Lecture 7
Object Oriented Programming

Jan Tekülve
jan.tekuelve@ini.rub.de

Computer Science and Mathematics
Preparatory Course

22.10.2020
Overview

1. Outlook: Matrices and Scientific Programming
 ➤ Matrices Quick Summary
 ➤ The Numpy Module
 ➤ Matrix Calculation with Numpy

2. Excursion: Object Oriented Programming
 ➤ What is OOP?
 ➤ Example Project
 ➤ Inheritance
 ➤ Modules in Python

3. Tasks
Matrix Definition

A Matrix $A_{m,n}$ is a rectangular array arranged in m rows and n columns.

- Example:

$$A_{3,4} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$
Matrix Definition

A Matrix $A_{m,n}$ is a rectangular array arranged in m rows and n columns.

- **Example:**

 $A_{3,4} = \begin{pmatrix}
 1 & 2 & 3 & 4 \\
 5 & 6 & 7 & 8 \\
 9 & 10 & 11 & 12
 \end{pmatrix}$

- A single element in a matrix is usually denoted by $a_{i,j}$, where i is the row and j the column index. For example $a_{2,3} = 7$.

Matrix Definition

A Matrix $A_{m,n}$ is a rectangular array arranged in m rows and n columns.

- Example:

$$A_{3,4} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$

- A single element in a matrix is usually denoted by $a_{i,j}$, where i is the row and j the column index. For example $a_{2,3} = 7$.

- A matrix $A_{m,n}$, where $m = n$ is called a square matrix.
Matrix Definition

A Matrix $A_{m,n}$ is a rectangular array arranged in m rows and n columns.

▶ Example:

$$A_{3,4} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$

▶ A single element in a matrix is usually denoted by $a_{i,j}$, where i is the row and j the column index. For example $a_{2,3} = 7$.

▶ A matrix $A_{m,n}$, where $m = n$ is called a square matrix

▶ A matrix that has only entries on the diagonal is called a diagonal matrix

$$D_{3,3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

Special case identity matrix $I_{3,3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
Matrix Addition/Subtraction

It is possible to add two matrices A and B together, if they have the same number of rows and columns.
Matrix Addition/Subtraction

- It is possible to add two matrices A and B together, if they have the same number of rows and columns.

- Addition is carried out element-wise:

$$
A_{3,2} + B_{3,2} = \begin{pmatrix} 1 & 2 \\ 5 & 6 \\ 9 & 10 \end{pmatrix} + \begin{pmatrix} 4 & 2 \\ 3 & 1 \\ 8 & 2 \end{pmatrix} = \begin{pmatrix} 1+4 & 2+2 \\ 5+3 & 6+1 \\ 9+8 & 10+2 \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 8 & 7 \\ 17 & 12 \end{pmatrix}
$$
Matrix Addition/Subtraction

- It is possible to add two matrices \(A \) and \(B \) together, if they have the same number of rows and columns.

- Addition is carried out element-wise:

\[
A_{3,2} + B_{3,2} = \begin{pmatrix}
1 & 2 \\
5 & 6 \\
9 & 10
\end{pmatrix} + \begin{pmatrix}
4 & 2 \\
3 & 1 \\
8 & 2
\end{pmatrix} = \begin{pmatrix}
1+4 & 2+2 \\
5+3 & 6+1 \\
9+8 & 10+2
\end{pmatrix} = \begin{pmatrix}
5 & 4 \\
8 & 7 \\
17 & 12
\end{pmatrix}
\]

- Subtraction works analogously:

\[
A_{3,2} - B_{3,2} = \begin{pmatrix}
1 & 2 \\
5 & 6 \\
9 & 10
\end{pmatrix} - \begin{pmatrix}
4 & 2 \\
3 & 1 \\
8 & 2
\end{pmatrix} = \begin{pmatrix}
1-4 & 2-2 \\
5-3 & 6-1 \\
9-8 & 10-2
\end{pmatrix} = \begin{pmatrix}
-3 & 0 \\
2 & 5 \\
1 & 8
\end{pmatrix}
\]
Scalar Multiplication and Transposition

- Multiplication with scalar values is also applied element-wise:

\[
A_{3,2} \cdot 3 = \begin{pmatrix} 1 & 2 \\ 5 & 6 \\ 9 & 10 \end{pmatrix} \cdot 3 = \begin{pmatrix} 1 \cdot 3 & 2 \cdot 3 \\ 5 \cdot 3 & 6 \cdot 3 \\ 9 \cdot 3 & 10 \cdot 3 \end{pmatrix} = \begin{pmatrix} 3 & 6 \\ 15 & 18 \\ 27 & 30 \end{pmatrix}
\]
Scalar Multiplication and Transposition

