
Lecture 7 - Object Oriented Programming

Lecture 7
Object Oriented Programming

Jan Tekülve
jan.tekuelve@ini.rub.de

Computer Science andMathematics
Preparatory Course

22.10.2020

22.10.2020 1 / 41

Lecture 7 - Object Oriented Programming

Overview

1. Outlook: Matrices and Scientific Programming
ä Matrices Quick Summary
ä �eNumpyModule
ä Matrix Calculation with Numpy

2. Excursion: Object Oriented Programming
ä What is OOP?
ä Example Project
ä Inheritance
ä Modules in Python

3. Tasks

22.10.2020 2 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Definition
AMatrix Am,n is a rectangular array arranged inm rows and n columns.

I Example:

A3,4 =

1 2 3 4
5 6 7 8
9 10 11 12

I A single element in a matrix is usually denoted by ai,j, where i is the row
and j the column index. For example a2,3 = 7.

I Amatrix Am, n, wherem = n is called a squarematrix

I Amatrix that has only entries on the diagonal is called a diagonalmatrix

D3,3 =

1 0 0
0 6 0
0 0 4

 Special case identity matrix I3,3 =

1 0 0
0 1 0
0 0 1

22.10.2020 3 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Definition
AMatrix Am,n is a rectangular array arranged inm rows and n columns.

I Example:

A3,4 =

1 2 3 4
5 6 7 8
9 10 11 12

I A single element in a matrix is usually denoted by ai,j, where i is the row
and j the column index. For example a2,3 = 7.

I Amatrix Am, n, wherem = n is called a squarematrix

I Amatrix that has only entries on the diagonal is called a diagonalmatrix

D3,3 =

1 0 0
0 6 0
0 0 4

 Special case identity matrix I3,3 =

1 0 0
0 1 0
0 0 1

22.10.2020 3 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Definition
AMatrix Am,n is a rectangular array arranged inm rows and n columns.

I Example:

A3,4 =

1 2 3 4
5 6 7 8
9 10 11 12

I A single element in a matrix is usually denoted by ai,j, where i is the row
and j the column index. For example a2,3 = 7.

I Amatrix Am, n, wherem = n is called a squarematrix

I Amatrix that has only entries on the diagonal is called a diagonalmatrix

D3,3 =

1 0 0
0 6 0
0 0 4

 Special case identity matrix I3,3 =

1 0 0
0 1 0
0 0 1

22.10.2020 3 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Definition
AMatrix Am,n is a rectangular array arranged inm rows and n columns.

I Example:

A3,4 =

1 2 3 4
5 6 7 8
9 10 11 12

I A single element in a matrix is usually denoted by ai,j, where i is the row
and j the column index. For example a2,3 = 7.

I Amatrix Am, n, wherem = n is called a squarematrix

I Amatrix that has only entries on the diagonal is called a diagonalmatrix

D3,3 =

1 0 0
0 6 0
0 0 4

 Special case identity matrix I3,3 =

1 0 0
0 1 0
0 0 1

22.10.2020 3 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Addition/Subtraction

I It is possible to add twomatrices A and B together, if they have the same
number of rows and columns.

I Addition is carried out element-wise:

A3,2 + B3,2 =

1 2
5 6
9 10

+

4 2
3 1
8 2

 =

1+ 4 2+ 2
5+ 3 6+ 1
9+ 8 10+ 2

 =

 5 4
8 7
17 12

I Subtraction works analogously:

A3,2 − B3,2 =

1 2
5 6
9 10

−
4 2
3 1
8 2

 =

1− 4 2− 2
5− 3 6− 1
9− 8 10− 2

 =

−3 0
2 5
1 8

22.10.2020 4 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Addition/Subtraction

I It is possible to add twomatrices A and B together, if they have the same
number of rows and columns.

