Lecture 7 Object Oriented Programming

Jan Tekülve

jan.tekuelve@ini.rub.de

Computer Science and Mathematics Preparatory Course

22.10.2020

Overview

1. Outlook: Matrices and Scientific Programming

- Matrices Quick Summary
- ➤ The Numpy Module
- Matrix Calculation with Numpy

2. Excursion: Object Oriented Programming

- ► What is OOP?
- ➤ Example Project
- ➤ Inheritance
- ➤ Modules in Python

3. Tasks

A Matrix $\mathbf{A}_{m,n}$ is a rectangular array arranged in *m* rows and *n* columns.

► Example:

$$oldsymbol{A}_{3,4}=egin{pmatrix} 1&2&3&4\5&6&7&8\9&10&11&12 \end{pmatrix}$$

A Matrix $\mathbf{A}_{m,n}$ is a rectangular array arranged in *m* rows and *n* columns.

► Example:

$$\mathbf{A}_{3,4} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$

A single element in a matrix is usually denoted by $a_{i,j}$, where *i* is the row and *j* the column index. For example $a_{2,3} = 7$.

A Matrix $\mathbf{A}_{m,n}$ is a rectangular array arranged in *m* rows and *n* columns.

Example:

$$\mathbf{A}_{3,4} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$

- A single element in a matrix is usually denoted by a_{i,j}, where i is the row and j the column index. For example a_{2,3} = 7.
- A matrix A_m , n, where m = n is called a square matrix

A Matrix $\mathbf{A}_{m,n}$ is a rectangular array arranged in *m* rows and *n* columns.

Example:

$$\mathbf{A}_{3,4} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$

- A single element in a matrix is usually denoted by $a_{i,j}$, where *i* is the row and *j* the column index. For example $a_{2,3} = 7$.
- A matrix A_m , n, where m = n is called a square matrix
- A matrix that has only entries on the diagonal is called a **diagonal matrix**

$$\mathbf{D}_{3,3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$
 Special case **identity matrix** $\mathbf{I}_{3,3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Matrix Addition/Subtraction

▶ It is possible to add two matrices **A** and **B** together, if they have the same number of rows and columns.

Matrix Addition/Subtraction

- ▶ It is possible to add two matrices **A** and **B** together, if they have the same number of rows and columns.
- Addition is carried out element-wise:

$$\mathbf{A}_{3,2} + \mathbf{B}_{3,2} = \begin{pmatrix} 1 & 2 \\ 5 & 6 \\ 9 & 10 \end{pmatrix} + \begin{pmatrix} 4 & 2 \\ 3 & 1 \\ 8 & 2 \end{pmatrix} = \begin{pmatrix} 1+4 & 2+2 \\ 5+3 & 6+1 \\ 9+8 & 10+2 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 8 & 7 \\ 17 & 12 \end{pmatrix}$$

Matrix Addition/Subtraction

- It is possible to add two matrices A and B together, if they have the same number of rows and columns.
- Addition is carried out element-wise:

$$\mathbf{A}_{3,2} + \mathbf{B}_{3,2} = \begin{pmatrix} 1 & 2 \\ 5 & 6 \\ 9 & 10 \end{pmatrix} + \begin{pmatrix} 4 & 2 \\ 3 & 1 \\ 8 & 2 \end{pmatrix} = \begin{pmatrix} 1+4 & 2+2 \\ 5+3 & 6+1 \\ 9+8 & 10+2 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 8 & 7 \\ 17 & 12 \end{pmatrix}$$

Subtraction works analogously:

$$\mathbf{A}_{3,2} - \mathbf{B}_{3,2} = \begin{pmatrix} 1 & 2 \\ 5 & 6 \\ 9 & 10 \end{pmatrix} - \begin{pmatrix} 4 & 2 \\ 3 & 1 \\ 8 & 2 \end{pmatrix} = \begin{pmatrix} 1-4 & 2-2 \\ 5-3 & 6-1 \\ 9-8 & 10-2 \end{pmatrix} = \begin{pmatrix} -3 & 0 \\ 2 & 5 \\ 1 & 8 \end{pmatrix}$$