- Multiplication with scalar values is also applied element-wise:

\[
\begin{pmatrix}
1 & 2 \\
5 & 6 \\
9 & 10
\end{pmatrix}
\cdot 3 =
\begin{pmatrix}
1 \cdot 3 & 2 \cdot 3 \\
5 \cdot 3 & 6 \cdot 3 \\
9 \cdot 3 & 10 \cdot 3
\end{pmatrix}
=
\begin{pmatrix}
3 & 6 \\
15 & 18 \\
27 & 30
\end{pmatrix}
\]

- The transposition \(A^T \) of a matrix switches the roles of row and columns

Example:

\[
\begin{pmatrix}
1 & 2 \\
5 & 6 \\
9 & 10
\end{pmatrix}
^T
=
\begin{pmatrix}
1 & 5 \\
2 & 6 \\
9 & 10
\end{pmatrix}
\]

The transposition turns a \(m \times n \) matrix into a \(n \times m \) matrix.
Matrix Multiplication

- Matrices A and B can be multiplied with each other, if the number of columns of $A_{m,n}$ matches the number of rows in $B_{n,o}$.

- The resulting matrix $C_{m,o}$ shares the number of rows from A and the number of columns from B.
Matrix Multiplication

- Matrices \(A \) and \(B \) can be multiplied with each other, if the number of columns of \(A_{m,n} \) matches the number of rows in \(B_{n,o} \).

- The resulting matrix \(C_{m,o} \) shares the number of rows from \(A \) and the number of columns from \(B \).

- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.

Multiply Row by Column

\[
A_{2,3} \cdot B_{3,3} = \begin{pmatrix} 3 & 6 & 5 \\ 4 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 3 & 8 \\ 1 & 2 & 10 \\ 7 & 3 & 2 \end{pmatrix} = \begin{pmatrix} _ & _ & _ \\ _ & _ & _ \end{pmatrix}
\]
Matrix Multiplication

- Matrices A and B can be multiplied with each other, if the number of columns of $A_{m,n}$ matches the number of rows in $B_{n,o}$.

- The resulting matrix $C_{m,o}$ shares the number of rows from A and the number of columns from B.

- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.

Multiply Row by Column

$$A_{2,3} \cdot B_{3,3} = \begin{pmatrix} 3 & 6 & 5 \\ 4 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 3 & 8 \\ 1 & 2 & 10 \\ 7 & 3 & 2 \end{pmatrix} = \begin{pmatrix} ? & ? & ? \\ ? & ? & ? \end{pmatrix}$$
Matrix Multiplication

- Matrices \mathbf{A} and \mathbf{B} can be multiplied with each other, if the number of columns of $\mathbf{A}_{m,n}$ matches the number of rows in $\mathbf{B}_{n,o}$.

- The resulting matrix $\mathbf{C}_{m,o}$ shares the number of rows from \mathbf{A} and the number of columns from \mathbf{B}.

- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.

Multiply Row by Column

\[
\mathbf{A}_{2,3} \cdot \mathbf{B}_{3,3} = \begin{pmatrix} 3 & 6 & 5 \\ 4 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 3 & 8 \\ 1 & 2 & 10 \\ 7 & 3 & 2 \end{pmatrix} = \begin{pmatrix} (3 \cdot 4 + 6 \cdot 1 + 5 \cdot 7) & - & - \\ - & - \end{pmatrix}
\]
Matrix Multiplication

- Matrices A and B can be multiplied with each other, if the number of columns of $A_{m,n}$ matches the number of rows in $B_{n,o}$.

- The resulting matrix $C_{m,o}$ shares the number of rows from A and the number of columns from B.

- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.

Multiply Row by Column

\[
A_{2,3} \cdot B_{3,3} = \begin{pmatrix} 3 & 6 & 5 \\ 4 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 3 & 8 \\ 1 & 2 & 10 \\ 7 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 53 & - & - \\ - & - & \end{pmatrix}
\]
Matrix Multiplication

- Matrices \mathbf{A} and \mathbf{B} can be multiplied with each other, if the number of columns of $\mathbf{A}_{m,n}$ matches the number of rows in $\mathbf{B}_{n,o}$.

- The resulting matrix $\mathbf{C}_{m,o}$ shares the number of rows from \mathbf{A} and the number of columns from \mathbf{B}.

- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.

