

Dynamical systems tutorial: 2. Numerics

Gregor Schöner, INI, RUB

Dynamical system $\dot{x} = \frac{dx}{dt} = f(x)$

$$\dot{x} = \frac{dx}{dt} = f(x)$$

Dynamical system $\dot{x} = \frac{dx}{dt} = f(x)$

$$\dot{x} = \frac{dx}{dt} = f(x)$$

the present determines the future

```
dx/dt=f(x)
           predicts
             future initial
          evolution condition
                                                 X
```

Dynamical system

$$\dot{x} = \frac{dx}{dt} = f(x)$$

- x spans the state space (can be vector-valued or even function valued)
- $\blacksquare f(x)$ is the "dynamics" of x (or vector-field)
- -x(t) is a solution of the dynamical systems with initial condition $x_0 \iff$ the rate of change of x(t) obeys $\dot{x}(t) = f(x)$ and $x(0) = x_0$

Numerical solutions

- sample time discretely, t_i , with $i \in \{0,1,...,N\}$,
- for example: $t_i = i \Delta t$
- compute solution, $x(t_i) = x_i$, by iterating through time,
- for example: $x_{i+1} = x_i + \Delta t f(x_i)$ (forward Euler)

$$\left[\frac{x_{i+1} - x_i}{\Delta t} \approx \frac{dx}{dt} = f(x) \approx f(x_i) \right]$$

=> code / simulation