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Lecture 7 - Object Oriented Programming

Overview

1. Outlook: Matrices and Scientific Programming
ä Matrices Quick Summary
ä �eNumpyModule
ä Matrix Calculation with Numpy

2. Excursion: Object Oriented Programming
ä What is OOP?
ä Example Project
ä Inheritance
ä Modules in Python

3. Tasks
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Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Definition
AMatrix Am,n is a rectangular array arranged inm rows and n columns.

I Example:

A3,4 =

1 2 3 4
5 6 7 8
9 10 11 12



I A single element in a matrix is usually denoted by ai,j, where i is the row
and j the column index. For example a2,3 = 7.

I Amatrix Am, n, wherem = n is called a squarematrix

I Amatrix that has only entries on the diagonal is called a diagonalmatrix

D3,3 =

1 0 0
0 6 0
0 0 4

 Special case identity matrix I3,3 =

1 0 0
0 1 0
0 0 1
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Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

Matrix Addition/Subtraction

I It is possible to add twomatrices A and B together, if they have the same
number of rows and columns.

I Addition is carried out element-wise:

A3,2 + B3,2 =

1 2
5 6
9 10

+

4 2
3 1
8 2

 =

1+ 4 2+ 2
5+ 3 6+ 1
9+ 8 10+ 2

 =

 5 4
8 7
17 12


I Subtraction works analogously:

A3,2 − B3,2 =

1 2
5 6
9 10

−
4 2
3 1
8 2

 =

1− 4 2− 2
5− 3 6− 1
9− 8 10− 2

 =

−3 0
2 5
1 8
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Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

ScalarMultiplication and Transposition

I Multiplication with scalar values is also applied element-wise:

A3,2 · 3 =

1 2
5 6
9 10

 · 3 =
1 · 3 2 · 3
5 · 3 6 · 3
9 · 3 10 · 3

 =

 3 6
15 18
27 30



I �e transposition AT of a matrix switches the roles of row and columns
Example:

AT3,2 =

1 2
5 6
9 10

T

=

(
1 5 9
2 6 10

)
�e transposition turns am× nmatrix into a n× mmatrix.
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Lecture 7 - Object Oriented Programming Outlook - Matrices Quick Summary

MatrixMultiplication

I Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.

I �e resulting matrix Cm,o shares the number of rows from A and the
number of columns from B.

I Matrix multiplication is carried out by multiplying the row-vector of the
first matrix with the column-vector of the secondmatrix.
Multiply Row by Column
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MatrixMultiplication

I Matrices A and B can be multiplied with each other, if the number of
columns of Am,nmatches the number of rows in Bn,o.
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Lecture 7 - Object Oriented Programming Outlook - �e NumpyModule

�eNumpyModule

I Numpy is part of SciPy themodule for scientific programming

I It should have been installed with matplotlib

I It is usually imported like this:

import numpy as np
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Lecture 7 - Object Oriented Programming Outlook - �e NumpyModule

�eNumpyArray

I Numpy brings its own data structure the numpy array

import numpy as np

#Arrays can be created from lists

array_example = np.array([1,6,7,9])

#Arrays can be created with arange

#An array with numbers from 4 to 5 and step size 0.2

array2 = np.arange(4,5,0.2) #5 is not in the array

print(array2) # [4.0 4.2 4.4 4.6 4.8]

I Elements of an array can be manipulated simultaneously

array3 = array2*array2 #For example with multiplication

print(array3)# [16.0 16.64 19.36 21.16 23.04]
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Lecture 7 - Object Oriented Programming Outlook - �e NumpyModule

Matplotlib andNumpy
I Plotting sin(x) from 0 to π with lists

listX=[]

listY=[]

step_size = 0.5

for i in range(0,int(math.pi/step_size)):

xValue = i*step_size

listX.append(xValue)

listY.append(math.sin(xValue))

plt.plot(listX,listY)

I Plotting sin(x) from 0 to π with numpy

xValues = np.arange(0,math.pi,0.5)

yValues = np.sin(xValues)

plt.plot(xValues,yValues)
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Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