Multiply Row by Column

$$
\mathbf{A}_{2,3} \cdot \mathbf{B}_{3,3} = \begin{pmatrix} 3 & 6 & 5 \\ 4 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 3 & 8 \\ 1 & 2 & 10 \\ 7 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 53 & ? & - \\ - & - & - \end{pmatrix}
$$
Matrix Multiplication

- Matrices \mathbf{A} and \mathbf{B} can be multiplied with each other, if the number of columns of $\mathbf{A}_{m,n}$ matches the number of rows in $\mathbf{B}_{n,o}$.

- The resulting matrix $\mathbf{C}_{m,o}$ shares the number of rows from \mathbf{A} and the number of columns from \mathbf{B}.

- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.

Multiply Row by Column

\[
\mathbf{A}_{2,3} \cdot \mathbf{B}_{3,3} = \begin{pmatrix} 3 & 6 & 5 \\ 4 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 3 & 8 \\ 1 & 2 & 10 \\ 7 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 53 \\ - \end{pmatrix} - \begin{pmatrix} 3 \cdot 3 + 6 \cdot 2 + 5 \cdot 3 \\ - \end{pmatrix} - \begin{pmatrix} - \end{pmatrix}
\]
Matrix Multiplication

- Matrices A and B can be multiplied with each other, if the number of columns of $A_{m,n}$ matches the number of rows in $B_{n,o}$.

- The resulting matrix $C_{m,o}$ shares the number of rows from A and the number of columns from B.

- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.

Multiply Row by Column

\[
A_{2,3} \cdot B_{3,3} = \begin{pmatrix} 3 & 6 & 5 \\ 4 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 3 & 8 \\ 1 & 2 & 10 \\ 7 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 53 & 36 & _ \\ _ & _ & _ \\ _ & _ & _ \end{pmatrix}
\]
Matrix Multiplication

- Matrices \(A \) and \(B \) can be multiplied with each other, if the number of columns of \(A_{m,n} \) matches the number of rows in \(B_{n,o} \).

- The resulting matrix \(C_{m,o} \) shares the number of rows from \(A \) and the number of columns from \(B \).

- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.

Multiply Row by Column

\[
A_{2,3} \cdot B_{3,3} = \begin{pmatrix} 3 & 6 & 5 \\ 4 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 3 & 8 \\ 1 & 2 & 10 \\ 7 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 53 & 36 & - \\ - & - & - \end{pmatrix}
\]
Matrix Multiplication

- Matrices A and B can be multiplied with each other, if the number of columns of $A_{m,n}$ matches the number of rows in $B_{n,o}$.

- The resulting matrix $C_{m,o}$ shares the number of rows from A and the number of columns from B.

- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.

Multiply Row by Column

$$A_{2,3} \cdot B_{3,3} = \begin{pmatrix} 3 & 6 & 5 \\ 4 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 3 & 8 \\ 1 & 2 & 10 \\ 7 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 53 & 36 \\ - & - \end{pmatrix} = \begin{pmatrix} 4 \times 8 + 2 \times 10 + 1 \times 2 \end{pmatrix}$$
Matrix Multiplication

- Matrices A and B can be multiplied with each other, if the number of columns of $A_{m,n}$ matches the number of rows in $B_{n,o}$.

- The resulting matrix $C_{m,o}$ shares the number of rows from A and the number of columns from B.

- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.

Multiply Row by Column

$$A_{2,3} \cdot B_{3,3} = \begin{pmatrix} 3 & 6 & 5 \\ 4 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 3 & 8 \\ 1 & 2 & 10 \\ 7 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 53 & 36 & - \\ - & - & 54 \end{pmatrix}$$
Matrix Multiplication

- Matrices \mathbf{A} and \mathbf{B} can be multiplied with each other, if the number of columns of $\mathbf{A}_{m,n}$ matches the number of rows in $\mathbf{B}_{n,o}$.

- The resulting matrix $\mathbf{C}_{m,o}$ shares the number of rows from \mathbf{A} and the number of columns from \mathbf{B}.

- Matrix multiplication is carried out by multiplying the row-vector of the first matrix with the column-vector of the second matrix.

