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Overview

1. Outlook: Matrices and Scientific Programming
» Matrices Quick Summary
» The Numpy Module
» Matrix Calculation with Numpy

2. Excursion: Object Oriented Programming
» What is OOP?
» Example Project
» Inheritance
» Modules in Python

3. Tasks
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Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Definition

A Matrix A,, , is a rectangular array arranged in m rows and n columns.

> Example:

1 2 3 4
A374 - 5 6 7 8
9 10 11 12
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» Asingle element in a matrix is usually denoted by a; ;, where i is the row
andj the column index. For example a, 3 = 7.
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Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Definition
A Matrix A,, , is a rectangular array arranged in m rows and n columns.
> Example:
1 2 3 4
A374 - 5 6 7 8
9 10 11 12

» Asingle element in a matrix is usually denoted by a; ;, where i is the row
andj the column index. For example a, 3 = 7.

» A matrix Ay, n, where m = nis called a square matrix

» A matrix that has only entries on the diagonal is called a diagonal matrix

1 0 O 1 0 O
D;;= |0 6 O] Specialcaseidentity matrixI;; = [0 1 O
O 0 4 0O 0 1
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Matrix Addition/Subtraction

» Itis possible to add two matrices A and B together, if they have the same
number of rows and columns.
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Matrix Addition/Subtraction

» Itis possible to add two matrices A and B together, if they have the same
number of rows and columns.

» Addition is carried out element-wise:

1 2 4 2 1+4 242 5 4
A, +B,=|5 6|+ (3 1|=[5+3 6+1]|=1[8 7
9 10 8 2 9+8 1042 17 12
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Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Addition/Subtraction

» Itis possible to add two matrices A and B together, if they have the same
number of rows and columns.

» Addition is carried out element-wise:

1 2 4 2 1+4 2+2 5 4
A+ B, =5 6| +([3 1|=[54+43 6+1]|=(8 7
9 10 2 9+8 10+2 17 12
» Subtraction works analogously:
2 4 2 1—4 2-2 -3 0
A, —B,=|5 6|3 1|=(5-3 6-1]=[2 5
9 10 2 9—-8 10—-2 1
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Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Scalar Multiplication and Transposition

» Multiplication with scalar values is also applied element-wise:

2 1-3 2.3 36
A, 3=1|5 6|-3=[53 6-3|=[15 18
9 10 9.3 10-3 27 30
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Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Scalar Multiplication and Transposition

» Multiplication with scalar values is also applied element-wise:

2 1-3 2.3 36
A, 3=1|5 6|-3=[53 6-3|=[15 18
9 10 9.3 10-3 27 30

» The transposition AT of a matrix switches the roles of row and columns

Example:
T
1 2
1 5 9
Al =[5 & :< )
’ 2 6 10
9 10

The transposition turns a m X n matrix into a n X m matrix.
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Matrix Multiplication

» Matrices A and B can be multiplied with each other, if the number of
columns of A,, , matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.
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Matrix Multiplication
» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.
Multiply Row by Column

3 6 5 4 3 8
mmo= (123 (03 8) (- )
7 3 2 - T T
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Matrix Multiplication
» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.
Multiply Row by Column

4 3 8
3 65 ?
(103 (12 8] (- )
7 3 2 - T T
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Matrix Multiplication
» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.

Multiply Row by Column
4 3 8
A“.Bsa_(z. 6 s>' 1 2 10 _<(3*4—|—6*1—|—5*7) _ _)
’ ’ 4 2 1 _ _
7 3 2
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Matrix Multiplication
» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.
Multiply Row by Column

4 3 8
3 6 5 53
A2,3'B3,3:<4 2 1)' 1 2 10 :< - _>
7 3 2 - T =
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Matrix Multiplication
» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.
Multiply Row by Column

4
3 6 5 53 7
Az,3’33,3=<4 5 1>' 1 2 10 :< —>
7 3 2 - T =
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Matrix Multiplication

» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.