Scalar Multiplication and Transposition

Multiplication with scalar values is also applied element-wise:

$$\mathbf{A}_{3,2} \cdot 3 = \begin{pmatrix} 1 & 2 \\ 5 & 6 \\ 9 & 10 \end{pmatrix} \cdot 3 = \begin{pmatrix} 1 \cdot 3 & 2 \cdot 3 \\ 5 \cdot 3 & 6 \cdot 3 \\ 9 \cdot 3 & 10 \cdot 3 \end{pmatrix} = \begin{pmatrix} 3 & 6 \\ 15 & 18 \\ 27 & 30 \end{pmatrix}$$

Scalar Multiplication and Transposition

Multiplication with scalar values is also applied element-wise:

$$\mathbf{A}_{3,2} \cdot 3 = \begin{pmatrix} 1 & 2 \\ 5 & 6 \\ 9 & 10 \end{pmatrix} \cdot 3 = \begin{pmatrix} 1 \cdot 3 & 2 \cdot 3 \\ 5 \cdot 3 & 6 \cdot 3 \\ 9 \cdot 3 & 10 \cdot 3 \end{pmatrix} = \begin{pmatrix} 3 & 6 \\ 15 & 18 \\ 27 & 30 \end{pmatrix}$$

The transposition A^T of a matrix switches the roles of row and columns Example:

$$\boldsymbol{A}_{3,2}^{T} = \begin{pmatrix} 1 & 2 \\ 5 & 6 \\ 9 & 10 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 5 & 9 \\ 2 & 6 & 10 \end{pmatrix}$$

The transposition turns a $m \times n$ matrix into a $n \times m$ matrix.

- Matrices A and B can be multiplied with each other, if the number of columns of A_{m,n} matches the number of rows in B_{n,o}.
- ► The resulting matrix C_{m,o} shares the number of rows from A and the number of columns from B.

- Matrices **A** and **B** can be multiplied with each other, if the number of columns of **A**_{m,n} matches the number of rows in **B**_{n,o}.
- ► The resulting matrix C_{m,o} shares the number of rows from A and the number of columns from B.
- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.
 Multiply Row by Column

$$\boldsymbol{A}_{2,3} \cdot \boldsymbol{B}_{3,3} = \begin{pmatrix} 3 & 6 & 5 \\ 4 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 3 & 8 \\ 1 & 2 & 10 \\ 7 & 3 & 2 \end{pmatrix} = \begin{pmatrix} - & - & - \\ - & - & - \end{pmatrix}$$

- Matrices **A** and **B** can be multiplied with each other, if the number of columns of **A**_{m,n} matches the number of rows in **B**_{n,o}.
- ► The resulting matrix C_{m,o} shares the number of rows from A and the number of columns from B.
- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.
 Multiply Row by Column

$$\mathbf{A}_{2,3} \cdot \mathbf{B}_{3,3} = \begin{pmatrix} \mathbf{3} & \mathbf{6} & \mathbf{5} \\ 4 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{4} & \mathbf{3} & \mathbf{8} \\ \mathbf{1} & 2 & \mathbf{10} \\ \mathbf{7} & \mathbf{3} & 2 \end{pmatrix} = \begin{pmatrix} \mathbf{?} & - & - \\ - & - & - \end{pmatrix}$$

- Matrices A and B can be multiplied with each other, if the number of columns of A_{m,n} matches the number of rows in B_{n,o}.
- ► The resulting matrix C_{m,o} shares the number of rows from A and the number of columns from B.
- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.
 Multiply Row by Column

$$\mathbf{A}_{2,3} \cdot \mathbf{B}_{3,3} = \begin{pmatrix} \mathbf{3} & \mathbf{6} & \mathbf{5} \\ 4 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{4} & 3 & 8 \\ \mathbf{1} & 2 & 10 \\ \mathbf{7} & 3 & 2 \end{pmatrix} = \begin{pmatrix} (3 * 4 + 6 * 1 + 5 * 7) & - & - \\ - & - & - & - \end{pmatrix}$$

- Matrices A and B can be multiplied with each other, if the number of columns of A_{m,n} matches the number of rows in B_{n,o}.
- ▶ The resulting matrix **C**_{*m*,o} shares the number of rows from **A** and the number of columns from **B**.
- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.
 Multiply Row by Column

$$\boldsymbol{A}_{2,3} \cdot \boldsymbol{B}_{3,3} = \begin{pmatrix} \mathbf{3} & \mathbf{6} & \mathbf{5} \\ 4 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{4} & 3 & 8 \\ \mathbf{1} & 2 & 10 \\ \mathbf{7} & 3 & 2 \end{pmatrix} = \begin{pmatrix} \mathbf{53} & - & - \\ - & - & - \end{pmatrix}$$

