Dynamic Field Theory Gregor Schöner gregor.schoener@ini.rub.de

 $\tau \dot{u}(t) = -u(t) + h + \text{ inputs}(t)$

Neural Dynamics

dynamic neural "networks" consisting of one or two neurons

where do "inputs" come from ...?

from sensory systems

- from other neurons
- => activation variables gain their meaning from the connections from the sensory surfaces or to the motor surfaces

- there is no behavioral evidence for discrete sampling...
- => abstract from discrete sampling...

define field is over the continuous stimulus dimension

as dictated by input/output connectivity...

- or by forward projections onto motor surfaces...
- => behavioral dynamics
- e.g., through peripheral reflex loops

fields defined over continuous spaces

information, probability, certainty

e.g., space, movement

parameters, feature

dimensions, viewing

parameters, ...

homologous to sensory surfaces, e.g., visual or auditory space (retinal, allocentric, ...)

- homologous to motor surfaces, e.g., saccadic end-points or direction of movement of the endeffector in outer space
- feature spaces, e.g., localized visual orientations, color, impedance, ...
- abstract spaces, e.g., ordinal space, along which serial order is represented

Example motion perception: space of possible percepts

Activation patterns representing different percepts

Example: movement planning: space of possible actions

Activation patterns representing states of motor decision making

- bi-modal distribution of activation over movement direction in pre-motor cortex before a selection decision is made
- mono-modal distribution once the decision is made

[Cisek, Kalaska: Neuron 2005]

Activation fields... peaks as units of representation

Formalizing the link between DFT and neurophysiology

What do neurons "represent"?

- notion of a tuning curve that links something outside the nervous system to the state of a neuron (e.g. through firing rate)
- based on the forward picture in which
 - the connectivity from the sensory surface
 - or the connectivity from the neuron to the motor surface

determine the activity of the neuron

Example tuning curve in primary visual cortex (monkey)

[Hubel, Wiesel, 1962]

Example: tuning curve in primary motor cortex (monkey)

[Georgopoulos, Schwartz, Kalaska, 1986]

What do populations of neurons represent?

the pattern of neural activity across multiple neurons represents a feature value much more precisely than individual neurons do

Do all activated neurons contribute?

- superior colliculus: topographic map of saccadic endpoint
- deactivate portions of the population: observe predicted deviations of saccadic endpoint

[after Lee, Rohrer, Sparks: Nature (1988) in Chapter 3 of the book]

=> population code

similar work in MT

Purushothaman, G., & Bradley, Da. C. (2005). Neural population code for fine perceptual decisions in area MT. Nature Neuroscience, 8(1), 99– 106.

consensus, that localized populations of neurons best correlated with behavior

- there are subtle issues of noise and correlation in populations
- e.g., Cohen, Newsome J Neurosci 2009: about 1000 neurons needed to match behavioral performance
- review: Shamir, M. (2014). Emerging principles of population coding: In search for the neural code. Current Opinion in Neurobiology, 25, 140–148.

Neurophysiological grounding of DFT

Example 1: primary visual cortex A17 in the cat, population representation of retinal location

- it's center determines what that neuron codes for
- compute a distribution of population activation by superposing RF profiles weighted with current neural firing rate

- The current response refers to a stimulus experienced by all neurons
- Reference condition: localized points of light

elementary stimuli

 result: population distribution of activation defined over retinal space
representation of visual location

=> does a decent job estimating retinal position

Extrapolate measurement device to new conditions

e.g., time resolved

or when complex stimuli are presented (here: two spots of light)

superposition of responses to each elemental stimulus

by comparing DPA of composite stimuli to superposition of DPAs of the two elementary stimuil obtain evidence for interaction

early excitation

late inhibition

DPA: interaction

activation level in the DPA at the location of the left component stimulus

model by dynamic field:

stimulus

experiment

DFT model

Neurophysiological grounding of DFT

Example 2: primary motor cortex (MI), population representation of movement direction of the hand

Task

- center-out movement task for macaque
- with varying amounts of prior information

Bastian, Riehle, Schöner, 2003

Tuning of neurons in MI to movement direction

trials aligned by go signals, ordered by reaction time

Distribution of Population Activation (DPA)

Distribution of population activation =

[Bastian, Riehle, Schöner, 2003]

look at temporal evolution of DPA

or DPAs in new conditions, here: DPA reflects prior information

Theory-Experiment

[Bastian, Riehle, Erlhagen, Schöner, 98]

Distributions of Population Activation are abstract

- neurons are not localized within DPA!
- cortical neurons really are sensitive to many dimensions
 - motor: arm configuration, force direction
 - visual: many feature dimensions such as spatial frequency, orientation, direction...
- DPA is a projection from that highdimensional space onto a single dimension

... back to the activation fields

- that are "defined" over the appropriate dimension just as population code is...
- In building DFT models, we must ensure that this is actually true by setting up the appropriate input/ output connectivity

Neural dynamics of activation fields

Neural dynamics of fields

Peaks as stable states from intra-field interaction

= local excitation/global inhibition

OXFORD SERIES IN DEVELOPMENTAL COGNITIVE NEUROSCIENCE

dynamicfieldtheory.org

Dynamic Thinking

Gregor Schöner, John P. Spencer, and the DFT Research Group

OXFORD

=> simulation

Attractors and their instabilities

- input driven solution (subthreshold)
- self-stabilized solution (peak, supra-threshold)
- selection / selection instability
- working memory / memory instability
- boost-driven detection instability

detection instability instability

reverse instability

Noise is critical near instabilities

mathematical formalization

Amari equation

$$\tau \dot{u}(x,t) = -u(x,t) + h + S(x,t) + \int w(x-x')\sigma(u(x',t)) \, dx'$$

where

- time scale is τ
- resting level is h < 0
- input is S(x,t)
- interaction kernel is

$$w(x - x') = w_i + w_e \exp\left[-\frac{(x - x')^2}{2\sigma_i^2}\right]$$

• sigmoidal nonlinearity is

$$\sigma(u) = \frac{1}{1 + \exp[-\beta(u - u_0)]}$$

Interaction: convolution

Solutions and instabilities

input driven solution (sub-threshold) vs. self-stabilized solution (peak, supra-threshold)

detection instability

reverse detection instability

selection

selection instability

memory instability

detection instability from boost

Relationship to the dynamics of discrete activation variables