Multiply Row by Column
4 3 8
A23-B33:<3 6 s)' L 2 10 :<53 (3%3+6%2+5%3) _>
’ ’ 4 2 1 _ _ _
7 3 2
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Matrix Multiplication
» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.
Multiply Row by Column

4 3
3 6 5 53 36
Az,3’33,3=<4 5 1>- 1 2 10 :< —>
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Matrix Multiplication
» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.

Multiply Row by Column
_ (53 36 _)
- ?
2 -
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Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Multiplication

» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.

Multiply Row by Column

3 8
AZB‘B33:365'1210:5336 _
o 421)\, 5, _ _ (4x8+4+2x10+1%x2)
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Matrix Multiplication

» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.
Multiply Row by Column

4 8
3 6 5
A3 B33 = 4 2 1) 1
7

’ 53 36 _
) R )
3 2 - -
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Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Multiplication
» Matrices A and B can be multiplied with each other, if the number of
columns of A,, » matches the number of rows in B, ,.

» The resulting matrix C,, , shares the number of rows from A and the
number of columns from B.

» Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the second matrix.
Multiply Row by Column

4 3 8
3 6 5 53 36 94
A23'333: . 1 2 10 -
’ ’ 4 2 1 7 3 25 19 54
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Lecture 7 - Object Oriented Programming Outlook - The Numpy Module

The Numpy Module

NumPy

» Numpy is part of SciPy the module for scientific programming
» It should have been installed with matplotlib

» Itis usually imported like this:

import numpy as np
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Lecture 7 - Object Oriented Programming Outlook - The Numpy Module
The Numpy Array

» Numpy brings its own data structure the numpy array

import numpy as np

#Arrays can be created from lists

array_example = np.array([1,6,7,9])

#Arrays can be created with arange

#An array with numbers from 4 to 5 and step size 0.2
array2 = np.arange(4,5,0.2) #5 is not in the array
print(array2) # [4.0 4.2 4.4 4.6 4.8]

» Elements of an array can be manipulated simultaneously

array3 = array2*array2 #For example with multiplication
print(array3)# [16.0 16.64 19.36 21.16 23.04]

22.10.2020 8/41



Lecture 7 - Object Oriented Programming Outlook - The Numpy Module

Matplotlib and Numpy

» Plotting sin(x) from O to 7 with lists

listX=[]

listY=[]

step_size = 0.5

for i in range(O,int(math.pi/step_size)):

xValue = i*step_size

listX.append(xValue)
listY.append(math.sin(xValue))

plt.plot(listX,listY)

» Plotting sin(x) from O to 7 with numpy

xValues
yValues

= np.arange(O,math.pi,0.5)
= np.sin(xValues)

plt.plot(xValues,yValues)
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Numpy Arrays as Matrices

1 2 3 4
» Creating the following matrix:A= (5 6 7 8
9 10 11 12
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Numpy Arrays as Matrices

1 2 3 4
» Creating the following matrix:A= (5 6 7 8
9 10 11 12

» Innumpy a matrix can be created from a multi-dimensional list

# This creates a 3x4 Matrix
A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]1])
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Numpy Arrays as Matrices

1 2 3 4
» Creating the following matrix:A= (5 6 7 8
9 10 11 12

» Innumpy a matrix can be created from a multi-dimensional list

# This creates a 3x4 Matrix
A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]1])

» Numpy treats such an array as a matrix

arr_dim = A.shape #Gives you the shape of your matrix
print(arr_dim) #Prints (3,4)

# Access elements with indexing

single_number = A[1,3] #8, 2nd list,4th element

num2 = A[0,1] #2, 1st list, 2nd element

22.10.2020 10/41
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Matrix Operations in Numpy

» Matrix Addition: 123 + 305 1) _ (47 4
5 6 7 5 =3 1 10 3 8

» Innumpy code:

