction

A

 sensitivity cone of each microphone

heading
direction

>



Input to the field

® each microphone provides input to the field

* activation
field heading
direction

N
>

A .
input from sensory surface

heading
direction

two sound sources



Detection instability induced by increasing
intensity of sound source
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[from Bicho, Mallet, Schéner: Int. J. Rob. Res., 2000]
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Target selection in the presence of two sources
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Robust estimation in the presence of outliers
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Tracking when sound source moves




Memory (and forgetting) when sound source is turned
off
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[from Bicho, Mallet, Schoner: Int | Rob Res 19:424(2000)]



lllustration of instabilities




Motor behavior

B so far, the neural field was in open loop:
received input from sensors, but didn’t drive
around and thus did not influence its own
sensor input



Braitenberg

W

Min terms of the Braitenberg U\

vehicle, we only looked at
the “inner” neural dynamics




A\ intensity

Braitenberg

A turning rate SOUIEE heading
of vehicle
B we did not yet look at the
emergence of (motor) —>
behavior given a representation attractor
of sensory information 2
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A\ intensity

Braitenberg
®overt movement behavior is crning rate | <V heading
generated by a behavioral of vehicle
dynamics
®how may the neural heading)

attractor

representations of DFT couple

into behavioral dynamics S
“standing in for” sensory )»
inputs!?

U



A\ intensity

Braitenberg
Aturning rate POHIEE heading
M two problems of vehicle
B how do we go from a field to an
attractor dynamics? => space to rate )
code issue heading
attractor
M how does the field emulate “closed
loop” behavior! => coordinate ﬁ

transforms }’

Ay



Basic ideas: behavioral dynamics

B behavioral variables

M time courses from dynamical system:
attractors

M tracking attractors

M bifurcations for flexibility



Behavioral variables: example

heading
B vehicle moving in direction
2D: heading
direction @ £ & D ... T
fixed (but
irrelevant)

robot world axis



Behavioral variables: example

B constraints as
values of the
behavioral variable:
direction to target

vehicle



Behavioral variables

B describe desired motor behavior
M “enactable”
M express constraints as values/value ranges

M appropriate level of invariance



Behavioral dynamics

B generate behavior by generating time
courses of behavioral variables

M generate time course of behavioral variables
from attractor solutions of a (designed)
dynamical system

B that dynamical system is constructed from
contributions expressing behavioral
constraints



Behavioral dynamics: example

B behavioral constraint: target acquisition

A do/dt

attractor

vehicle



Behavioral dynamics

B multiple constraints: superpose “force-lets”

@ fusion do/dt
N ¢

target 2

target | fused attractor

“
s ®

individual
attractors

vehicle



Behavioral dynamics
B decision making

Jordt

repellor=
attractor
boundary

target 2

target |

...... A2
individual
attractors=
resultant
vehicle attractors
=> bistable




Braitenberg

M bistable dynamics for
bimodal intensity
distribution

B => nonlinear dynamics
makes selection decision

A intensity

heading
direction

Aturning raj
of vehicle

source
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Behavioral dynamics

) bifurcation

M Bifurcations

switch between attractor
fusion and attractor /7 repellor=

decision making + attractor
\ boundary

attractor

>
increasing distance

between targets



Steering the behavioral dynamics

® so far, we took for granted
that there is perceptual
information about the
constraints: targets,
obstacles

B these constraints emerge <3| e
from a neural dynamics:  =»

couple a peak in the neural /Q
field of target bearing into

the dynamics of heading
direction as an attractor
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— dt

behavioral dyna
¢
o
Q
©-



Problem number I:
“Reading out” from the neural field?

M peak specifies value of
the field dimension
over which it is
located...

specified value

* activation
field

dimension
>

® but how to “read out”
that value? peak position




“reading out” from the neural field?

M standard idea: treat
supra-threshold field as
a probability density

N specified value
. activation
® but: need to normalize £l

the activation pattern dimension

B => problem when there
is no peak: divide by peak position
zero!