- Matrices A and B can be multiplied with each other, if the number of columns of A_{m,n} matches the number of rows in B_{n,o}.
- ▶ The resulting matrix **C**_{*m*,o} shares the number of rows from **A** and the number of columns from **B**.
- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.
 Multiply Row by Column

$$\mathbf{A}_{2,3} \cdot \mathbf{B}_{3,3} = \begin{pmatrix} \mathbf{3} & \mathbf{6} & \mathbf{5} \\ 4 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{4} & \mathbf{3} & \mathbf{8} \\ 1 & \mathbf{2} & 10 \\ 7 & \mathbf{3} & 2 \end{pmatrix} = \begin{pmatrix} 53 & ? & - \\ - & - & - \end{pmatrix}$$

- Matrices **A** and **B** can be multiplied with each other, if the number of columns of $A_{m,n}$ matches the number of rows in $B_{n,o}$.
- ► The resulting matrix **C**_{*m*,o} shares the number of rows from **A** and the number of columns from **B**.
- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.
 Multiply Row by Column

$$\mathbf{A}_{2,3} \cdot \mathbf{B}_{3,3} = \begin{pmatrix} \mathbf{3} & \mathbf{6} & \mathbf{5} \\ 4 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{4} & \mathbf{3} & \mathbf{8} \\ 1 & \mathbf{2} & 10 \\ 7 & \mathbf{3} & 2 \end{pmatrix} = \begin{pmatrix} 53 & (3 * 3 + 6 * 2 + 5 * 3) & - \\ - & - & - & - \end{pmatrix}$$

- Matrices A and B can be multiplied with each other, if the number of columns of A_{m,n} matches the number of rows in B_{n,o}.
- ▶ The resulting matrix **C**_{*m*,o} shares the number of rows from **A** and the number of columns from **B**.
- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.
 Multiply Row by Column

$$\mathbf{A}_{2,3} \cdot \mathbf{B}_{3,3} = \begin{pmatrix} \mathbf{3} & \mathbf{6} & \mathbf{5} \\ 4 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & \mathbf{3} & \mathbf{8} \\ 1 & \mathbf{2} & 10 \\ 7 & \mathbf{3} & 2 \end{pmatrix} = \begin{pmatrix} 53 & \mathbf{36} & - \\ - & - & - \end{pmatrix}$$

- Matrices A and B can be multiplied with each other, if the number of columns of A_{m,n} matches the number of rows in B_{n,o}.
- ▶ The resulting matrix **C**_{*m*,o} shares the number of rows from **A** and the number of columns from **B**.
- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.
 Multiply Row by Column

$$\mathbf{A}_{2,3} \cdot \mathbf{B}_{3,3} = \begin{pmatrix} 3 & 6 & 5 \\ \mathbf{4} & \mathbf{2} & \mathbf{1} \end{pmatrix} \cdot \begin{pmatrix} 4 & 3 & \mathbf{8} \\ 1 & 2 & \mathbf{10} \\ 7 & 3 & \mathbf{2} \end{pmatrix} = \begin{pmatrix} 53 & 36 & - \\ - & - & \mathbf{?} \end{pmatrix}$$

- Matrices **A** and **B** can be multiplied with each other, if the number of columns of $A_{m,n}$ matches the number of rows in $B_{n,o}$.
- ► The resulting matrix **C**_{*m*,o} shares the number of rows from **A** and the number of columns from **B**.
- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.
 Multiply Row by Column

$$\mathbf{A}_{2,3} \cdot \mathbf{B}_{3,3} = \begin{pmatrix} 3 & 6 & 5 \\ \mathbf{4} & \mathbf{2} & \mathbf{1} \end{pmatrix} \cdot \begin{pmatrix} 4 & 3 & \mathbf{8} \\ 1 & 2 & \mathbf{10} \\ 7 & 3 & \mathbf{2} \end{pmatrix} = \begin{pmatrix} 53 & 36 & - \\ - & - & (4 * 8 + 2 * \mathbf{10} + \mathbf{1} * 2) \end{pmatrix}$$