A = np.array([[1,2,3], [5,6,7]11)

B = np.array([[3,5,1], [5,-3,111)
C=A+B

D = A - B #Subtraction works analogously
print(D) #[[-2 -3 2],[0 9 6]]
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Matrix Operations in Numpy

3
» Matrix Multiplication: L2 3, 5 =3 = 16 2
5 6 7 52 14

» In numpy code:

A = np.array([[1,2,3], [5,6,7]11)

E = np.array([[3,5], [5,-31,[1,111)
F = np.matmul (A,E)

print(F) # [[16,2],[52,14]]
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Matrix Operations in Numpy

3
. T 1 2 3 16 2
» Matrix Multiplication: x |5 =3] =
5 6 7 52 14

» In numpy code:

A = np.array([[1,2,3], [5,6,711)

E = np.array([[3,5], [5,-31,[1,111)
F = np.matmul (A,E)

print(F) # [[16,2],[52,14]]

» Do not confuse with element-wise multiplication
A = np.array([[1,2,3], [5,6,711)
B = np.array([[3,5,1], [5,-3,1]1])
G = A*B # [[3,10,3],[25,-18,7]]
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Matrix Operations in Numpy

» It also works for vectors:

3
< V1,V >= V1TV2 = (1 2 3) * | 5] =16
1

» Innumpy code:

V1 = np.array([1,2,3])
V2 = np.array([3,5,1])
R = np.matmul(V1,V2)
print(R) # 16
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Matrix Operations in Numpy

» It also works for vectors:

3
< V1,V >= V1TV2 = (1 2 3) * | 5] =16
1

» Innumpy code:

V1 = np.array([1,2,3])
V2 = np.array([3,5,1])
R = np.matmul(V1,V2)
print(R) # 16

» Or vectors and matrices if you want to
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Other helpful Operations

15

. 1 2 3
» Transpose Matrices: A = (5 p 7) A= |2 6
3 7

» In numpy:

A
H

np.array([[1,2,3], [5,6,711)
A.T # [[1,5],[2,6],[3,7]]

» Element-wise summing across arrays:

sum = np.sum(H) #24,
V1 = np.array([1,2,3]) #works also for 1D-arrays
sum_v = np.sum(V1) # 6
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Images as Matrices

Xo,0 Xo,1 Xop2 Xo3 Xos4
X0 X111 X12 X13  X14
X2,0 X21 X2 X23 X4
X3,0 X31 X32 X33 X34
X40 X41 X42 Xa43 X44
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Images as Matrices

O O O OO
O O O OO
O O O O O
O O O O O
O O O OO
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Images as Matrices

O O O O +~
O~ O O O
— O O —~ O
O~ O O O
O O O O+~
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Images as Matrices

O O O O+
O~ O O O
= O O ~ O
O~ O OO
O O O O+
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Convolution of Functions

Frow = [ gt
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Convolution of Functions

Feotm = [ fo)gtx— )¢

Convolution of the Gaussian function with itself
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Convolution with the Rectangle Function

Feat = [ f)gtx— )¢

1.2 T T T T T T T T T
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Convolution with the Rectangle Function

Feat = [ f)gtx— )¢
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Convolution with the Rectangle Function

Feat = [ f)gtx— )¢
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Convolution with the Rectangle Function

Feat = [ f)gtx— )¢

X=-25
1.2 T T T T T T T T T

0.8 - 4

0.6 [ 4
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Convolution with the Rectangle Function

Feat = [ f)gtx— )¢
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Convolution with the Rectangle Function

Feat = [ f)gtx— )¢

X=-15
1.2 T T T T T T T T T

0.8 [ 4

0.6 [ 4

02 B
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Convolution with the Rectangle Function

Feat = [ f)gtx— )¢
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Convolution with the Rectangle Function
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Convolution with the Rectangle Function
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming

