Lecture 7
Object Oriented Programming

Jan Tekiilve

jan.tekuelve@ini.rub.de

Computer Science and Mathematics
Preparatory Course

22.10.2020

22.10.2020 1/41

Overview

1. Outlook: Matrices and Scientific Programming
» Matrices Quick Summary
» The Numpy Module
» Matrix Calculation with Numpy

2. Excursion: Object Oriented Programming
» What is OOP?
» Example Project
» Inheritance
» Modules in Python

3. Tasks

22.10.2020 2/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Definition

A Matrix A,, , is a rectangular array arranged in m rows and n columns.

> Example:

1 2 3 4
A374 - 5 6 7 8
9 10 11 12

22.10.2020 3/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Definition
A Matrix A,, , is a rectangular array arranged in m rows and n columns.
> Example:
1 2 3 4
A374 - 5 6 7 8
9 10 11 12

» Asingle element in a matrix is usually denoted by a; ;, where i is the row
andj the column index. For example a, 3 = 7.

22.10.2020 3/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Definition
A Matrix A,, , is a rectangular array arranged in m rows and n columns.
> Example:
1 2 3 4
A374 - 5 6 7 8
9 10 11 12

» Asingle element in a matrix is usually denoted by a; ;, where i is the row
andj the column index. For example a, 3 = 7.

» A matrix Ay, n, where m = nis called a square matrix

22.10.2020 3/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Definition
A Matrix A,, , is a rectangular array arranged in m rows and n columns.
> Example:
1 2 3 4
A374 - 5 6 7 8
9 10 11 12

» Asingle element in a matrix is usually denoted by a; ;, where i is the row
andj the column index. For example a, 3 = 7.

» A matrix Ay, n, where m = nis called a square matrix

» A matrix that has only entries on the diagonal is called a diagonal matrix

1 0 O 1 0 O
D;;= |0 6 O] Specialcaseidentity matrixI;; = [0 1 O
O 0 4 0O 0 1

22.10.2020 3/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Addition/Subtraction

» Itis possible to add two matrices A and B together, if they have the same
number of rows and columns.

22.10.2020 4/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Addition/Subtraction

» Itis possible to add two matrices A and B together, if they have the same
number of rows and columns.

» Addition is carried out element-wise:

1 2 4 2 1+4 242 5 4
A, +B,=|5 6|+ (3 1|=[5+3 6+1]|=1[8 7
9 10 8 2 9+8 1042 17 12

22.10.2020 4/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Addition/Subtraction

» Itis possible to add two matrices A and B together, if they have the same
number of rows and columns.

» Addition is carried out element-wise:

1 2 4 2 1+4 2+2 5 4
A+ B, =5 6| +([3 1|=[54+43 6+1]|=(8 7
9 10 2 9+8 10+2 17 12
» Subtraction works analogously:
2 4 2 1—4 2-2 -3 0
A, —B,=|5 6|3 1|=(5-3 6-1]=[2 5
9 10 2 9—-8 10—-2 1

22.10.2020 4/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Scalar Multiplication and Transposition

» Multiplication with scalar values is also applied element-wise:

2 1-3 2.3 36
A, 3=1|5 6|-3=[53 6-3|=[15 18
9 10 9.3 10-3 27 30

22.10.2020 5/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Scalar Multiplication and Transposition

» Multiplication with scalar values is also applied element-wise:

2 1-3 2.3 36
A, 3=1|5 6|-3=[53 6-3|=[15 18
9 10 9.3 10-3 27 30

» The transposition AT of a matrix switches the roles of row and columns

Example:
T
1 2
1 5 9
Al =[5 & :<)
’ 2 6 10
9 10

The transposition turns a m X n matrix into a n X m matrix.

22.10.2020 5/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Multiplication

» Matrices A and B can be multiplied with each other, if the number of
columns of A,, , matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

22.10.2020 6/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Multiplication
» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.
Multiply Row by Column

3 6 5 4 3 8
mmo= (123 (03 8) (-)
7 3 2 - T T

22.10.2020 6/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Multiplication
» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.
Multiply Row by Column

4 3 8
3 65 ?
(103 (12 8] (-)
7 3 2 - T T

22.10.2020 6/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Multiplication
» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.