NumpyArrays asMatrices

I Creating the followingmatrix: A =

1 2 3 4
5 6 7 8
9 10 11 12



I In numpy amatrix can be created from amulti-dimensional list

# This creates a 3x4 Matrix

A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

I Numpy treats such an array as a matrix

arr_dim = A.shape #Gives you the shape of your matrix

print(arr_dim) #Prints (3,4)

# Access elements with indexing

single_number = A[1,3] #8, 2nd list,4th element

num2 = A[0,1] #2, 1st list, 2nd element
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Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Matrix Operations inNumpy

I Matrix Addition:
(
1 2 3
5 6 7

)
+

(
3 5 1
5 −3 1

)
=

(
4 7 4
10 3 8

)
I In numpy code:

A = np.array([[1,2,3], [5,6,7]])

B = np.array([[3,5,1], [5,-3,1]])

C = A + B

D = A - B #Subtraction works analogously

print(D) #[[-2 -3 2],[0 9 6]]
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Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Matrix Operations inNumpy

I Matrix Multiplication:
(
1 2 3
5 6 7

)
∗

3 5
5 −3
1 1

 =

(
16 2
52 14

)

I In numpy code:

A = np.array([[1,2,3], [5,6,7]])

E = np.array([[3,5], [5,-3],[1,1]])

F = np.matmul(A,E)

print(F) # [[16,2],[52,14]]

I Do not confuse with element-wise multiplication

A = np.array([[1,2,3], [5,6,7]])

B = np.array([[3,5,1], [5,-3,1]])

G = A*B # [[3,10,3],[25,-18,7]]
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Matrix Operations inNumpy

I It also works for vectors:

< v1, v2 >= v1Tv2 =
(
1 2 3

)
∗

35
1

 = 16

I In numpy code:

V1 = np.array([1,2,3])

V2 = np.array([3,5,1])

R = np.matmul(V1,V2)

print(R) # 16

I Or vectors andmatrices if you want to
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Other helpful Operations

I Transpose Matrices: A =

(
1 2 3
5 6 7

)
AT =

1 5
2 6
3 7


I In numpy:

A = np.array([[1,2,3], [5,6,7]])

H = A.T # [[1,5],[2,6],[3,7]]

I Element-wise summing across arrays:

sum = np.sum(H) #24,

V1 = np.array([1,2,3]) #works also for 1D-arrays

sum_v = np.sum(V1) # 6
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Images asMatrices


x0,0 x0,1 x0,2 x0,3 x0,4
x1,0 x1,1 x1,2 x1,3 x1,4
x2,0 x2,1 x2,2 x2,3 x2,4
x3,0 x3,1 x3,2 x3,3 x3,4
x4,0 x4,1 x4,2 x4,3 x4,4
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Images asMatrices


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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Images asMatrices


1 0 0 0 1
0 0 1 0 0
0 0 0 0 0
0 1 0 1 0
0 0 1 0 0
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Images asMatrices


1 0 0 0 1
0 0 1 0 0
0 0 0 0 0
0 1 0 1 0
0 0 1 0 0
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Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

22.10.2020 16 / 41



Lecture 7 - Object Oriented Programming Outlook - Matrix Calculation with Numpy

Convolution of Functions

(f ∗ g)(x) =
∫ ∞
−∞

f (x′)g(x − x′)dx′

Convolution of the Gaussian function with itself

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-5 -4 -3 -2 -1  0  1  2  3  4  5

X = -4
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−∞

f (x′)g(x − x′)dx′
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Convolution of Functions
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Convolution of Functions
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Convolutionwith the Rectangle Function
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Applying Filters to Images
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming

1. Outlook: Matrices and Scientific Programming
ä Matrices Quick Summary
ä �eNumpyModule
ä Matrix Calculation with Numpy

2. Excursion: Object Oriented Programming
ä What is OOP?
ä Example Project
ä Inheritance
ä Modules in Python

3. Tasks
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Programming Paradigms

Procedural Programming

I A problem is solved by
manipulating data structures
through procedures

I �e key is to write the right logic

I Efficiency is a main focus of
procedural programming

Object oriented Programming

I A problem is solved by modeling
it’s processes

I �e key is to figure out the
relevant entities and their
relations

I Programming Logic is tightly
coupled to entities
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Classes vs. Objects