I Addition is carried out element-wise:

A3,2 + B3,2 =

1 2
5 6
9 10

+

4 2
3 1
8 2

 =

1+ 4 2+ 2
5+ 3 6+ 1
9+ 8 10+ 2

 =

 5 4
8 7
17 12

I Subtraction works analogously:

A3,2 − B3,2 =

1 2
5 6
9 10

−
4 2
3 1
8 2

 =

1− 4 2− 2
5− 3 6− 1
9− 8 10− 2

 =

−3 0
2 5
1 8

22.10.2020 4 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Addition/Subtraction

I It is possible to add twomatrices A and B together, if they have the same
number of rows and columns.

I Addition is carried out element-wise:

A3,2 + B3,2 =

1 2
5 6
9 10

+

4 2
3 1
8 2

 =

1+ 4 2+ 2
5+ 3 6+ 1
9+ 8 10+ 2

 =

 5 4
8 7
17 12

I Subtraction works analogously:

A3,2 − B3,2 =

1 2
5 6
9 10

−
4 2
3 1
8 2

 =

1− 4 2− 2
5− 3 6− 1
9− 8 10− 2

 =

−3 0
2 5
1 8

22.10.2020 4 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

ScalarMultiplication and Transposition

I Multiplication with scalar values is also applied element-wise:

A3,2 · 3 =

1 2
5 6
9 10

 · 3 =
1 · 3 2 · 3
5 · 3 6 · 3
9 · 3 10 · 3

 =

 3 6
15 18
27 30

I �e transposition AT of a matrix switches the roles of row and columns
Example:

AT3,2 =

1 2
5 6
9 10

T

=

(
1 5 9
2 6 10

)
�e transposition turns am× nmatrix into a n× mmatrix.

22.10.2020 5 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

ScalarMultiplication and Transposition

I Multiplication with scalar values is also applied element-wise:

A3,2 · 3 =

1 2
5 6
9 10

 · 3 =
1 · 3 2 · 3
5 · 3 6 · 3
9 · 3 10 · 3

 =

 3 6
15 18
27 30

I �e transposition AT of a matrix switches the roles of row and columns
Example:

AT3,2 =

1 2
5 6
9 10

T

=

(
1 5 9
2 6 10

)
�e transposition turns am× nmatrix into a n× mmatrix.

22.10.2020 5 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

MatrixMultiplication

I Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

I �e resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

I Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

22.10.2020 6 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

MatrixMultiplication

I Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

I �e resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

I Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3 · B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
_ _ _
_ _ _

)

22.10.2020 6 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

MatrixMultiplication

I Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

I �e resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

I Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3 · B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
? _ _
_ _ _

)

22.10.2020 6 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

MatrixMultiplication

I Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

I �e resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

I Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3 ·B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
(3 ∗ 4+ 6 ∗ 1+ 5 ∗ 7) _ _

_ _ _

)

22.10.2020 6 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

MatrixMultiplication

I Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

I �e resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

I Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3 · B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
53 _ _
_ _ _

)

22.10.2020 6 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

MatrixMultiplication

I Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

I �e resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

I Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3 · B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
53 ? _
_ _ _

)

22.10.2020 6 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

MatrixMultiplication

I Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

I �e resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

I Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3·B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
53 (3 ∗ 3+ 6 ∗ 2+ 5 ∗ 3) _
_ _ _

)

22.10.2020 6 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

MatrixMultiplication

I Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

I �e resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

I Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3 · B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
53 36 _
_ _ _

)

22.10.2020 6 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

MatrixMultiplication

I Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

I �e resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

I Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3 · B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
53 36 _
_ _ ?

)

22.10.2020 6 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

MatrixMultiplication

I Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

I �e resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

I Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3·B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
53 36 _
_ _ (4 ∗ 8+ 2 ∗ 10+ 1 ∗ 2)

)

22.10.2020 6 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

MatrixMultiplication

I Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

I �e resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

I Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3 · B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
53 36 _
_ _ 54

)

22.10.2020 6 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

MatrixMultiplication

I Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

I �e resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

I Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column

A2,3 · B3,3 =
(
3 6 5
4 2 1

)
·

4 3 8
1 2 10
7 3 2

 =

(
53 36 94
25 19 54

)