Ao no value specified
activation

N _ Jdr g o(u(x,t)) field o
peak f A O(U(LE, t)) dlmensLon




“reading out” from the neural field?

specified value I no value specified
activation

field

dimension dimension

3 3
> >

1 activation
field

L dx/dt L dx/dt
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from DFT to DST

® solution: peak sets attractor

M location of attractor: peak location

M strength of attractor: summed supra-threshold activation

f dx x g(u(x, 1))

X=— J dx’ g(u(x', 1)) (X = Xpeak)  Xpeak = | dx’ g(u(x', 1)

J dx" x"g(u(x", t))
I dx" g(M(Xm, t))

X =— | dx' g(u(x',1)) x + J dx" g(u(x’, 1))

X =— | dx" g(u(x’,1)) (x —x)



Problem number 2:
closed loop

B the target representation is
invariant in space, defined

over heading direction o
fi?a threshold
M and so is the motor B /\

dynamics... /Q w

B how does the “heading
direction” then capture the
physical state of the body in
the world ~ behavioral

dynamics!?

il
— dr
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behavioral dyna



Answer

® the target representation must be invariant under a
change of heading because it is in that frame that
working memory about the target and neural state
about target selection is meaningful... this is a
property of the world

®and the same argument applies to the motor
dynamics: only when the dynamics is invariant under
change of heading is it a meaningful dynamics



Answer

® to makes this consistent
with coupling to sensory
information, we must
perform a a coordinate
transform from the o | cinal 7
sensory surface (“retina”)
to the invariant world
frame!

visual input
S(9)

Ump("p)
2
l
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motor planning field

Drar world )

®and that requires knowing
the heading direction in
the world...



Answer

M this is a steerable
neural map... -+ | —
22 b+ o
®=> |lecture later in Y b R
the course s o~ A
g i :

Ytar world






Embodied A not B

® implementing the A not B model on a autonomous
robot with continuous link to sensory and motor
surfaces...

vehicle colored cues
ego-position ¢

() \@-@ “®)-

start specific cue delay turns to target




Visual input
® color-based segmentation

® summing color pixels within color slot along
the vertical

® spatially filter at two resolutions

1 B
i

visual input S(19)

retinal J
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probability

probability

correct responces on trial B1

First Spontaneous Errors
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result: reproduce fundamental
age-delay trade-off in A not B
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“young” robot

“old” robot




“young” robot

“young” robot with
memory trace




How generic is “behavioral dynamics™?

B physically, all actuator
systems are dynamical
systems: they have
mechanical state driven by
forces (stable, but not
asymptotically stable

[Latash, Zatsiorksy 2016]



How generic is “behavioral dynamics™?

Force
F 3

Passive force

M the forces are generated
by muscles, which are
dynamical systems,
generating force

dependent on current A < Musclelengeh
physical state... attractor CC sec

states in velocity space /@)\—
(but only stable .

transiently) 4/@)\_

PEC

[Latash, Zatsiorksy 2016]



How generic is “behavioral dynamics™?

Corticospinal
pathway

Other /
descending _ J
pathways

la afferent —

———— la Inhibitory
interneuron

B muscle force generation is
controlled in closed loop |
- Motor '4 7-
by peripheral feedback

B e.g. the stretch reflex

Extensor muscle

e

Muscle spindle 2
/“7'
2\
KX
L
Flexor muscle :J-Q
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[Kandel, Schartz, Jessell, Fig. 38-2]




How generic is “behavioral dynamics™?

M the stretch reflex erects a dynamical system with
a fixed point attractor at an equilibrium length of
the muscle

B => Feldman’s equilibrium hypothesis...

Alpha '
motor Disturbance
neuron Motor
D : neuron
fa?iﬁfnqmg AR Force ' Length change
and inhibition uscle J - k a f .
4
Spindle
afferent
discharge r Seiile \g

& J

[Kandel, Schartz, Jessell, Fig. 31-12]



How generic is

M such peripheral
dynamics changes
what descending
activation time
courses are need to
generate movement

B => summer
semester course....

“behavioral dynamics’?

descending
activation

sensor

activation
muscle

activation

v

length

joint angle

joint angle

A S
sensor N

activation ~
time >
A muscle
activation
ga T I E I = = =
P descending
activation
of agonist

time



Conclusion

B neural dynamics can
be directly driven

b)’ sensory input behavioral dynamics  neural dynamics

. ﬁelds CcCou Ple |nto A turning rate of vehicle A activation field
behavioral dynamics heading /\Zﬁi‘fﬁin
by setting T

attractors == no

more “read-out”’ of <X K¢ <3 <X

neural dynamics

B coordinate systems
are important!