Person
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Classes vs. Objects

Person
first name
last name
age
email

Class Objects (Instances)

Alice
Anderson

28
a.anders@gmail.com

Rob
Robertson

17
cool_dude@aol.com
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Classes Bind Variables Together

I Instead of writing something like this

#Alice's attributes

alice_name = "Alice"

alice_last_name = "Anderson"

alice_age = 28

I Objects encapsulate multiple variables in one place

#A Person-object variable

alice = Person("Alice","Anderson",28)
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Classes are AdvancedData Types

I Object variables can be treated like simple types

#Two Person-object variables

alice = Person("Alice","Anderson",28)

rob = Person("Rob","Robertson",17)

#Objects can be stored in lists

myPersonList = [] #I want to manage persons

myPersonList.append(rob)

#Objects can be arguments of self-defined functions

calculate_year_of_birth(alice)
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Class Definition

I A class needs to be defined

class Person: #This defines the class Name

#The __init__ function is responsible for class creation

↪→ and defines its' attributes

def __init__(self, first_name,last_name,age):

#The passed values are stored in the class

self.first_name = first_name

self.last_name = last_name

self.age = age

I �is is enough to create a class-object

robby = Person("Rob","Robertson",17)
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Accessing Class Attributes

I Class attributes can be accessed via the ‘.’ operator

robby = Person("Rob","Robertson",17)

f_name = robby.first_name #"Rob"

l_name = robby.last_name #"Robertson"

age = robby.age #17

I �ey can also be assigned after initialization

robby.age = 18 #As he gets older

robby.l_name = "Peterson" #If he marries
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Objects and Functions

I We can use objects as function arguments

#Definition

def print_info(person):

print(person.first_name +" " +person.last_name +"

↪→ is " +str(person.age) +" years old.")

I Usage:

robby = Person("Rob","Robertson",17)

print_info(robby)

#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)

print_info(alice)

#This prints: "Alice Anderson is 28 years old"
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Function Encapsulation

I Functions can even be defined inside classes

class Person: #This defines the class Name

#The __init__ function

def __init__(self, first_name,last_name,age):

#The passed values are stored in the class

self.first_name = first_name

self.last_name = last_name

self.age = age

#Our print_info function

def print_info(self): #Note how the argument changed

print(self.first_name +" " +self.last_name +" is

↪→ " +str(self.age) +" years old.")
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - What is OOP?

Function Encapsulation

I A function can be called directly from the object

robby = Person("Rob","Robertson",17)

robby.print_info()

#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)

alice.print_info()

#This prints: "Alice Anderson is 28 years old"

I �is way a potential programmer/user does not need to know the
internal structure of the particular class, e.g. list.append().
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

CourseManagement Program

I Wewant to write a program for the university

I It should give an overview over the different courses

I It should track each course, its lecturer and its students

Howwould anOOPmodel look like?
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CourseManagement Program

Course

name
year
id_number
lecturer
student_list
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Example Code

I �e course class

class Course: #This defines the class Name

#The __init__ function

def __init__(self, name,year,id_number,lecturer):

#The passed values are stored in the class

self.name = name

self.year = year

self.id_number = id_number

self.lecturer = lecturer

self.student_list = [] #empty upon creation
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Example Code

I �e lecturer class

class Lecturer: #This defines the class Name

#The __init__ function

def __init__(self, first_name,last_name,age,email,

↪→ bank_account):

#The passed values are stored in the class

self.first_name = first_name

self.last_name = last_name

self.age = age

self.email = email

self.bank_account = bank_account
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Example Project

Example Code

I Create the Course

lecturer_jan = Lecturer("Jan","Tekuelve",30,"jan.