22.10.2020 6 / 41

Lecture 7 - Object Oriented Programming Outlook - �e NumpyModule

�eNumpyModule

I Numpy is part of SciPy themodule for scientific programming

I It should have been installed with matplotlib

I It is usually imported like this:

import numpy as np

22.10.2020 7 / 41

Lecture 7 - Object Oriented Programming Outlook - �e NumpyModule

�eNumpyArray

I Numpy brings its own data structure the numpy array

import numpy as np

#Arrays can be created from lists

array_example = np.array([1,6,7,9])

#Arrays can be created with arange

#An array with numbers from 4 to 5 and step size 0.2

array2 = np.arange(4,5,0.2) #5 is not in the array

print(array2) # [4.0 4.2 4.4 4.6 4.8]

I Elements of an array can be manipulated simultaneously

array3 = array2*array2 #For example with multiplication

print(array3)# [16.0 16.64 19.36 21.16 23.04]

22.10.2020 8 / 41

Lecture 7 - Object Oriented Programming Outlook - �e NumpyModule

Matplotlib andNumpy
I Plotting sin(x) from 0 to π with lists

listX=[]

listY=[]

step_size = 0.5

for i in range(0,int(math.pi/step_size)):

xValue = i*step_size

listX.append(xValue)

listY.append(math.sin(xValue))

plt.plot(listX,listY)

I Plotting sin(x) from 0 to π with numpy

xValues = np.arange(0,math.pi,0.5)

yValues = np.sin(xValues)

plt.plot(xValues,yValues)

22.10.2020 9 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

NumpyArrays asMatrices

I Creating the followingmatrix: A =

1 2 3 4
5 6 7 8
9 10 11 12

I In numpy amatrix can be created from amulti-dimensional list

This creates a 3x4 Matrix

A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

I Numpy treats such an array as a matrix

arr_dim = A.shape #Gives you the shape of your matrix

print(arr_dim) #Prints (3,4)

Access elements with indexing

single_number = A[1,3] #8, 2nd list,4th element

num2 = A[0,1] #2, 1st list, 2nd element

22.10.2020 10 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

NumpyArrays asMatrices

I Creating the followingmatrix: A =

1 2 3 4
5 6 7 8
9 10 11 12

I In numpy amatrix can be created from amulti-dimensional list

This creates a 3x4 Matrix

A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

I Numpy treats such an array as a matrix

arr_dim = A.shape #Gives you the shape of your matrix

print(arr_dim) #Prints (3,4)

Access elements with indexing

single_number = A[1,3] #8, 2nd list,4th element

num2 = A[0,1] #2, 1st list, 2nd element

22.10.2020 10 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

NumpyArrays asMatrices

I Creating the followingmatrix: A =

1 2 3 4
5 6 7 8
9 10 11 12

I In numpy amatrix can be created from amulti-dimensional list

This creates a 3x4 Matrix

A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

I Numpy treats such an array as a matrix

arr_dim = A.shape #Gives you the shape of your matrix

print(arr_dim) #Prints (3,4)

Access elements with indexing

single_number = A[1,3] #8, 2nd list,4th element

num2 = A[0,1] #2, 1st list, 2nd element

22.10.2020 10 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Matrix Operations inNumpy

I Matrix Addition:
(
1 2 3
5 6 7

)
+

(
3 5 1
5 −3 1

)
=

(
4 7 4
10 3 8

)
I In numpy code:

A = np.array([[1,2,3], [5,6,7]])

B = np.array([[3,5,1], [5,-3,1]])

C = A + B

D = A - B #Subtraction works analogously

print(D) #[[-2 -3 2],[0 9 6]]

22.10.2020 11 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Matrix Operations inNumpy

I Matrix Multiplication:
(
1 2 3
5 6 7

)
∗

3 5
5 −3
1 1

 =

(
16 2
52 14

)

I In numpy code:

A = np.array([[1,2,3], [5,6,7]])

E = np.array([[3,5], [5,-3],[1,1]])

F = np.matmul(A,E)

print(F) # [[16,2],[52,14]]

I Do not confuse with element-wise multiplication

A = np.array([[1,2,3], [5,6,7]])

B = np.array([[3,5,1], [5,-3,1]])

G = A*B # [[3,10,3],[25,-18,7]]