Multiply Row by Column
4 3 8
A“.Bsa_(z. 6 s>' 1 2 10 _<(3*4—|—6*1—|—5*7) _ _)
’ ’ 4 2 1 _ _
7 3 2

22.10.2020 6/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Multiplication
» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.
Multiply Row by Column

4 3 8
3 6 5 53
A2,3'B3,3:<4 2 1)' 1 2 10 :< - _>
7 3 2 - T =

22.10.2020 6/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Multiplication
» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.
Multiply Row by Column

4
3 6 5 53 7
Az,3’33,3=<4 5 1>' 1 2 10 :< —>
7 3 2 - T =

22.10.2020 6/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Multiplication

» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.

Multiply Row by Column
4 3 8
A23-B33:<3 6 s)' L 2 10 :<53 (3%3+6%2+5%3) _>
’ ’ 4 2 1 _ _ _
7 3 2

22.10.2020 6/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Multiplication
» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.
Multiply Row by Column

4 3
3 6 5 53 36
Az,3’33,3=<4 5 1>- 1 2 10 :< —>
7 3 2 - T T

22.10.2020 6/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Multiplication
» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.

Multiply Row by Column
_ (53 36 _)
- ?
2 -

22.10.2020 6/41

w N W
—
o

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Multiplication

» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.

Multiply Row by Column

3 8
AZB‘B33:365'1210:5336 _
o 421)\, 5, _ _ (4x8+4+2x10+1%x2)

22.10.2020 6/41

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Multiplication

» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.
Multiply Row by Column

4 8
3 6 5
A3 B33 = 4 2 1) 1
7

’ 53 36 _
) R)
3 2 - -

22.10.2020 6/41

—
o

Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Multiplication
» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.
Multiply Row by Column

4 3 8
3 6 5 53 36 94
A23'333: . 1 2 10 -
’ ’ 4 2 1 7 3 25 19 54

22.10.2020 6/41

Lecture 7 - Object Oriented Programming Outlook - The Numpy Module

The Numpy Module

NumPy

» Numpy is part of SciPy the module for scientific programming
» It should have been installed with matplotlib

» Itis usually imported like this:

import numpy as np

22.10.2020 7/ 41

Lecture 7 - Object Oriented Programming Outlook - The Numpy Module
The Numpy Array

» Numpy brings its own data structure the numpy array

import numpy as np

#Arrays can be created from lists

array_example = np.array([1,6,7,9])

#Arrays can be created with arange

#An array with numbers from 4 to 5 and step size 0.2
array2 = np.arange(4,5,0.2) #5 is not in the array
print(array2) # [4.0 4.2 4.4 4.6 4.8]

» Elements of an array can be manipulated simultaneously

array3 = array2*array2 #For example with multiplication
print(array3)# [16.0 16.64 19.36 21.16 23.04]

22.10.2020 8/41

Lecture 7 - Object Oriented Programming Outlook - The Numpy Module

Matplotlib and Numpy

» Plotting sin(x) from O to 7 with lists

listX=[]

listY=[]

step_size = 0.5

for i in range(O,int(math.pi/step_size)):

xValue = i*step_size

listX.append(xValue)
listY.append(math.sin(xValue))

plt.plot(listX,listY)

» Plotting sin(x) from O to 7 with numpy

xValues
yValues

= np.arange(O,math.pi,0.5)
= np.sin(xValues)

plt.plot(xValues,yValues)

22.10.2020 9/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Numpy Arrays as Matrices

1 2 3 4
» Creating the following matrix:A= (5 6 7 8
9 10 11 12

22.10.2020 10/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Numpy Arrays as Matrices

1 2 3 4
» Creating the following matrix:A= (5 6 7 8
9 10 11 12

» Innumpy a matrix can be created from a multi-dimensional list

This creates a 3x4 Matrix
A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]1])

22.10.2020 10/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Numpy Arrays as Matrices