2. Excursion: Object Oriented Programming
» What is OOP?
» Example Project
» Inheritance
» Modules in Python
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Programming Paradigms

Procedural Programming

» A problem is solved by
manipulating data structures
through procedures

» The key is to write the right logic

» Efficiency is a main focus of
procedural programming
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Programming Paradigms

Procedural Programming Object oriented Programming
» A problem is solved by » A problem is solved by modeling
manipulating data structures it's processes

through procedures
» The key is to figure out the
» The key is to write the right logic relevant entities and their

relations
» Efficiency is a main focus of

procedural programming » Programming Logic is tightly
coupled to entities
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first name
last name
age

email
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Classes vs. Objects

Class Objects (Instances)

Person \
first name
last name
age
email

Alice Rob

Anderson Robertson
28 17

a.anders@gmail.com  cool_dude@aol.com
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Classes Bind Variables Together

» Instead of writing something like this

#Alice’s attributes
alice_name = "Alice"
alice_last_name = "Anderson"
alice_age = 28
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Classes Bind Variables Together

» Instead of writing something like this

#Alice’s attributes
alice_name = "Alice"
alice_last_name = "Anderson"
alice_age = 28

» Objects encapsulate multiple variables in one place

#A Person-object variable
alice = Person("Alice","Anderson",28)
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Classes are Advanced Data Types

» Object variables can be treated like simple types

#Two Person-object variables

alice = Person("Alice","Anderson",28)

rob = Person("Rob","Robertson",17)

#0bjects can be stored in lists

myPersonlList = [] #I want to manage persons
myPersonList.append(rob)

#0bjects can be arguments of self-defined functions
calculate_year_of_birth(alice)
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Class Definition

» A class needs to be defined

class Person: #This defines the class Name
#The __init__ function is responsible for class creation
— and defines its’ attributes
def __init__(self, first_name,last_name,age):
#The passed values are stored in the class
self.first_name = first_name
self.last_name = last_name
self.age = age

» This is enough to create a class-object

robby = Person("Rob","Robertson",17)
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Accessing Class Attributes

» Class attributes can be accessed via the ‘.’ operator

robby = Person("Rob","Robertson",17)

f_name
1_name

robby.first_name #"Rob"
robby.last_name #"Robertson"
age = robby.age #17
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Accessing Class Attributes

» Class attributes can be accessed via the ‘.’ operator

robby = Person("Rob","Robertson",17)

f_name = robby.first_name #"Rob"
l_name = robby.last_name #'"Robertson"
age = robby.age #17

» They can also be assigned after initialization

robby.age = 18 #As he gets older
robby.l_name = "Peterson" #If he marries
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Objects and Functions

» We can use objects as function arguments

#Definition
def print_info(person):
print(person.first_name +" " +person.last_name +"
— is " +str(person.age) +" years old.")
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Objects and Functions

» We can use objects as function arguments

#Definition
def print_info(person):
print(person.first_name +" " +person.last_name +"
— is " +str(person.age) +" years old.")

» Usage:

robby = Person("Rob","Robertson",17)
print_info(robby)
#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)
print_info(alice)
#This prints: "Alice Anderson is 28 years old"
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Function Encapsulation

» Functions can even be defined inside classes

class Person: #This defines the class Name
#The __init__ function
def __init__(self, first_name,last_name,age):
#The passed values are stored in the class
self.first_name = first_name
self.last_name = last_name

self.age = age

#0ur print_info function
def print_info(self): #Note how the argument changed
print(self.first_name +" " +self.last_name +'" is
— " +str(self.age) +" years old.")
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Function Encapsulation

» A function can be called directly from the object

robby = Person("Rob","Robertson",17)
robby.print_info()
#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)
alice.print_info()
#This prints: "Alice Anderson is 28 years old"
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Whatis OOP?