- Matrices A and B can be multiplied with each other, if the number of columns of A_{m,n} matches the number of rows in B_{n,o}.
- ▶ The resulting matrix **C**_{*m*,o} shares the number of rows from **A** and the number of columns from **B**.
- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.
 Multiply Row by Column

$$\mathbf{A}_{2,3} \cdot \mathbf{B}_{3,3} = \begin{pmatrix} 3 & 6 & 5 \\ \mathbf{4} & \mathbf{2} & \mathbf{I} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{4} & 3 & \mathbf{8} \\ 1 & 2 & \mathbf{I0} \\ 7 & 3 & \mathbf{2} \end{pmatrix} = \begin{pmatrix} 53 & 36 & - \\ - & - & \mathbf{54} \end{pmatrix}$$

- Matrices A and B can be multiplied with each other, if the number of columns of A_{m,n} matches the number of rows in B_{n,o}.
- ▶ The resulting matrix **C**_{*m*,o} shares the number of rows from **A** and the number of columns from **B**.
- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.
 Multiply Row by Column

$$\mathbf{A}_{2,3} \cdot \mathbf{B}_{3,3} = \begin{pmatrix} 3 & 6 & 5 \\ \mathbf{4} & \mathbf{2} & \mathbf{1} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{4} & 3 & \mathbf{8} \\ 1 & 2 & \mathbf{10} \\ 7 & 3 & \mathbf{2} \end{pmatrix} = \begin{pmatrix} 53 & 36 & 94 \\ 25 & 19 & 54 \end{pmatrix}$$

The Numpy Module

- Numpy is part of SciPy the module for scientific programming
- ▶ It should have been installed with matplotlib
- It is usually imported like this:

import numpy as np

The Numpy Array

Numpy brings its own data structure the numpy array

```
import numpy as np
#Arrays can be created from lists
array_example = np.array([1,6,7,9])
#Arrays can be created with arange
#An array with numbers from 4 to 5 and step size 0.2
array2 = np.arange(4,5,0.2) #5 is not in the array
print(array2) # [4.0 4.2 4.4 4.6 4.8]
```

Elements of an array can be manipulated simultaneously

array3 = array2*array2 #For example with multiplication
print(array3)# [16.0 16.64 19.36 21.16 23.04]

Matplotlib and Numpy

```
Plotting sin(x) from 0 to \pi with lists
```

Plotting sin(x) from 0 to π with numpy

```
xValues = np.arange(0,math.pi,0.5)
yValues = np.sin(xValues)
plt.plot(xValues,yValues)
```

Numpy Arrays as Matrices

• Creating the following matrix:
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$

Numpy Arrays as Matrices

• Creating the following matrix:
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$

In numpy a matrix can be created from a multi-dimensional list

This creates a 3x4 Matrix

A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

Numpy Arrays as Matrices

• Creating the following matrix:
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$

In numpy a matrix can be created from a multi-dimensional list

This creates a 3x4 Matrix

A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

Numpy treats such an array as a matrix

```
arr_dim = A.shape #Gives you the shape of your matrix
print(arr_dim) #Prints (3,4)
# Access elements with indexing
single_number = A[1,3] #8, 2nd list,4th element
num2 = A[0,1] #2, 1st list, 2nd element
```

Matrix Operations in Numpy

Matrix Addition:
$$\begin{pmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \end{pmatrix} + \begin{pmatrix} 3 & 5 & 1 \\ 5 & -3 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 7 & 4 \\ 10 & 3 & 8 \end{pmatrix}$$

In numpy code:

```
A = np.array([[1,2,3], [5,6,7]])
B = np.array([[3,5,1], [5,-3,1]])
C = A + B
D = A - B #Subtraction works analogously
print(D) #[[-2 -3 2],[0 9 6]]
```

Matrix Operations in Numpy

• Matrix Multiplication:
$$\begin{pmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \end{pmatrix} * \begin{pmatrix} 3 & 5 \\ 5 & -3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 16 & 2 \\ 52 & 14 \end{pmatrix}$$

In numpy code:

print(F) # [[16,2],[52,14]]

Matrix Operations in Numpy

• Matrix Multiplication:
$$\begin{pmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \end{pmatrix} * \begin{pmatrix} 3 & 5 \\ 5 & -3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 16 & 2 \\ 52 & 14 \end{pmatrix}$$

In numpy code:

Do not confuse with element-wise multiplication

```
A = np.array([[1,2,3], [5,6,7]])
```

- B = np.array([[3,5,1], [5,-3,1]])
- G = A*B # [[3,10,3], [25,-18,7]]