22.10.2020 12 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Matrix Operations inNumpy

I Matrix Multiplication:
(
1 2 3
5 6 7

)
∗

3 5
5 −3
1 1

 =

(
16 2
52 14

)

I In numpy code:

A = np.array([[1,2,3], [5,6,7]])

E = np.array([[3,5], [5,-3],[1,1]])

F = np.matmul(A,E)

print(F) # [[16,2],[52,14]]

I Do not confuse with element-wise multiplication

A = np.array([[1,2,3], [5,6,7]])

B = np.array([[3,5,1], [5,-3,1]])

G = A*B # [[3,10,3],[25,-18,7]]

22.10.2020 12 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Matrix Operations inNumpy

I It also works for vectors:

< v1, v2 >= v1Tv2 =
(
1 2 3

)
∗

35
1

 = 16

I In numpy code:

V1 = np.array([1,2,3])

V2 = np.array([3,5,1])

R = np.matmul(V1,V2)

print(R) # 16

I Or vectors andmatrices if you want to

22.10.2020 13 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Matrix Operations inNumpy

I It also works for vectors:

< v1, v2 >= v1Tv2 =
(
1 2 3

)
∗

35
1

 = 16

I In numpy code:

V1 = np.array([1,2,3])

V2 = np.array([3,5,1])

R = np.matmul(V1,V2)

print(R) # 16

I Or vectors andmatrices if you want to

22.10.2020 13 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Other helpful Operations

I Transpose Matrices: A =

(
1 2 3
5 6 7

)
AT =

1 5
2 6
3 7

I In numpy:

A = np.array([[1,2,3], [5,6,7]])

H = A.T # [[1,5],[2,6],[3,7]]

I Element-wise summing across arrays:

sum = np.sum(H) #24,

V1 = np.array([1,2,3]) #works also for 1D-arrays

sum_v = np.sum(V1) # 6

22.10.2020 14 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Images asMatrices

x0,0 x0,1 x0,2 x0,3 x0,4
x1,0 x1,1 x1,2 x1,3 x1,4
x2,0 x2,1 x2,2 x2,3 x2,4
x3,0 x3,1 x3,2 x3,3 x3,4
x4,0 x4,1 x4,2 x4,3 x4,4

22.10.2020 15 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Images asMatrices

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

22.10.2020 15 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Images asMatrices

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

22.10.2020 15 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Images asMatrices

1 0 0 0 1
0 0 1 0 0
0 0 0 0 0
0 1 0 1 0
0 0 1 0 0

22.10.2020 15 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Images asMatrices

1 0 0 0 1
0 0 1 0 0
0 0 0 0 0
0 1 0 1 0
0 0 1 0 0

22.10.2020 15 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

22.10.2020 16 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -4

22.10.2020 16 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -3.5

22.10.2020 16 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -3

22.10.2020 16 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -2.5

22.10.2020 16 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -2

22.10.2020 16 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -1.5

22.10.2020 16 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -1

22.10.2020 16 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -0.5

22.10.2020 16 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 0

22.10.2020 16 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 0.5

22.10.2020 16 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 1

22.10.2020 16 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 1.5

22.10.2020 16 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 2

22.10.2020 16 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 2.5

22.10.2020 16 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 3

22.10.2020 16 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 3.5

22.10.2020 16 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 4

22.10.2020 16 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolutionwith the Rectangle Function

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -4

22.10.2020 17 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolutionwith the Rectangle Function

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -3.5

22.10.2020 17 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolutionwith the Rectangle Function

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -3

22.10.2020 17 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolutionwith the Rectangle Function

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -2.5

22.10.2020 17 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolutionwith the Rectangle Function

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -2

22.10.2020 17 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolutionwith the Rectangle Function

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -1.5

22.10.2020 17 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolutionwith the Rectangle Function

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -1

22.10.2020 17 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolutionwith the Rectangle Function

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = -0.5

22.10.2020 17 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolutionwith the Rectangle Function

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 0

22.10.2020 17 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolutionwith the Rectangle Function

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 0.5

22.10.2020 17 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolutionwith the Rectangle Function