Function Encapsulation

» A function can be called directly from the object

robby = Person("Rob","Robertson",17)
robby.print_info()
#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)
alice.print_info()
#This prints: "Alice Anderson is 28 years old"

» This way a potential programmer/user does not need to know the
internal structure of the particular class, e.g. list.append().
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Course Management Program

» We want to write a program for the university
» It should give an overview over the different courses

» It should track each course, its lecturer and its students
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Course Management Program

» We want to write a program for the university
» It should give an overview over the different courses

» It should track each course, its lecturer and its students

How would an OOP model look like?
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Example Project

Course Management Program

Course

name

year
1d_number
lecturer
student_list
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Course Management Program

Course TP »| Lecturer
name : first name
year last name
id_number : age
JECEUTEr «nvvneeferrrennns : email

student_list bank_account
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Course Management Program

Course Lecturer | 5
name first name

year last name
id_number : age

lecturer ==seeeeefeeeeeaans . email

student_list bank_account

e »| Student |§

first name
last name
age

email
student_id
grade
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Example Code

» The course class

class Course: #This defines the class Name

#The __init__ function

def __init__(self, name,year,id_number,lecturer):
#The passed values are stored in the class
self .name = name
self.year = year
self.id_number = id_number
self.lecturer = lecturer

self.student_list = [] #empty upon creation
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Example Code

» The lecturer class

class Lecturer: #This defines the class Name

#The __init__ function

def __init__(self, first_name,last_name,age,email,
— bank_account):
#The passed values are stored in the class
self.first_name = first_name
self.last_name = last_name
self.age = age
self.email = email
self .bank_account = bank_account
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Example Code

» Create the Course

lecturer_jan = Lecturer("Jan","Tekuelve",30,"jan.
< tekuelve@ini.rub.de",1234567)

cscience_course = Course("Computer Science and
— Mathematics",2019,1234,lecturer_jan)
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Example Code

» Create the Course

lecturer_jan = Lecturer("Jan","Tekuelve",30,"jan.
< tekuelve@ini.rub.de",1234567)

cscience_course = Course("Computer Science and
— Mathematics",2019,1234,lecturer_jan)

» At the end of the year access the bank account:

c_bank_account = cscience_course.lecturer.bank_account
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Example Code

» Create the Course

lecturer_jan = Lecturer("Jan","Tekuelve",30,"jan.
< tekuelve@ini.rub.de",1234567)

cscience_course = Course("Computer Science and
— Mathematics",2019,1234,lecturer_jan)

» At the end of the year access the bank account:

c_bank_account = cscience_course.lecturer.bank_account

» This works independent of course and lecturer
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

The Student Class

» This class looks similar to the lecturer

class Student: #This defines the class Name

#The __init__ function

def __init__(self, first_name,last_name,age,email,
— student_id):
#The passed values are stored in the class
self.first_name = first_name
self.last_name = last_name
self.age = age
self.email = email
self.student_id = student_id
self.grade = -1
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Code Redundancy

Course Lecturer | 5

name first name
year last name
1d_number age
lecturer email

student_list bank_account

Student | 5

first name
last name
age

email
student_id
grade
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Lecture 7 - Object Oriented Programming

Code Redundancy

Course | 5

name
year
1d_number
lecturer
student_list

Person | 5

first name
last name
age

email

Excursion: Object Oriented Programming -

Lecturer | 5

first name
last name

age

email
bank_account

Student | 5

first name
last name
age

email
student_id
grade

Inheritance
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Code Redundancy

Course |§ —>| Lecturer |§

name first name
year last name
1d_number age

lecturer email
student_list bank_account

Person |§ —>| Student |§

first name first name

last name last name

age age

email email
student_id
grade
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Code Redundancy

Course |§ —>| Lecturer |§

name bank_account
year
1d_number
lecturer
student_list

Person |§ —>| Student |§

first name student_id
last name grade

age

email
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The Person Class

» We will use the Class Person as Super-Class

class Person: #This defines the class Name

#The __init__ function

def __init__(self, first_name,last_name,age,email):
#The passed values are stored in the class
self.first_name = first_name
self.last_name = last_name
self.age = age
self.email = email
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Inheritance