/ \

Matrix Operations in Numpy

It also works for vectors:

$$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \mathbf{v}_1^T \mathbf{v}_2 = \begin{pmatrix} \mathbf{I} & \mathbf{2} & \mathbf{3} \end{pmatrix} * \begin{pmatrix} \mathbf{3} \\ \mathbf{5} \\ \mathbf{1} \end{pmatrix} = \mathbf{16}$$

► In numpy code:

V1 = np.array([1,2,3]) V2 = np.array([3,5,1]) R = np.matmul(V1,V2) print(R) # 16

/ \

Matrix Operations in Numpy

It also works for vectors:

$$\langle v_1, v_2 \rangle = v_1^T v_2 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} * \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix} = 16$$

► In numpy code:

```
V1 = np.array([1,2,3])
V2 = np.array([3,5,1])
R = np.matmul(V1,V2)
print(R) # 16
```

Or vectors and matrices if you want to

Other helpful Operations

► Transpose Matrices:
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \end{pmatrix}$$
 $\mathbf{A}^{\mathrm{T}} = \begin{pmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \end{pmatrix}$

In numpy:

- A = np.array([[1,2,3], [5,6,7]]) H = A.T # [[1,5],[2,6],[3,7]]
- H = A.I # [[1,5],[2,6],[3,7]]

Element-wise summing across arrays:

```
sum = np.sum(H) #24,
V1 = np.array([1,2,3]) #works also for 1D-arrays
sum_v = np.sum(V1) # 6
```

Images as Matrices

$(x_{0,0})$	$x_{0,1}$	$x_{0,2}$	<i>x</i> _{0,3}	$x_{0,4}$	
$x_{1,0}$	$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{1,4}$	
<i>x</i> _{2,0}	$x_{2,1}$	$x_{2,2}$	$x_{2,3}$	<i>x</i> _{2,4}	
<i>x</i> _{3,0}	$x_{3,1}$	$x_{3,2}$	$x_{3,3}$	<i>x</i> _{3,4}	
$\langle x_{4,0} \rangle$	$x_{4,1}$	<i>x</i> _{4,2}	$x_{4,3}$	$x_{4,4}$	

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Convolution of the Gaussian function with itself

X = -4

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Convolution of the Gaussian function with itself

X = -3.5

$$(f*g)(x) = \int_{-\infty}^{\infty} f(x')g(x-x')dx'$$

Convolution of the Gaussian function with itself

X = -3

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Convolution of the Gaussian function with itself

X = -2.5

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Convolution of the Gaussian function with itself

X = -2

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Convolution of the Gaussian function with itself

X = -1.5

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Convolution of the Gaussian function with itself

X = -1

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Convolution of the Gaussian function with itself

X = -0.5

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Convolution of the Gaussian function with itself

1.2 1 0.8 0.6 0.4 0.2 0 -3 -2 -1 2 3 -5 -4 0 1 4 5

X = 0

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Convolution of the Gaussian function with itself

X = 0.5

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Convolution of the Gaussian function with itself

X = 1

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Convolution of the Gaussian function with itself

X = 1.5

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Convolution of the Gaussian function with itself

X = 2

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Convolution of the Gaussian function with itself

X = 2.5

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Convolution of the Gaussian function with itself

X = 3

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Convolution of the Gaussian function with itself

X = 3.5

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

Convolution of the Gaussian function with itself

X = 4

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

X = -4

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

X = -3.5

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

1.2 1 0.8 0.6 0.4 0.2 0 -3 -2 2 -5 -4 -1 0 1 3 4 5

X = -3

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

X = -2.5

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

X = -2

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

X = -1.5

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

X = -1

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

X = -0.5

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

X = 0

1.2 1 0.8 0.6 0.4 0.2 0 -3 -2 0 2 -5 -4 -1 1 3 4 5

17 / 41

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

X = 0.5

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

X = 1

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

X = 1.5

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

X = 2

1

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

X = 2.5

1.2

Convolution with the Rectangle Function

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

X = 3

1.2 1 0.8 0.6 0.4 0.2 0 -3 -2 0 2 -5 -4 -1 1 3 4 5

Convolution with the Rectangle Function

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

1.2 1 0.8 0.6 0.4 0.2 0 -3 -2 2 -5 -4 -1 0 1 3 4 5

X = 3.5

Convolution with the Rectangle Function

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

X = 4

1.2 1 0.8 0.6 0.4 0.2 0 -3 -2 2 -5 -4 -1 0 1 3 4 5

Applying Filters to Images

1. Outlook: Matrices and Scientific Programming

- Matrices Quick Summary
- ► The Numpy Module
- Matrix Calculation with Numpy

2. Excursion: Object Oriented Programming

- ▶ What is OOP?
- ► Example Project
- Inheritance
- > Modules in Python

3. Tasks

Programming Paradigms

Procedural Programming

- A problem is solved by manipulating data structures through procedures
- The key is to write the right logic
- Efficiency is a main focus of procedural programming