1 2 3 4
» Creating the following matrix:A= (5 6 7 8
9 10 11 12

» Innumpy a matrix can be created from a multi-dimensional list

This creates a 3x4 Matrix
A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]1])

» Numpy treats such an array as a matrix

arr_dim = A.shape #Gives you the shape of your matrix
print(arr_dim) #Prints (3,4)

Access elements with indexing

single_number = A[1,3] #8, 2nd list,4th element

num2 = A[0,1] #2, 1st list, 2nd element

22.10.2020 10/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Matrix Operations in Numpy

» Matrix Addition: 123 + 305 1) _ (47 4
5 6 7 5 =3 1 10 3 8

» Innumpy code:

A = np.array([[1,2,3], [5,6,7]11)

B = np.array([[3,5,1], [5,-3,111)
C=A+B

D = A - B #Subtraction works analogously
print(D) #[[-2 -3 2],[0 9 6]]

22.10.2020 11/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Matrix Operations in Numpy

3
» Matrix Multiplication: L2 3, 5 =3 = 16 2
5 6 7 52 14

» In numpy code:

A = np.array([[1,2,3], [5,6,7]11)

E = np.array([[3,5], [5,-31,[1,111)
F = np.matmul (A,E)

print(F) # [[16,2],[52,14]]

22.10.2020 12 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Matrix Operations in Numpy

3
. T 1 2 3 16 2
» Matrix Multiplication: x |5 =3] =
5 6 7 52 14

» In numpy code:

A = np.array([[1,2,3], [5,6,711)

E = np.array([[3,5], [5,-31,[1,111)
F = np.matmul (A,E)

print(F) # [[16,2],[52,14]]

» Do not confuse with element-wise multiplication
A = np.array([[1,2,3], [5,6,711)
B = np.array([[3,5,1], [5,-3,1]1])
G = A*B # [[3,10,3],[25,-18,7]]

22.10.2020 12 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Matrix Operations in Numpy

» It also works for vectors:

3
< V1,V >= V1TV2 = (1 2 3) * | 5] =16
1

» Innumpy code:

V1 = np.array([1,2,3])
V2 = np.array([3,5,1])
R = np.matmul(V1,V2)
print(R) # 16

22.10.2020

13/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Matrix Operations in Numpy

» It also works for vectors:

3
< V1,V >= V1TV2 = (1 2 3) * | 5] =16
1

» Innumpy code:

V1 = np.array([1,2,3])
V2 = np.array([3,5,1])
R = np.matmul(V1,V2)
print(R) # 16

» Or vectors and matrices if you want to

22.10.2020

13/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Other helpful Operations

15

. 1 2 3
» Transpose Matrices: A = (5 p 7) A= |2 6
3 7

» In numpy:

A
H

np.array([[1,2,3], [5,6,711)
A.T # [[1,5],[2,6],[3,7]]

» Element-wise summing across arrays:

sum = np.sum(H) #24,
V1 = np.array([1,2,3]) #works also for 1D-arrays
sum_v = np.sum(V1) # 6

22.10.2020 14 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Images as Matrices

Xo,0 Xo,1 Xop2 Xo3 Xos4
X0 X111 X12 X13 X14
X2,0 X21 X2 X23 X4
X3,0 X31 X32 X33 X34
X40 X41 X42 Xa43 X44

22.10.2020 15/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Images as Matrices

O O O OO
O O O OO
O O O O O
O O O O O
O O O OO

22.10.2020 15/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Images as Matrices

O O O OO
O O O OO
O O O O O
O O O O O
O O O O O

22.10.2020 15/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Images as Matrices

O O O O +~
O~ O O O
— O O —~ O
O~ O O O
O O O O+~

22.10.2020 15/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Images as Matrices

O O O O+
O~ O O O
= O O ~ O
O~ O OO
O O O O+

22.10.2020 15/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

Frow = [gt

22.10.2020 16 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

Feotm = [fo)gtx—)¢

Convolution of the Gaussian function with itself

1.2 T T T T T T T T T

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020

16 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

Feotm = [fo)gtx—)¢

Convolution of the Gaussian function with itself

1.2 T T T T T T T T T

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020

16 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

Feotm = [fo)gtx—)¢

Convolution of the Gaussian function with itself

1.2 T T T T T T T T T

0.8 [4

0.6 - B

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020 16 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