Multiply Row by Column

\[
\mathbf{A}_{2,3} \cdot \mathbf{B}_{3,3} = \begin{pmatrix} 3 & 6 & 5 \\ 4 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 3 & 8 \\ 1 & 2 & 10 \\ 7 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 53 & 36 & 94 \\ 25 & 19 & 54 \end{pmatrix}
\]
The Numpy Module

- Numpy is part of SciPy the module for scientific programming

- It should have been installed with matplotlib

- It is usually imported like this:

  ```python
  import numpy as np
  ```
The Numpy Array

Numpy brings its own data structure the numpy array

```python
import numpy as np
#Arrays can be created from lists
array_example = np.array([1,6,7,9])
#Arrays can be created with arange
#An array with numbers from 4 to 5 and step size 0.2
array2 = np.arange(4,5,0.2) #5 is not in the array
print(array2) # [4.0 4.2 4.4 4.6 4.8]
```

Elements of an array can be manipulated simultaneously

```python
array3 = array2*array2 #For example with multiplication
print(array3)# [16.0 16.64 19.36 21.16 23.04]
```
Matplotlib and Numpy

- Plotting $\sin(x)$ from 0 to π with lists

```python
listX = []
listY = []
step_size = 0.5
for i in range(0, int(math.pi/step_size)):
    xValue = i*step_size
    listX.append(xValue)
    listY.append(math.sin(xValue))
plt.plot(listX, listY)
```

- Plotting $\sin(x)$ from 0 to π with numpy

```python
xValues = np.arange(0, math.pi, 0.5)
yValues = np.sin(xValues)
plt.plot(xValues, yValues)
```
Numpy Arrays as Matrices

Creating the following matrix: \(A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix} \)
Numpy Arrays as Matrices

- Creating the following matrix: $A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$

- In numpy a matrix can be created from a multi-dimensional list

```python
# This creates a 3x4 Matrix
A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
```
Numpy Arrays as Matrices

Creating the following matrix: \(A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix} \)

In numpy a matrix can be created from a multi-dimensional list

```python
# This creates a 3x4 Matrix
A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
```

Numpy treats such an array as a matrix

```python
arr_dim = A.shape  # Gives you the shape of your matrix
print(arr_dim)   # Prints (3,4)
# Access elements with indexing
single_number = A[1,3]  # 8, 2nd list, 4th element
num2 = A[0,1]   # 2, 1st list, 2nd element
```
Matrix Operations in Numpy

► Matrix Addition: \[
\begin{pmatrix}
1 & 2 & 3 \\
5 & 6 & 7
\end{pmatrix}
\]
\[
+ \begin{pmatrix}
3 & 5 & 1 \\
5 & -3 & 1
\end{pmatrix}
\]
\[
= \begin{pmatrix}
4 & 7 & 4 \\
10 & 3 & 8
\end{pmatrix}
\]

► In numpy code:

\[
A = \text{np.array}([[1,2,3], [5,6,7]])
\]
\[
B = \text{np.array}([[3,5,1], [5,-3,1]])
\]
\[
C = A + B
\]
\[
D = A - B \ #Subtraction \ works \ analogously
\]
\[
\text{print}(D) \ #\text{[[[-2 -3 2], [0 9 6]]}
\]
Matrix Operations in Numpy

▶ Matrix Multiplication:
\[
\begin{pmatrix}
1 & 2 & 3 \\
5 & 6 & 7
\end{pmatrix}
\times
\begin{pmatrix}
3 & 5 \\
5 & -3 \\
1 & 1
\end{pmatrix}
=
\begin{pmatrix}
16 & 2 \\
52 & 14
\end{pmatrix}
\]

▶ In numpy code:

```python
A = np.array([[1, 2, 3], [5, 6, 7]])
E = np.array([[3, 5], [5, -3], [1, 1]])
F = np.matmul(A, E)
print(F) # [[16, 2], [52, 14]]
```
Matrix Operations in Numpy

➤ Matrix Multiplication: \[
\begin{pmatrix}
1 & 2 & 3 \\
5 & 6 & 7
\end{pmatrix}
\begin{pmatrix}
3 & 5 \\
5 & -3 \\
1 & 1
\end{pmatrix}
=
\begin{pmatrix}
16 & 2 \\
52 & 14
\end{pmatrix}
\]

➤ In numpy code:

```python
A = np.array([[1,2,3], [5,6,7]])
E = np.array([[3,5], [5,-3],[1,1]])
F = np.matmul(A,E)
print(F) # [[16,2],[52,14]]
```

➤ Do not confuse with element-wise multiplication

```python
A = np.array([[1,2,3], [5,6,7]])
B = np.array([[3,5,1], [5,-3,1]])
G = A*B # [[3,10,3],[25,-18,7]]
```
Matrix Operations in Numpy

► It also works for vectors:

\[\langle v_1, v_2 \rangle = v_1^T v_2 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix} = 16 \]

► In numpy code:

```python
V1 = np.array([1,2,3])
V2 = np.array([3,5,1])
R = np.matmul(V1,V2)
print(R) # 16
```
Matrix Operations in Numpy

- It also works for vectors:

\[<v_1, v_2> = v_1^T v_2 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix} = 16 \]