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 1

22.10.2020 17 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolutionwith the Rectangle Function

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 1.5

22.10.2020 17 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolutionwith the Rectangle Function

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 2

22.10.2020 17 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolutionwith the Rectangle Function

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 2.5

22.10.2020 17 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolutionwith the Rectangle Function

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 3

22.10.2020 17 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolutionwith the Rectangle Function

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 3.5

22.10.2020 17 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolutionwith the Rectangle Function

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1 0 1 2 3 4 5

X = 4

22.10.2020 17 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Applying Filters to Images

22.10.2020 18 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

ConvolutionwithMatrices

10-1

Image

Edge Filter

22.10.2020 19 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

ConvolutionwithMatrices

10-1

Image

Edge Filter

10-1

22.10.2020 19 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

ConvolutionwithMatrices

10-1

Image

Edge Filter

10-1

22.10.2020 19 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

ConvolutionwithMatrices

10-1

Image

Edge Filter

10-1

22.10.2020 19 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

ConvolutionwithMatrices

10-1

Image

Edge Filter

10-1

22.10.2020 19 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

ConvolutionwithMatrices

10-1

Image

Edge Filter

10-1

22.10.2020 19 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

ConvolutionwithMatrices

10-1

Image

Edge Filter

10-1

22.10.2020 19 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

ConvolutionwithMatrices

10-1

Image

Edge Filter

10-1

22.10.2020 19 / 41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

ConvolutionwithMatrices

10-1

Image

Edge Filter

10-1

22.10.2020 19 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming

1. Outlook: Matrices and Scientific Programming
ä Matrices Quick Summary
ä �eNumpyModule
ä Matrix Calculation with Numpy

2. Excursion: Object Oriented Programming
ä What is OOP?
ä Example Project
ä Inheritance
ä Modules in Python

3. Tasks

22.10.2020 20 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Programming Paradigms

Procedural Programming

I A problem is solved by
manipulating data structures
through procedures

I �e key is to write the right logic

I Efficiency is a main focus of
procedural programming

Object oriented Programming

I A problem is solved by modeling
it’s processes

I �e key is to figure out the
relevant entities and their
relations

I Programming Logic is tightly
coupled to entities

22.10.2020 21 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Programming Paradigms

Procedural Programming

I A problem is solved by
manipulating data structures
through procedures

I �e key is to write the right logic

I Efficiency is a main focus of
procedural programming

Object oriented Programming

I A problem is solved by modeling
it’s processes

I �e key is to figure out the
relevant entities and their
relations

I Programming Logic is tightly
coupled to entities

22.10.2020 21 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Classes vs. Objects

Person

first name
last name
age
email

Class

22.10.2020 22 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Classes vs. Objects

Person
first name
last name
age
email

Class Objects (Instances)

Alice
Anderson

28
a.anders@gmail.com

Rob
Robertson

17
cool_dude@aol.com

22.10.2020 22 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Classes Bind Variables Together

I Instead of writing something like this

#Alice's attributes

alice_name = "Alice"

alice_last_name = "Anderson"

alice_age = 28

I Objects encapsulate multiple variables in one place

#A Person-object variable

alice = Person("Alice","Anderson",28)

22.10.2020 23 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Classes Bind Variables Together

I Instead of writing something like this

#Alice's attributes

alice_name = "Alice"

alice_last_name = "Anderson"

alice_age = 28

I Objects encapsulate multiple variables in one place

#A Person-object variable

alice = Person("Alice","Anderson",28)

22.10.2020 23 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Classes are AdvancedData Types

I Object variables can be treated like simple types

#Two Person-object variables

alice = Person("Alice","Anderson",28)

rob = Person("Rob","Robertson",17)

#Objects can be stored in lists

myPersonList = [] #I want to manage persons

myPersonList.append(rob)

#Objects can be arguments of self-defined functions

calculate_year_of_birth(alice)

22.10.2020 24 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Class Definition

I A class needs to be defined

class Person: #This defines the class Name

#The __init__ function is responsible for class creation

↪→ and defines its' attributes

def __init__(self, first_name,last_name,age):