Feotm = [fo)gtx—)¢

Convolution of the Gaussian function with itself

1.2 T T T T T T T T T

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020

16 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

Feotm = [fo)gtx—)¢

Convolution of the Gaussian function with itself

1.2 T T T T T T T T T

0.8 [4

0.6 - B

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020 16 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

Feotm = [fo)gtx—)¢

Convolution of the Gaussian function with itself

1.2 T T T T T T T T T

0.8 [4

0.6 - B

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020 16 /41

Pt SRl el Dl Buterictnlnli- il Outlook - Matrix Calculation with Numpy

Convolution of Functions

Feotm = [fo)gtx—)¢

Convolution of the Gaussian function with itself

1.2 T T T T T T T T T

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020

16 /41

Pt SRl el Dl Buterictnlnli- il Outlook - Matrix Calculation with Numpy

Convolution of Functions

Feotm = [fo)gtx—)¢

Convolution of the Gaussian function with itself

1.2 T T T T T T T T T

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020

16 /41

Pt SRl el Dl Buterictnlnli- il Outlook - Matrix Calculation with Numpy

Convolution of Functions

Feotm = [fo)gtx—)¢

Convolution of the Gaussian function with itself

1.2 T T T T T T T T T

0.8 [

0.6 -

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020

16 /41

Pt SRl el Dl Buterictnlnli- il Outlook - Matrix Calculation with Numpy

Convolution of Functions

Feotm = [fo)gtx—)¢

Convolution of the Gaussian function with itself

1.2 T T T T T T T T T

0.8 [

0.6 -

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020

16 /41

Pt SRl el Dl Buterictnlnli- il Outlook - Matrix Calculation with Numpy

Convolution of Functions

Feotm = [fo)gtx—)¢

Convolution of the Gaussian function with itself

1.2 T T T T T T T T T

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020

16 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

Feotm = [fo)gtx—)¢

Convolution of the Gaussian function with itself

1.2 T T T T T T T T T

0.8 [4

0.6 - B

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020 16 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

Feotm = [fo)gtx—)¢

Convolution of the Gaussian function with itself

1.2 T T T T T T T T T

0.8 [4

0.6 - B

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020 16 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

Feotm = [fo)gtx—)¢

Convolution of the Gaussian function with itself

1.2 T T T T T T T T T

0.8 [

0.6 -

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020

16 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

Feotm = [fo)gtx—)¢

Convolution of the Gaussian function with itself

1.2 T T T T T T T T T

0.8 [4

0.6 - B

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020 16 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

Feotm = [fo)gtx—)¢

Convolution of the Gaussian function with itself

1.2 T T T T T T T T T

0.8 [

0.6 -

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020

16 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

Feotm = [fo)gtx—)¢

Convolution of the Gaussian function with itself

1.2 T T T T T T T T T

0.8 [

0.6 -

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020

16 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with the Rectangle Function

Feat = [f)gtx—)¢

1.2 T T T T T T T T T

22.10.2020

17 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with the Rectangle Function

Feat = [f)gtx—)¢

1.2 T T T T T T T T T

22.10.2020

17 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with the Rectangle Function

Feat = [f)gtx—)¢

1.2 T T T T T T T T T

0.8 - 4

0.6 [4

02 B

22.10.2020 17 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with the Rectangle Function

Feat = [f)gtx—)¢

X=-25
1.2 T T T T T T T T T

0.8 - 4

0.6 [4

02 B

22.10.2020 17 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with the Rectangle Function

Feat = [f)gtx—)¢

1.2 T T T T T T T T T

0.8 - 4

0.6 [4

02 B

22.10.2020 17 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with the Rectangle Function

Feat = [f)gtx—)¢

X=-15
1.2 T T T T T T T T T

0.8 [4

0.6 [4

02 B

22.10.2020 17 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with the Rectangle Function