- In numpy code:

```python
V1 = np.array([1, 2, 3])
V2 = np.array([3, 5, 1])
R = np.matmul(V1, V2)
print(R) # 16
```

- Or vectors and matrices if you want to
Other helpful Operations

- Transpose Matrices: \[A = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \end{pmatrix} \]
 \[A^T = \begin{pmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \end{pmatrix} \]

- In numpy:

 \[
 A = \text{np.array([[1,2,3], [5,6,7]])}
 \]
 \[
 H = A.T \ # \text{[[1,5], [2,6], [3,7]]}
 \]

- Element-wise summing across arrays:

 \[
 \text{sum} = \text{np.sum}(H) \ #24,
 \]
 \[
 V1 = \text{np.array([1,2,3])} \ #\text{works also for 1D-arrays}
 \]
 \[
 \text{sum}_v = \text{np.sum}(V1) \ #6
 \]
Images as Matrices

\[
\begin{pmatrix}
 x_{0,0} & x_{0,1} & x_{0,2} & x_{0,3} & x_{0,4} \\
 x_{1,0} & x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} \\
 x_{2,0} & x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4} \\
 x_{3,0} & x_{3,1} & x_{3,2} & x_{3,3} & x_{3,4} \\
 x_{4,0} & x_{4,1} & x_{4,2} & x_{4,3} & x_{4,4}
\end{pmatrix}
\]
Images as Matrices

$$\begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$
Images as Matrices

\[
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]
Images as Matrices

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0
\end{pmatrix}
\]
Images as Matrices

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\end{pmatrix}
\]
Convolution of Functions

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'\]
Convolution of Functions

\[(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x') \, dx'\]

Convolution of the Gaussian function with itself

\[X = -4\]
Convolution of Functions

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'\]

Convolution of the Gaussian function with itself

\[X = -3.5\]
Convolution of Functions

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x') g(x - x') \, dx'\]

Convolution of the Gaussian function with itself

\[X = -3\]
Convolution of Functions

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x') \, dx'\]

Convolution of the Gaussian function with itself

X = -2.5
Convolution of Functions

\[(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'
\]

Convolution of the Gaussian function with itself

\[X = -2\]
Convolution of Functions

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'\]

Convolution of the Gaussian function with itself

\[X = -1.5\]
Convolution of Functions

\[
(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x-x')dx'
\]

Convolution of the Gaussian function with itself

\[x = -1\]
Convolution of Functions

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x') \, dx'\]

Convolution of the Gaussian function with itself

\[X = -0.5\]
Convolution of Functions

\[(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'\]

Convolution of the Gaussian function with itself

\[X = 0\]
Convolution of Functions

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')\,dx'
\]

Convolution of the Gaussian function with itself

\[x = 0.5\]
Convolution of Functions

$$(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x') \, dx'$$

Convolution of the Gaussian function with itself

$X = 1$
Convolution of Functions

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')\,dx'\]

Convolution of the Gaussian function with itself

\[X = 1.5\]
Convolution of Functions

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'\]

Convolution of the Gaussian function with itself

X = 2
Convolution of Functions

\[(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')\,dx'\]

Convolution of the Gaussian function with itself

\[X = 2.5\]
Convolution of Functions

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x') \, dx'\]

Convolution of the Gaussian function with itself

\[X = 3\]
Convolution of Functions

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x') \, dx'
\]

Convolution of the Gaussian function with itself

\[X = 3.5\]
Convolution of Functions

\[(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'\]

Convolution of the Gaussian function with itself

\(X = 4\)
Convolution with the Rectangle Function

\[(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'\]
Convolution with the Rectangle Function

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'\]
Convolution with the Rectangle Function

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'\]
Convolution with the Rectangle Function

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'\]
Convolution with the Rectangle Function

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'\]

\[X = -2\]
Convolution with the Rectangle Function

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'$$

X = -1.5
Convolution with the Rectangle Function

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'\]
Convolution with the Rectangle Function

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'\]
Convolution with the Rectangle Function

\[
(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'
\]
Convolution with the Rectangle Function

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'\]
Convolution with the Rectangle Function

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'\]
Convolution with the Rectangle Function

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')\,dx'\]
Convolution with the Rectangle Function

\[(f * g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')\,dx'\]
Convolution with the Rectangle Function

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'\]
Convolution with the Rectangle Function

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x') \, dx'
\]

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.2 0.4 0.6 0.8 1 1.2

X = 3
Convolution with the Rectangle Function

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'\]

X = 3.5
Convolution with the Rectangle Function

\[(f \ast g)(x) = \int_{-\infty}^{\infty} f(x')g(x - x')dx'\]
Applying Filters to Images
Convolution with Matrices