Programming Paradigms

Procedural Programming

- A problem is solved by manipulating data structures through procedures
- ► The key is to write the right logic
- Efficiency is a main focus of procedural programming

Object oriented Programming

- A problem is solved by modeling it's processes
- The key is to figure out the relevant entities and their relations
- Programming Logic is tightly coupled to entities

Classes vs. Objects

Class

Person

first name last name age email

Classes vs. Objects

Class

Objects (Instances)

Classes Bind Variables Together

Instead of writing something like this

```
#Alice's attributes
alice_name = "Alice"
alice_last_name = "Anderson"
alice_age = 28
```

Classes Bind Variables Together

Instead of writing something like this

```
#Alice's attributes
alice_name = "Alice"
alice_last_name = "Anderson"
alice_age = 28
```

Objects encapsulate multiple variables in one place

```
#A Person-object variable
alice = Person("Alice","Anderson",28)
```

Classes are Advanced Data Types

Object variables can be treated like simple types

```
#Two Person-object variables
alice = Person("Alice","Anderson",28)
rob = Person("Rob","Robertson",17)
#Objects can be stored in lists
myPersonList = [] #I want to manage persons
myPersonList.append(rob)
#Objects can be arguments of self-defined functions
calculate_year_of_birth(alice)
```

Class Definition

A class needs to be defined

This is enough to create a class-object

robby = Person("Rob", "Robertson", 17)

Accessing Class Attributes

Class attributes can be accessed via the '.' operator

robby = Person("Rob", "Robertson", 17)

```
f_name = robby.first_name #"Rob"
l_name = robby.last_name #"Robertson"
age = robby.age #17
```

Accessing Class Attributes

Class attributes can be accessed via the '.' operator

robby = Person("Rob", "Robertson", 17)

```
f_name = robby.first_name #"Rob"
l_name = robby.last_name #"Robertson"
age = robby.age #17
```

They can also be assigned after initialization

robby.age = 18 #As he gets older robby.l_name = "Peterson" #If he marries

Objects and Functions

```
► We can use objects as function arguments
```

Objects and Functions

We can use objects as function arguments

```
Usage:
```

```
robby = Person("Rob","Robertson",17)
print_info(robby)
#This prints: "Rob Robertson is 17 years old"
alice = Person("Alice","Anderson",28)
print_info(alice)
#This prints: "Alice Anderson is 28 years old"
```

Function Encapsulation

Functions can even be defined inside classes

```
class Person: #This defines the class Name
   #The __init__ function
   def __init__(self, first_name,last_name,age):
       #The passed values are stored in the class
       self.first_name = first_name
       self.last_name = last_name
       self.age = age
   #Our print_info function
   def print_info(self): #Note how the argument changed
       print(self.first_name +" " +self.last_name +" is
           \hookrightarrow " +str(self.age) +" years old.")
```

Function Encapsulation

A function can be called directly from the object

```
robby = Person("Rob","Robertson",17)
robby.print_info()
#This prints: "Rob Robertson is 17 years old"
alice = Person("Alice","Anderson",28)
```

```
alice.print_info()
#This prints: "Alice Anderson is 28 years old"
```

Function Encapsulation

A function can be called directly from the object

```
robby = Person("Rob","Robertson",17)
robby.print_info()
#This prints: "Rob Robertson is 17 years old"
alice = Person("Alice","Anderson",28)
alice.print_info()
#This prints: "Alice Anderson is 28 years old"
```

This way a potential programmer/user does not need to know the internal structure of the particular class, e.g. *list.append()*.

- We want to write a program for the university
- It should give an overview over the different courses
- ▶ It should track each course, its lecturer and its students

- We want to write a program for the university
- It should give an overview over the different courses
- ▶ It should track each course, its lecturer and its students

How would an OOP model look like?