Feat = [f)gtx—)¢

1.2 T T T T T T T T T

0.8 [4

0.6 [4

02 B

22.10.2020 17 /41

Pt SRl el Dl Buterictnlnli- il Outlook - Matrix Calculation with Numpy

Convolution with the Rectangle Function

Feat = [f)gtx—)¢

1.2 T T T T T T T T T

0.8 [4

0.6 [4

02 4

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020 17 /41

Pt SRl el Dl Buterictnlnli- il Outlook - Matrix Calculation with Numpy

Convolution with the Rectangle Function

Feat = [f)gtx—)¢

1.2 T T T T T T T T T

0.8 [4

0.6 [4

02 4

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020 17 /41

Pt SRl el Dl Buterictnlnli- il Outlook - Matrix Calculation with Numpy

Convolution with the Rectangle Function

Feat = [f)gtx—)¢

1.2 T T T T T T T T T

0.8 [4

0.6 [4

02 4

-5 -4 -3 -2 -1 0 1 2 3 4 5

22.10.2020 17 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with the Rectangle Function

Feat = [f)gtx—)¢

1.2 T T T T T T T T T

0.8 [4

0.6 [4

02 B

22.10.2020 17 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with the Rectangle Function

Feat = [f)gtx—)¢

1.2 T T T T T T T T T

0.8 [4

0.6 [4

02 B

22.10.2020 17 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with the Rectangle Function

Feat = [f)gtx—)¢

1.2 T T T T T T T T T

0.8 - 4

0.6 [4

02 B

22.10.2020 17 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with the Rectangle Function

Feat = [f)gtx—)¢

1.2 T T T T T T T T T

0.8 - 4

0.6 [4

02 B

22.10.2020 17 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with the Rectangle Function

Feat = [f)gtx—)¢

1.2 T T T T T T T T T

0.8 - 4

0.6 [4

02 B

22.10.2020 17 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with the Rectangle Function

Feat = [f)gtx—)¢

1.2 T T T T T T T T T

0.8 -

0.6 [

02

22.10.2020 17 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with the Rectangle Function

Feat = [f)gtx—)¢

1.2 T T T T T T T T T

0.8 -

0.6 [

02

22.10.2020 17 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Applying Filters to Images

22.10.2020 18 /41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with Matrices

Image

Edge Filter

22.10.2020 19/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with Matrices

Image

Edge Filter

22.10.2020 19/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with Matrices

Image

Edge Filter

22.10.2020 19/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with Matrices

Edge Filter

22.10.2020 19/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with Matrices

Image

s
o]

Edge Filter

22.10.2020 19/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with Matrices

Image

Edge Filter

22.10.2020 19/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with Matrices

Image

Edge Filter

22.10.2020 19/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with Matrices

Image

Edge Filter

22.10.2020 19/41

Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution with Matrices

Image

Edge Filter

22.10.2020 19/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming

2. Excursion: Object Oriented Programming
» What is OOP?
» Example Project
» Inheritance
» Modules in Python

22.10.2020 20 /41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Programming Paradigms

Procedural Programming

» A problem is solved by
manipulating data structures
through procedures

» The key is to write the right logic

» Efficiency is a main focus of
procedural programming

22.10.2020 21/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Programming Paradigms

Procedural Programming Object oriented Programming
» A problem is solved by » A problem is solved by modeling
manipulating data structures it's processes

through procedures
» The key is to figure out the
» The key is to write the right logic relevant entities and their

relations
» Efficiency is a main focus of

procedural programming » Programming Logic is tightly
coupled to entities

22.10.2020 21/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Classes vs. Objects

Class

Person \

first name
last name
age

email

22.10.2020 22/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Classes vs. Objects

Class Objects (Instances)

Person \
first name
last name
age
email

Alice Rob

Anderson Robertson
28 17

a.anders@gmail.com cool_dude@aol.com

22.10.2020 22/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Classes Bind Variables Together

» Instead of writing something like this

#Alice’s attributes
alice_name = "Alice"
alice_last_name = "Anderson"
alice_age = 28

22.10.2020 23 /41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Classes Bind Variables Together