#The passed values are stored in the class

self.first_name = first_name

self.last_name = last_name

self.age = age

I �is is enough to create a class-object

robby = Person("Rob","Robertson",17)

22.10.2020 25 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Accessing Class Attributes

I Class attributes can be accessed via the ‘.’ operator

robby = Person("Rob","Robertson",17)

f_name = robby.first_name #"Rob"

l_name = robby.last_name #"Robertson"

age = robby.age #17

I �ey can also be assigned after initialization

robby.age = 18 #As he gets older

robby.l_name = "Peterson" #If he marries

22.10.2020 26 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Accessing Class Attributes

I Class attributes can be accessed via the ‘.’ operator

robby = Person("Rob","Robertson",17)

f_name = robby.first_name #"Rob"

l_name = robby.last_name #"Robertson"

age = robby.age #17

I �ey can also be assigned after initialization

robby.age = 18 #As he gets older

robby.l_name = "Peterson" #If he marries

22.10.2020 26 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Objects and Functions

I We can use objects as function arguments

#Definition

def print_info(person):

print(person.first_name +" " +person.last_name +"

↪→ is " +str(person.age) +" years old.")

I Usage:

robby = Person("Rob","Robertson",17)

print_info(robby)

#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)

print_info(alice)

#This prints: "Alice Anderson is 28 years old"

22.10.2020 27 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Objects and Functions

I We can use objects as function arguments

#Definition

def print_info(person):

print(person.first_name +" " +person.last_name +"

↪→ is " +str(person.age) +" years old.")

I Usage:

robby = Person("Rob","Robertson",17)

print_info(robby)

#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)

print_info(alice)

#This prints: "Alice Anderson is 28 years old"

22.10.2020 27 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Function Encapsulation

I Functions can even be defined inside classes

class Person: #This defines the class Name

#The __init__ function

def __init__(self, first_name,last_name,age):

#The passed values are stored in the class

self.first_name = first_name

self.last_name = last_name

self.age = age

#Our print_info function

def print_info(self): #Note how the argument changed

print(self.first_name +" " +self.last_name +" is

↪→ " +str(self.age) +" years old.")

22.10.2020 28 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Function Encapsulation

I A function can be called directly from the object

robby = Person("Rob","Robertson",17)

robby.print_info()

#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)

alice.print_info()

#This prints: "Alice Anderson is 28 years old"

I �is way a potential programmer/user does not need to know the
internal structure of the particular class, e.g. list.append().

22.10.2020 28 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Function Encapsulation

I A function can be called directly from the object

robby = Person("Rob","Robertson",17)

robby.print_info()

#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)

alice.print_info()

#This prints: "Alice Anderson is 28 years old"

I �is way a potential programmer/user does not need to know the
internal structure of the particular class, e.g. list.append().

22.10.2020 28 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

CourseManagement Program

I Wewant to write a program for the university

I It should give an overview over the different courses

I It should track each course, its lecturer and its students

Howwould anOOPmodel look like?

22.10.2020 29 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

CourseManagement Program

I Wewant to write a program for the university

I It should give an overview over the different courses

I It should track each course, its lecturer and its students

Howwould anOOPmodel look like?

22.10.2020 29 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

CourseManagement Program

Course

name
year
id_number
lecturer
student_list

22.10.2020 29 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

CourseManagement Program

Course

name
year
id_number
lecturer
student_list

Lecturer

first name
last name
age
email
bank_account

22.10.2020 29 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

CourseManagement Program

Course

name
year
id_number
lecturer
student_list

Lecturer

first name
last name
age
email
bank_account

Student

first name
last name
age
email
student_id
grade

22.10.2020 29 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Example Code

I �e course class

class Course: #This defines the class Name

#The __init__ function

def __init__(self, name,year,id_number,lecturer):

#The passed values are stored in the class

self.name = name

self.year = year

self.id_number = id_number

self.lecturer = lecturer

self.student_list = [] #empty upon creation

22.10.2020 30 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Example Code

I �e lecturer class

class Lecturer: #This defines the class Name

#The __init__ function

def __init__(self, first_name,last_name,age,email,

↪→ bank_account):

#The passed values are stored in the class

self.first_name = first_name

self.last_name = last_name

self.age = age

self.email = email

self.bank_account = bank_account

22.10.2020 30 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Example Code

I Create the Course

lecturer_jan = Lecturer("Jan","Tekuelve",30,"jan.