Image

Edge Filter

-1 0 1
Convolution with Matrices

Edge Filter

Image
Convolution with Matrices

Image

Edge Filter

-1 0 1

-1 0 1
Convolution with Matrices

Image

Edge Filter

<table>
<thead>
<tr>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
</table>

| -1 | 0 | 1 |
Convolution with Matrices

Image

Edge Filter

-1 0 1

-1 0 1
Convolution with Matrices

Image

Edge Filter

-1 0 1

-1 0 1
Convolution with Matrices

Edge Filter

Image
Convolution with Matrices

Image

Edge Filter

-1 0 1

-1 0 1
Convolution with Matrices

Image

Edge Filter

-1 0 1

-1 0 1

10

10
1. **Outlook: Matrices and Scientific Programming**
 - Matrices Quick Summary
 - The Numpy Module
 - Matrix Calculation with Numpy

2. **Excursion: Object Oriented Programming**
 - What is OOP?
 - Example Project
 - Inheritance
 - Modules in Python

3. Tasks
Programming Paradigms

Procedural Programming

- A problem is solved by manipulating data structures through procedures
- The key is to write the right logic
- Efficiency is a main focus of procedural programming
Programming Paradigms

Procedural Programming

▶ A problem is solved by manipulating data structures through procedures
▶ The key is to write the right logic
▶ Efficiency is a main focus of procedural programming

Object oriented Programming

▶ A problem is solved by modeling it’s processes
▶ The key is to figure out the relevant entities and their relations
▶ Programming Logic is tightly coupled to entities
Classes vs. Objects

Class

Person

first name
last name
age
email
Classes vs. Objects

Class

Person
first name
last name
age
email

Objects (Instances)

Alice
Anderson
28
a.anders@gmail.com

Rob
Robertson
17
cool_dude@aol.com
Classes Bind Variables Together

▶ Instead of writing something like this

```python
#Alice’s attributes
alice_name = "Alice"
alice_last_name = "Anderson"
alice_age = 28
```
Classes Bind Variables Together

► Instead of writing something like this

```python
#Alice's attributes
alice_name = "Alice"
alice_last_name = "Anderson"
alice_age = 28
```

► Objects encapsulate multiple variables in one place

```python
#A Person-object variable
alice = Person("Alice","Anderson",28)
```
Classes are Advanced Data Types

- Object variables can be treated like simple types

```python
#Two Person-object variables
alice = Person("Alice","Anderson",28)
rob = Person("Rob","Robertson",17)
#Objects can be stored in lists
myPersonList = [] #I want to manage persons
myPersonList.append(rob)
#Objects can be arguments of self-defined functions
calculate_year_of_birth(alice)
```
Class Definition

A class needs to be defined

```python
class Person:  #This defines the class Name
    #The __init__ function is responsible for class creation and defines its’ attributes
    def __init__(self, first_name, last_name, age):
        #The passed values are stored in the class
        self.first_name = first_name
        self.last_name = last_name
        self.age = age
```

This is enough to create a class-object

```python
robbi = Person("Rob", "Robertson", 17)
```
Accessing Class Attributes

▶ Class attributes can be accessed via the ‘.’ operator

```python
robb = Person("Rob","Robertson",17)

f_name = robb.first_name  #"Rob"
l_name = robb.last_name   #"Robertson"
age = robb.age           #17
```

▶ Class attributes can also be assigned after initialization

```python
robb.age = 18  #As he gets older
robb.l_name = "Peterson"  #If he marries
```
Accessing Class Attributes

▶ Class attributes can be accessed via the ‘.’ operator

```python
robb = Person("Rob", "Robertson", 17)

f_name = robb.first_name  # "Rob"
l_name = robb.last_name  # "Robertson"
age = robb.age  # 17
```

▶ They can also be assigned after initialization

```python
robb.age = 18  # As he gets older
robb.l_name = "Peterson"  # If he marries
```
Objects and Functions

➤ We can use objects as function arguments

```python
# Definition
def print_info(person):
    print(person.first_name + " " + person.last_name + " is " + str(person.age) + " years old.")
```

Usage:

```
robby = Person("Rob", "Robertson", 17)
print_info(robby)
# This prints: "Rob Robertson is 17 years old"

alice = Person("Alice", "Anderson", 28)
print_info(alice)
# This prints: "Alice Anderson is 28 years old"
```
Objects and Functions

We can use objects as function arguments

#Definition

def print_info(person):
 print(person.first_name +" " +person.last_name +" is " +str(person.age) +" years old.")