» Instead of writing something like this

#Alice’s attributes
alice_name = "Alice"
alice_last_name = "Anderson"
alice_age = 28

» Objects encapsulate multiple variables in one place

#A Person-object variable
alice = Person("Alice","Anderson",28)

22.10.2020 23 /41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Classes are Advanced Data Types

» Object variables can be treated like simple types

#Two Person-object variables

alice = Person("Alice","Anderson",28)

rob = Person("Rob","Robertson",17)

#0bjects can be stored in lists

myPersonlList = [] #I want to manage persons
myPersonList.append(rob)

#0bjects can be arguments of self-defined functions
calculate_year_of_birth(alice)

22.10.2020 24 /41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Class Definition

» A class needs to be defined

class Person: #This defines the class Name
#The __init__ function is responsible for class creation
— and defines its’ attributes
def __init__(self, first_name,last_name,age):
#The passed values are stored in the class
self.first_name = first_name
self.last_name = last_name
self.age = age

» This is enough to create a class-object

robby = Person("Rob","Robertson",17)

22.10.2020 25/ 41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Accessing Class Attributes

» Class attributes can be accessed via the ‘.’ operator

robby = Person("Rob","Robertson",17)

f_name
1_name

robby.first_name #"Rob"
robby.last_name #"Robertson"
age = robby.age #17

22.10.2020 26 [41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Accessing Class Attributes

» Class attributes can be accessed via the ‘.’ operator

robby = Person("Rob","Robertson",17)

f_name = robby.first_name #"Rob"
l_name = robby.last_name #'"Robertson"
age = robby.age #17

» They can also be assigned after initialization

robby.age = 18 #As he gets older
robby.l_name = "Peterson" #If he marries

22.10.2020 26 [41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Objects and Functions

» We can use objects as function arguments

#Definition
def print_info(person):
print(person.first_name +" " +person.last_name +"
— is " +str(person.age) +" years old.")

22.10.2020 2741

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Objects and Functions

» We can use objects as function arguments

#Definition
def print_info(person):
print(person.first_name +" " +person.last_name +"
— is " +str(person.age) +" years old.")

» Usage:

robby = Person("Rob","Robertson",17)
print_info(robby)
#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)
print_info(alice)
#This prints: "Alice Anderson is 28 years old"

22.10.2020 2741

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Function Encapsulation

» Functions can even be defined inside classes

class Person: #This defines the class Name
#The __init__ function
def __init__(self, first_name,last_name,age):
#The passed values are stored in the class
self.first_name = first_name
self.last_name = last_name

self.age = age

#0ur print_info function
def print_info(self): #Note how the argument changed
print(self.first_name +" " +self.last_name +'" is
— " +str(self.age) +" years old.")

22.10.2020 28 /41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Function Encapsulation

» A function can be called directly from the object

robby = Person("Rob","Robertson",17)
robby.print_info()
#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)
alice.print_info()
#This prints: "Alice Anderson is 28 years old"

22.10.2020 28 /41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Function Encapsulation

» A function can be called directly from the object

robby = Person("Rob","Robertson",17)
robby.print_info()
#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)
alice.print_info()
#This prints: "Alice Anderson is 28 years old"

» This way a potential programmer/user does not need to know the
internal structure of the particular class, e.g. list.append().

22.10.2020 28 /41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Course Management Program

» We want to write a program for the university
» It should give an overview over the different courses

» It should track each course, its lecturer and its students

22.10.2020

29 /41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Course Management Program

» We want to write a program for the university
» It should give an overview over the different courses

» It should track each course, its lecturer and its students

How would an OOP model look like?