↪→ tekuelve@ini.rub.de",1234567)

cscience_course = Course("Computer Science and

↪→ Mathematics",2019,1234,lecturer_jan)

I At the end of the year access the bank account:

c_bank_account = cscience_course.lecturer.bank_account

I �is works independent of course and lecturer

22.10.2020 30 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Example Code

I Create the Course

lecturer_jan = Lecturer("Jan","Tekuelve",30,"jan.

↪→ tekuelve@ini.rub.de",1234567)

cscience_course = Course("Computer Science and

↪→ Mathematics",2019,1234,lecturer_jan)

I At the end of the year access the bank account:

c_bank_account = cscience_course.lecturer.bank_account

I �is works independent of course and lecturer

22.10.2020 30 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Example Code

I Create the Course

lecturer_jan = Lecturer("Jan","Tekuelve",30,"jan.

↪→ tekuelve@ini.rub.de",1234567)

cscience_course = Course("Computer Science and

↪→ Mathematics",2019,1234,lecturer_jan)

I At the end of the year access the bank account:

c_bank_account = cscience_course.lecturer.bank_account

I �is works independent of course and lecturer

22.10.2020 30 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

�eStudent Class

I �is class looks similar to the lecturer

class Student: #This defines the class Name

#The __init__ function

def __init__(self, first_name,last_name,age,email,

↪→ student_id):

#The passed values are stored in the class

self.first_name = first_name

self.last_name = last_name

self.age = age

self.email = email

self.student_id = student_id

self.grade = -1

22.10.2020 31 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Code Redundancy

Course

name
year
id_number
lecturer
student_list

Lecturer

first name
last name
age
email
bank_account

Student

first name
last name
age
email
student_id
grade

22.10.2020 32 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Code Redundancy

Course
name
year
id_number
lecturer
student_list

Lecturer
first name
last name
age
email
bank_account

Student
first name
last name
age
email
student_id
grade

22.10.2020 32 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Code Redundancy

Course
name
year
id_number
lecturer
student_list

Lecturer
first name
last name
age
email
bank_account

Student
first name
last name
age
email
student_id
grade

Person
first name
last name
age
email

22.10.2020 32 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Code Redundancy

Course
name
year
id_number
lecturer
student_list

Lecturer
first name
last name
age
email
bank_account

Student
first name
last name
age
email
student_id
grade

Person
first name
last name
age
email

22.10.2020 32 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Code Redundancy

Course
name
year
id_number
lecturer
student_list

Lecturer
bank_account

Student
student_id
grade

Person
first name
last name
age
email

22.10.2020 32 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

�ePerson Class

I Wewill use the Class Person as Super-Class

class Person: #This defines the class Name

#The __init__ function

def __init__(self, first_name,last_name,age,email):

#The passed values are stored in the class

self.first_name = first_name

self.last_name = last_name

self.age = age

self.email = email

22.10.2020 33 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Inheritance
I Lecturer and Student will inherit from Person

class Lecturer(Person): #Brackets declare inheritance

#The __init__ function is overrriden

def __init__(self,f_name,l_name,age,email,b_acc):

#The super() calls the parent function

super().__init__(f_name,l_name,age,email)

self.bank_account = b_acc

class Student(Person): #Brackets declare inheritance

#The __init__ function is overrriden

def __init__(self,f_name,l_name,age,email,stud_id):

super().__init__(f_name,l_name,age,email)

self.student_id = stud_id

self.grade = -1

22.10.2020 34 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Modifiying the Parent Class

I Functions of the parent class are available to child classes

class Person: #This defines the class Name

def __init__(self, first_name,last_name,age,email):

#The passed values are stored in the class

self.first_name = first_name

self.last_name = last_name

self.age = age

self.email = email

#Our print_info function

def print_info(self): #Note how the argument changed

print(self.first_name +" " +self.last_name +" is

↪→ " +str(self.age) +" years old.")