Usage:

robbi = Person("Rob","Robertson",17)
print_info(robbi)
#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)
print_info(alice)
#This prints: "Alice Anderson is 28 years old"
Function Encapsulation

Functions can even be defined inside classes

```python
class Person:  #This defines the class Name
    #The __init__ function
    def __init__(self, first_name, last_name, age):
        #The passed values are stored in the class
        self.first_name = first_name
        self.last_name = last_name
        self.age = age

    #Our print_info function
    def print_info(self):
        #Note how the argument changed
        print(self.first_name + " " + self.last_name + " is
        " + str(self.age) + " years old.")
```
Function Encapsulation

▶ A function can be called directly from the object

robb = Person("Rob","Robertson",17)
robb.print_info()
#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)
alice.print_info()
#This prints: "Alice Anderson is 28 years old"
Function Encapsulation

- A function can be called directly from the object

```python
robbi = Person("Rob","Robertson",17)
robbi.print_info()
#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)
alice.print_info()
#This prints: "Alice Anderson is 28 years old"
```

- This way a potential programmer/user does not need to know the internal structure of the particular class, e.g. `list.append()`.
Course Management Program

- We want to write a program for the university
- It should give an overview over the different courses
- It should track each course, its lecturer and its students
Course Management Program

- We want to write a program for the university
- It should give an overview over the different courses
- It should track each course, its lecturer and its students

How would an OOP model look like?
Course Management Program

Course
name
year
id_number
lecturer
student_list
Course Management Program

Course
- name
- year
- id_number
- lecturer
- student_list

Lecturer
- first name
- last name
- age
- email
- bank_account
Course Management Program

Course
- name
- year
- id_number
- lecturer
- student_list

Lecturer
- first name
- last name
- age
- email
- bank_account

Student
- first name
- last name
- age
- email
- student_id
- grade
Example Code

The course class

```python
class Course: #This defines the class Name
    #The __init__ function
def __init__(self, name, year, id_number, lecturer):
    #The passed values are stored in the class
    self.name = name
    self.year = year
    self.id_number = id_number
    self.lecturer = lecturer
    self.student_list = [] #empty upon creation
```
Example Code

The lecturer class

```python
class Lecturer: #This defines the class Name
    #The __init__ function
    def __init__(self, first_name, last_name, age, email,
                 bank_account):
        #The passed values are stored in the class
        self.first_name = first_name
        self.last_name = last_name
        self.age = age
        self.email = email
        self.bank_account = bank_account
```
Example Code

Create the Course

```python
lecturer_jan = Lecturer("Jan","Tekuelve",30,"jan.
    ↝ tekuelve@ini.rub.de",1234567)
cscience_course = Course("Computer Science and
    ↝ Mathematics",2019,1234,lecturer_jan)
```
Example Code

Create the Course

```python
lecturer_jan = Lecturer("Jan", "Tekuevle", 30, "jan. tekuelve@ini.rub.de", 1234567)
cscience_course = Course("Computer Science and Mathematics", 2019, 1234, lecturer_jan)
```

At the end of the year access the bank account:

```python
c_bank_account = cscience_course.lecturer.bank_account
```
Example Code

Create the Course

```python
lecturer_jan = Lecturer("Jan", "Tekuelve", 30, "jan.tekuelve@ini.rub.de", 1234567)
cscience_course = Course("Computer Science and Mathematics", 2019, 1234, lecturer_jan)
```

At the end of the year access the bank account:

```python
c_bank_account = cscience_course.lecturer.bank_account
```

This works independent of course and lecturer
The Student Class

- This class looks similar to the lecturer

```python
class Student:  #This defines the class Name
    #The __init__ function
    def __init__(self, first_name, last_name, age, email, student_id):
        #The passed values are stored in the class
        self.first_name = first_name
        self.last_name = last_name
        self.age = age
        self.email = email
        self.student_id = student_id
        self.grade = -1
```
Code Redundancy

Course
- name
- year
- id_number
- lecturer
- student_list

Lecturer
- first name
- last name
- age
- email
- bank_account

Student
- first name
- last name
- age
- email
- student_id
- grade
Code Redundancy

Course
- name
- year
- id_number
- lecturer
- student_list

Lecturer
- first name
- last name
- age
- email
- bank_account

Student
- first name
- last name
- age
- email
- student_id
- grade
Code Redundancy

Course
- name
- year
- id_number
- lecturer
- student_list

Lecturer
- first name
- last name
- age
- email
- bank_account

Person
- first name
- last name
- age
- email

Student
- first name
- last name
- age
- email
- student_id
- grade
Code Redundancy