22.10.2020 29 /41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming -

Example Project

Course Management Program

Course

name

year
1d_number
lecturer
student_list

22.10.2020 29 /41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Course Management Program

Course TP »| Lecturer
name : first name
year last name
id_number : age
JECEUTEr «nvvneeferrrennns : email

student_list bank_account

22.10.2020 29 /41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Course Management Program

Course Lecturer | 5
name first name

year last name
id_number : age

lecturer ==seeeeefeeeeeaans . email

student_list bank_account

e »| Student |§

first name
last name
age

email
student_id
grade

22.10.2020 29 /41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Example Code

» The course class

class Course: #This defines the class Name

#The __init__ function

def __init__(self, name,year,id_number,lecturer):
#The passed values are stored in the class
self .name = name
self.year = year
self.id_number = id_number
self.lecturer = lecturer

self.student_list = [] #empty upon creation

22.10.2020 30/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Example Code

» The lecturer class

class Lecturer: #This defines the class Name

#The __init__ function

def __init__(self, first_name,last_name,age,email,
— bank_account):
#The passed values are stored in the class
self.first_name = first_name
self.last_name = last_name
self.age = age
self.email = email
self .bank_account = bank_account

22.10.2020 30/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Example Code

» Create the Course

lecturer_jan = Lecturer("Jan","Tekuelve",30,"jan.
< tekuelve@ini.rub.de",1234567)

cscience_course = Course("Computer Science and
— Mathematics",2019,1234,lecturer_jan)

22.10.2020

30/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Example Code

» Create the Course

lecturer_jan = Lecturer("Jan","Tekuelve",30,"jan.
< tekuelve@ini.rub.de",1234567)

cscience_course = Course("Computer Science and
— Mathematics",2019,1234,lecturer_jan)

» At the end of the year access the bank account:

c_bank_account = cscience_course.lecturer.bank_account

22.10.2020 30/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Example Code

» Create the Course

lecturer_jan = Lecturer("Jan","Tekuelve",30,"jan.
< tekuelve@ini.rub.de",1234567)

cscience_course = Course("Computer Science and
— Mathematics",2019,1234,lecturer_jan)

» At the end of the year access the bank account:

c_bank_account = cscience_course.lecturer.bank_account

» This works independent of course and lecturer

22.10.2020 30/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

The Student Class

» This class looks similar to the lecturer

class Student: #This defines the class Name

#The __init__ function

def __init__(self, first_name,last_name,age,email,
— student_id):
#The passed values are stored in the class
self.first_name = first_name
self.last_name = last_name
self.age = age
self.email = email
self.student_id = student_id
self.grade = -1

22.10.2020 31/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Code Redundancy

Course Lecturer | 5

name first name
year last name
1d_number age
lecturer email

student_list bank_account

Student | 5

first name
last name
age

email
student_id
grade

22.10.2020 32/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Code Redundancy

Course Lecturer | 5

name first name
year last name
1d_number age
lecturer email

student_list bank_account

Student | 5

first name
last name
age

email
student_id
grade

22.10.2020 32/41

Lecture 7 - Object Oriented Programming

Code Redundancy

Course | 5

name
year
1d_number
lecturer
student_list

Person | 5

first name
last name
age

email

Excursion: Object Oriented Programming -

Lecturer | 5

first name
last name

age

email
bank_account

Student | 5

first name
last name
age

email
student_id
grade

Inheritance

22.10.2020

32/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Code Redundancy

Course |§ —>| Lecturer |§

name first name
year last name
1d_number age

lecturer email
student_list bank_account

Person |§ —>| Student |§

first name first name

last name last name

age age

email email
student_id
grade

22.10.2020 32/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Code Redundancy

Course |§ —>| Lecturer |§

name bank_account
year
1d_number
lecturer
student_list

Person |§ —>| Student |§

first name student_id
last name grade

age

email

22.10.2020 32/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

The Person Class

» We will use the Class Person as Super-Class

class Person: #This defines the class Name

#The __init__ function

def __init__(self, first_name,last_name,age,email):
#The passed values are stored in the class
self.first_name = first_name
self.last_name = last_name
self.age = age
self.email = email

22.10.2020 33/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Inheritance

» Lecturer and Student will inherit from Person

class Lecturer(Person): #Brackets declare inheritance
#The __init__ function is overrriden
def __init__(self,f_name,l_name,age,email,b_acc):
#The super() calls the parent function
super().__init__(f_name,l_name,age,email)

self.bank_account = b_acc

class Student(Person): #Brackets declare inheritance
#The __init__ function is overrriden
def __init__(self,f_name,l_name,age,email,stud_id):
super().__init__(f_name,l_name,age,email)
self .student_id = stud_id

self.grade = -1

22.10.2020 34 /41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Modifiying the Parent Class