22.10.2020 35 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Using Parent Functions

I Functions of the parent class are available to child classes

student_rob = Student("Rob","Robertson",25,"rob.

↪→ robson@rub.de","108001024")

lecturer_jan = Lecturer("Jan","Tekuelve",30,"jan.

↪→ tekuelve@ini.rub.de",1234567)

student_rob.print_info()

lecturer_jan.print_info()

#Prints:

#Rob Robertson is 25 years old.

#Jan Tekuelve is 30 years old.

22.10.2020 36 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Completing the Example

I �e course needs to be able to add students

#Inside the Course class

def enroll(self,student):

self.student_list.append(student)

#Enroll adds them to the course internal list

I Minimal example:

cscience_course = Course("Computer Science and

↪→ Mathematics",2019,1234,lecturer_jan)

student_rob = Student("Rob","Robertson",25,"rob.

↪→ robson@rub.de","108001024")

cscience_course.enroll(student_rob)

22.10.2020 37 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Modules in Python

Creating your ownPythonModules

I Class definitions can be stored in separate module

I E.g. if you save the above class definitions in a file unimanager.py

I You can access the definitions in another script from the same folder:

import unimanager

student_rob = unimanager.Student("Rob","Robertson",25,"

↪→ rob.robson@rub.de","108001024")

I �is allows for flexible re-usability of code

22.10.2020 38 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Modules in Python

Creating your ownPythonModules

I Class definitions can be stored in separate module

I E.g. if you save the above class definitions in a file unimanager.py

I You can access the definitions in another script from the same folder:

import unimanager

student_rob = unimanager.Student("Rob","Robertson",25,"

↪→ rob.robson@rub.de","108001024")

I �is allows for flexible re-usability of code

22.10.2020 38 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Modules in Python

Creating your ownPythonModules

I Class definitions can be stored in separate module

I E.g. if you save the above class definitions in a file unimanager.py

I You can access the definitions in another script from the same folder:

import unimanager

student_rob = unimanager.Student("Rob","Robertson",25,"

↪→ rob.robson@rub.de","108001024")

I �is allows for flexible re-usability of code

22.10.2020 38 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Modules in Python

Advantages/Disadvantages of OOP

Advantages:

I Design Benefit: Real/World processes are easily transferable in code

I Modularity: Extending and reusing software is easy

I Software Maintenance: Modular code is easier to debug

Disadvantages:

I Desing Overhead: Modeling requires longer initial development time

I Originally OOP required more “coding”

22.10.2020 39 / 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Modules in Python

Advantages/Disadvantages of OOP

Advantages:

I Design Benefit: Real/World processes are easily transferable in code

I Modularity: Extending and reusing software is easy

I Software Maintenance: Modular code is easier to debug

Disadvantages:

I Desing Overhead: Modeling requires longer initial development time

I Originally OOP required more “coding”

22.10.2020 39 / 41

Lecture 7 - Object Oriented Programming Tasks

Tasks

1. Download todays class definitions unimanager.py and create a separate
script that uses this module to create a course, a lecturer and three
sample students.
I Enroll all students to the course.
I After enrolling iterate through the student list to print the info of all

enrolled students. You can access the student_list via the course object.
I In the loop use the print_info() function.

2.* Add a print_info() function to the class definition of Course in
unimanager.py. �is function should print the course name, its lecturer
and each student of the course with his/her student ID.
I �e function should be defined in the Course class and its only argument

should be self
I �e course name, the lecturer and its student_list can be accessed via the

self keyword.

22.10.2020 40 / 41

Lecture 7 - Object Oriented Programming

�is concludes the Preparatory Course.

AnyQuestions or Feedback?

22.10.2020 41 / 41

	Outlook: Matrices and Scientific Programming
	Matrices Quick Summary
	The Numpy Module
	Matrix Calculation with Numpy

	Excursion: Object Oriented Programming
	What is OOP?
	Example Project
	Inheritance
	Modules in Python

	Tasks
	