Example Code

The course class

```
class Course: #This defines the class Name
  #The __init__ function
  def __init__(self, name,year,id_number,lecturer):
    #The passed values are stored in the class
    self.name = name
    self.year = year
    self.id_number = id_number
    self.lecturer = lecturer
    self.student_list = [] #empty upon creation
```

Example Code

The lecturer class

Example Code

Create the Course

Example Code

Create the Course

• At the end of the year access the bank account:

c_bank_account = cscience_course.lecturer.bank_account

Example Code

Create the Course

• At the end of the year access the bank account:

c_bank_account = cscience_course.lecturer.bank_account

This works independent of course and lecturer

The Student Class

This class looks similar to the lecturer

```
class Student: #This defines the class Name
   #The init function
   def __init__(self, first_name,last_name,age,email,
       \hookrightarrow student id):
       #The passed values are stored in the class
       self.first_name = first_name
       self.last_name = last_name
       self.age = age
       self.email = email
       self.student_id = student_id
       self.grade = -1
```


The Person Class

We will use the Class Person as Super-Class

```
class Person: #This defines the class Name
  #The __init__ function
  def __init__(self, first_name,last_name,age,email):
    #The passed values are stored in the class
    self.first_name = first_name
    self.last_name = last_name
    self.age = age
    self.email = email
```

Inheritance

Lecturer and Student will inherit from Person

```
class Lecturer(Person): #Brackets declare inheritance
   #The __init__ function is overrriden
   def __init__(self,f_name,l_name,age,email,b_acc):
       #The super() calls the parent function
       super().__init__(f_name,l_name,age,email)
       self.bank account = b acc
class Student(Person): #Brackets declare inheritance
   #The __init__ function is overrriden
   def __init__(self,f_name,l_name,age,email,stud_id):
       super().__init__(f_name,l_name,age,email)
       self.student_id = stud_id
       self.grade = -1
```

Modifiying the Parent Class

Functions of the parent class are available to child classes

```
class Person: #This defines the class Name
```

def __init__(self, first_name,last_name,age,email):
 #The passed values are stored in the class
 self.first_name = first_name
 self.last_name = last_name
 self.age = age
 self.email = email

Using Parent Functions

Functions of the parent class are available to child classes

```
student_rob.print_info()
lecturer_jan.print_info()
#Prints:
#Rob Robertson is 25 years old.
#Jan Tekuelve is 30 years old.
```

Completing the Example

The course needs to be able to add students

```
#Inside the Course class
def enroll(self,student):
    self.student_list.append(student)
    #Enroll adds them to the course internal list
```

Minimal example:

Creating your own Python Modules

- Class definitions can be stored in separate module
- E.g. if you save the above class definitions in a file *unimanager.py*

Creating your own Python Modules

- Class definitions can be stored in separate module
- E.g. if you save the above class definitions in a file *unimanager.py*
- > You can access the definitions in another script from the same folder:

Creating your own Python Modules

- Class definitions can be stored in separate module
- E.g. if you save the above class definitions in a file *unimanager.py*
- > You can access the definitions in another script from the same folder:

► This allows for flexible re-usability of code

Advantages/Disadvantages of OOP

Advantages:

- Design Benefit: Real/World processes are easily transferable in code
- Modularity: Extending and reusing software is easy
- Software Maintenance: Modular code is easier to debug

Advantages/Disadvantages of OOP

Advantages:

- Design Benefit: Real/World processes are easily transferable in code
- Modularity: Extending and reusing software is easy
- Software Maintenance: Modular code is easier to debug

Disadvantages:

- Desing Overhead: Modeling requires longer initial development time
- Originally OOP required more "coding"

Tasks

- 1. Download todays class definitions *unimanager.py* and create a separate script that uses this module to create a course, a lecturer and three sample students.
 - Enroll all students to the course.
 - After enrolling iterate through the student list to print the info of all enrolled students. You can access the student_list via the course object.
 - ▶ In the loop use the *print_info()* function.
- 2.* Add a *print_info()* function to the class definition of Course in *unimanager.py*. This function should print the course name, its lecturer and each student of the course with his/her student ID.
 - The function should be defined in the Course class and its only argument should be self
 - The course name, the lecturer and its student_list can be accessed via the self keyword.

This concludes the Preparatory Course.

Any Questions or Feedback?