» Functions of the parent class are available to child classes

class Person: #This defines the class Name
def __init__(self, first_name,last_name,age,email):

#The

self.

self

passed values are stored in the class
first_name = first_name

.last_name = last_name
self.
self.

age = age
email = email

#0ur print_info function
def print_info(self): #Note how the argument changed
print(self.first_name +" " +self.last_name +'" is
— " +str(self.age) +" years old.")

22.10.2020 35/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Using Parent Functions

» Functions of the parent class are available to child classes

student_rob = Student("Rob",'"Robertson",25,"rob.
< robson@rub.de","108001024")

lecturer_jan = Lecturer("Jan","Tekuelve",30,"jan.
— tekuelve@ini.rub.de",1234567)

student_rob.print_info()
lecturer_jan.print_info()
#Prints:

#Rob Robertson is 25 years old.
#Jan Tekuelve is 30 years old.

22.10.2020 36 /41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Completing the Example

» The course needs to be able to add students

#Inside the Course class

def enroll(self,student):
self.student_list.append(student)
#Enroll adds them to the course internal list

» Minimal example:

cscience_course = Course("Computer Science and
— Mathematics",2019,1234,lecturer_jan)

student_rob = Student ("Rob","Robertson'",25,"rob.
< robson@rub.de","108001024")

cscience_course.enroll (student_rob)

22.10.2020

37/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Modules in Python

Creating your own Python Modules

» Class definitions can be stored in separate module

» E.g. if you save the above class definitions in a file unimanager.py

22.10.2020 38/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Modules in Python

Creating your own Python Modules

» Class definitions can be stored in separate module
» E.g. if you save the above class definitions in a file unimanager.py

» You can access the definitions in another script from the same folder:

import unimanager
student_rob = unimanager.Student("Rob","Robertson",25,"
< rob.robson@rub.de","108001024")

22.10.2020 38/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Modules in Python

Creating your own Python Modules

» Class definitions can be stored in separate module
» E.g. if you save the above class definitions in a file unimanager.py

» You can access the definitions in another script from the same folder:

import unimanager
student_rob = unimanager.Student("Rob","Robertson",25,"
< rob.robson@rub.de","108001024")

» This allows for flexible re-usability of code

22.10.2020 38/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Modules in Python

Advantages/Disadvantages of OOP

Advantages:

» Design Benefit: Real/World processes are easily transferable in code
» Modularity: Extending and reusing software is easy

» Software Maintenance: Modular code is easier to debug

22.10.2020 39/41

Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Modules in Python

Advantages/Disadvantages of OOP

Advantages:

» Design Benefit: Real/World processes are easily transferable in code

» Modularity: Extending and reusing software is easy

» Software Maintenance: Modular code is easier to debug
Disadvantages:

» Desing Overhead: Modeling requires longer initial development time

» Originally OOP required more “coding”

22.10.2020 39/41

Lecture 7 - Object Oriented Programming
Tasks

1. Download todays class definitions unimanager.py and create a separate
script that uses this module to create a course, a lecturer and three
sample students.

» Enroll all students to the course.

> After enrolling iterate through the student list to print the info of all
enrolled students. You can access the student_list via the course object.

» In the loop use the print_info() function.

2. Add a print_info() function to the class definition of Course in
unimanager.py. This function should print the course name, its lecturer
and each student of the course with his/her student ID.

» The function should be defined in the Course class and its only argument
should be self

» The course name, the lecturer and its student_list can be accessed via the
self keyword.

22.10.2020 40 /41

This concludes the Preparatory Course.

Any Questions or Feedback?

22.10.2020 41/41

	Outlook: Matrices and Scientific Programming
	Matrices Quick Summary
	The Numpy Module
	Matrix Calculation with Numpy

	Excursion: Object Oriented Programming
	What is OOP?
	Example Project
	Inheritance
	Modules in Python

	Tasks
	