» Lecturer and Student will inherit from Person

class Lecturer(Person): #Brackets declare inheritance
#The __init__ function is overrriden
def __init__(self,f_name,l_name,age,email,b_acc):
#The super() calls the parent function
super().__init__(f_name,l_name,age,email)

self.bank_account = b_acc

class Student(Person): #Brackets declare inheritance
#The __init__ function is overrriden
def __init__(self,f_name,l_name,age,email,stud_id):
super().__init__(f_name,l_name,age,email)
self .student_id = stud_id

self.grade = -1
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Modifiying the Parent Class

» Functions of the parent class are available to child classes

class Person: #This defines the class Name
def __init__(self, first_name,last_name,age,email):

#The

self.

self

passed values are stored in the class
first_name = first_name

.last_name = last_name
self.
self.

age = age
email = email

#0ur print_info function
def print_info(self): #Note how the argument changed
print(self.first_name +" " +self.last_name +'" is
— " +str(self.age) +" years old.")
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Using Parent Functions

» Functions of the parent class are available to child classes

student_rob = Student("Rob",'"Robertson",25,"rob.
< robson@rub.de","108001024")

lecturer_jan = Lecturer("Jan","Tekuelve",30,"jan.
— tekuelve@ini.rub.de",1234567)

student_rob.print_info()
lecturer_jan.print_info()
#Prints:

#Rob Robertson is 25 years old.
#Jan Tekuelve is 30 years old.
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Completing the Example

» The course needs to be able to add students

#Inside the Course class

def enroll(self,student):
self.student_list.append(student)
#Enroll adds them to the course internal list

» Minimal example:

cscience_course = Course("Computer Science and
— Mathematics",2019,1234,lecturer_jan)

student_rob = Student ("Rob","Robertson'",25,"rob.
< robson@rub.de","108001024")

cscience_course.enroll (student_rob)
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Creating your own Python Modules

» Class definitions can be stored in separate module

» E.g. if you save the above class definitions in a file unimanager.py
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» Class definitions can be stored in separate module
» E.g. if you save the above class definitions in a file unimanager.py

» You can access the definitions in another script from the same folder:

import unimanager
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Modules in Python

Creating your own Python Modules

» Class definitions can be stored in separate module
» E.g. if you save the above class definitions in a file unimanager.py

» You can access the definitions in another script from the same folder:

import unimanager
student_rob = unimanager.Student("Rob","Robertson",25,"
< rob.robson@rub.de","108001024")

» This allows for flexible re-usability of code
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Modules in Python

Advantages/Disadvantages of OOP

Advantages:

» Design Benefit: Real/World processes are easily transferable in code
» Modularity: Extending and reusing software is easy

» Software Maintenance: Modular code is easier to debug
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Advantages/Disadvantages of OOP

Advantages:

» Design Benefit: Real/World processes are easily transferable in code

» Modularity: Extending and reusing software is easy

» Software Maintenance: Modular code is easier to debug
Disadvantages:

» Desing Overhead: Modeling requires longer initial development time

» Originally OOP required more “coding”
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Lecture 7 - Object Oriented Programming
Tasks

1. Download todays class definitions unimanager.py and create a separate
script that uses this module to create a course, a lecturer and three
sample students.

» Enroll all students to the course.

> After enrolling iterate through the student list to print the info of all
enrolled students. You can access the student_list via the course object.

» In the loop use the print_info() function.

2. Add a print_info() function to the class definition of Course in
unimanager.py. This function should print the course name, its lecturer
and each student of the course with his/her student ID.

» The function should be defined in the Course class and its only argument
should be self

» The course name, the lecturer and its student_list can be accessed via the
self keyword.
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This concludes the Preparatory Course.

Any Questions or Feedback?
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