Course
- name
- year
- id_number
- lecturer
- student_list

Lecturer
- first name
- last name
- age
- email
- bank_account

Person
- first name
- last name
- age
- email

Student
- first name
- last name
- age
- email
- student_id
- grade
Code Redundancy

Course
- name
- year
- id_number
- lecturer
- student_list

Lecturer
- bank_account

Person
- first name
- last name
- age
- email

Student
- student_id
- grade
The Person Class

We will use the Class Person as Super-Class.

class Person: #This defines the class Name
 #The __init__ function
 def __init__(self, first_name, last_name, age, email):
 #The passed values are stored in the class
 self.first_name = first_name
 self.last_name = last_name
 self.age = age
 self.email = email
Inheritance

Lecturer and Student will inherit from Person

class Lecturer(Person): #Brackets declare inheritance
 #The __init__ function is overrriden
 def __init__(self,f_name,l_name,age,email,b_acc):
 #The super() calls the parent function
 super().__init__(f_name,l_name,age,email)
 self.bank_account = b_acc

class Student(Person): #Brackets declare inheritance
 #The __init__ function is overrriden
 def __init__(self,f_name,l_name,age,email,stud_id):
 super().__init__(f_name,l_name,age,email)
 self.student_id = stud_id
 self.grade = -1
Modifying the Parent Class

Functions of the parent class are available to child classes

```python
class Person: #This defines the class Name
    def __init__(self, first_name, last_name, age, email):
        #The passed values are stored in the class
        self.first_name = first_name
        self.last_name = last_name
        self.age = age
        self.email = email

    #Our print_info function
    def print_info(self): #Note how the argument changed
        print(self.first_name +" " +self.last_name +" is

                     " +str(self.age) +" years old."))
```
Using Parent Functions

Functions of the parent class are available to child classes

```python
student_rob = Student("Rob","Robertson",25,"rob.
   → robson@rub.de","108001024")
lecturer_jan = Lecturer("Jan","Tekuelve",30,"jan.
   → tekuelve@ini.rub.de",1234567)

student_rob.print_info()
lecturer_jan.print_info()
#Prints:
#Rob Robertson is 25 years old.
#Jan Tekuelve is 30 years old.
```
Completing the Example

The course needs to be able to add students

```python
#Inside the Course class
def enroll(self, student):
    self.student_list.append(student)
    #Enroll adds them to the course internal list
```

Minimal example:

```python
cscience_course = Course("Computer Science and Mathematics", 2019, 1234, lecturer_jan)
student_rob = Student("Rob", "Robertson", 25, "rob.robson@rub.de", "108001024")
cscience_course.enroll(student_rob)
```
Creating your own Python Modules

- Class definitions can be stored in separate module
- E.g. if you save the above class definitions in a file `unimanager.py`
Creating your own Python Modules

- Class definitions can be stored in separate module

- E.g. if you save the above class definitions in a file `unimanager.py`

- You can access the definitions in another script from the same folder:

```python
import unimanager
student_rob = unimanager.Student("Rob","Robertson",25,"rob.robson@rub.de","108001024")
```
Creating your own Python Modules

- Class definitions can be stored in separate module
- E.g. if you save the above class definitions in a file `unimanager.py`
- You can access the definitions in another script from the same folder:

```python
import unimanager
student_rob = unimanager.Student("Rob","Robertson",25,"rob.robson@rub.de","108001024")
```

- This allows for flexible re-usability of code
Advantages/Disadvantages of OOP

Advantages:

▶ Design Benefit: Real/World processes are easily transferable in code
▶ Modularity: Extending and reusing software is easy
▶ Software Maintenance: Modular code is easier to debug
Advantages/Disadvantages of OOP

Advantages:

▶ Design Benefit: Real/World processes are easily transferable in code
▶ Modularity: Extending and reusing software is easy
▶ Software Maintenance: Modular code is easier to debug

Disadvantages:

▶ Design Overhead: Modeling requires longer initial development time
▶ Originally OOP required more “coding”
Tasks

1. Download today's class definitions `unimanager.py` and create a separate script that uses this module to create a course, a lecturer and three sample students.
 - Enroll all students to the course.
 - After enrolling iterate through the student list to print the info of all enrolled students. You can access the student_list via the course object.
 - In the loop use the `print_info()` function.

2.* Add a `print_info()` function to the class definition of Course in `unimanager.py`. This function should print the course name, its lecturer and each student of the course with his/her student ID.
 - The function should be defined in the Course class and its only argument should be `self`.
 - The course name, the lecturer and its student_list can be accessed via the `self` keyword.
This concludes the Preparatory Course.

Any Questions or Feedback?