↪→ tekuelve@ini.rub.de",1234567)

cscience_course = Course("Computer Science and

↪→ Mathematics",2019,1234,lecturer_jan)

I At the end of the year access the bank account:

c_bank_account = cscience_course.lecturer.bank_account

I �is works independent of course and lecturer
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

�eStudent Class

I �is class looks similar to the lecturer

class Student: #This defines the class Name

#The __init__ function

def __init__(self, first_name,last_name,age,email,

↪→ student_id):

#The passed values are stored in the class

self.first_name = first_name

self.last_name = last_name

self.age = age

self.email = email

self.student_id = student_id

self.grade = -1
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Code Redundancy

Course

name
year
id_number
lecturer
student_list

Lecturer

first name
last name
age
email
bank_account

Student

first name
last name
age
email
student_id
grade
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

�ePerson Class

I Wewill use the Class Person as Super-Class

class Person: #This defines the class Name

#The __init__ function

def __init__(self, first_name,last_name,age,email):

#The passed values are stored in the class

self.first_name = first_name

self.last_name = last_name

self.age = age

self.email = email
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Inheritance
I Lecturer and Student will inherit from Person

class Lecturer(Person): #Brackets declare inheritance

#The __init__ function is overrriden

def __init__(self,f_name,l_name,age,email,b_acc):

#The super() calls the parent function

super().__init__(f_name,l_name,age,email)

self.bank_account = b_acc

class Student(Person): #Brackets declare inheritance

#The __init__ function is overrriden

def __init__(self,f_name,l_name,age,email,stud_id):

super().__init__(f_name,l_name,age,email)

self.student_id = stud_id

self.grade = -1
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Modifiying the Parent Class

I Functions of the parent class are available to child classes

class Person: #This defines the class Name

def __init__(self, first_name,last_name,age,email):

#The passed values are stored in the class

self.first_name = first_name

self.last_name = last_name

self.age = age

self.email = email

#Our print_info function

def print_info(self): #Note how the argument changed

print(self.first_name +" " +self.last_name +" is

↪→ " +str(self.age) +" years old.")
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Using Parent Functions

I Functions of the parent class are available to child classes

student_rob = Student("Rob","Robertson",25,"rob.

↪→ robson@rub.de","108001024")

lecturer_jan = Lecturer("Jan","Tekuelve",30,"jan.

↪→ tekuelve@ini.rub.de",1234567)

student_rob.print_info()

lecturer_jan.print_info()

#Prints:

#Rob Robertson is 25 years old.

#Jan Tekuelve is 30 years old.

22.10.2020 36 / 41



Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Inheritance

Completing the Example

I �e course needs to be able to add students

#Inside the Course class

def enroll(self,student):

self.student_list.append(student)

#Enroll adds them to the course internal list

I Minimal example:

cscience_course = Course("Computer Science and

↪→ Mathematics",2019,1234,lecturer_jan)

student_rob = Student("Rob","Robertson",25,"rob.

↪→ robson@rub.de","108001024")

cscience_course.enroll(student_rob)
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Creating your ownPythonModules

I Class definitions can be stored in separate module

I E.g. if you save the above class definitions in a file unimanager.py

I You can access the definitions in another script from the same folder:

import unimanager

student_rob = unimanager.Student("Rob","Robertson",25,"

↪→ rob.robson@rub.de","108001024")

I �is allows for flexible re-usability of code
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Lecture 7 - Object Oriented Programming Excursion: Object Oriented Programming - Modules in Python

Advantages/Disadvantages of OOP

Advantages:

I Design Benefit: Real/World processes are easily transferable in code

I Modularity: Extending and reusing software is easy

I Software Maintenance: Modular code is easier to debug

Disadvantages:

I Desing Overhead: Modeling requires longer initial development time

I Originally OOP required more “coding”
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Lecture 7 - Object Oriented Programming Tasks

Tasks

1. Download todays class definitions unimanager.py and create a separate
script that uses this module to create a course, a lecturer and three
sample students.
I Enroll all students to the course.
I After enrolling iterate through the student list to print the info of all

enrolled students. You can access the student_list via the course object.
I In the loop use the print_info() function.

2.* Add a print_info() function to the class definition of Course in
unimanager.py. �is function should print the course name, its lecturer
and each student of the course with his/her student ID.
I �e function should be defined in the Course class and its only argument

should be self
I �e course name, the lecturer and its student_list can be accessed via the

self keyword.
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Lecture 7 - Object Oriented Programming

�is concludes the Preparatory Course.

AnyQuestions or Feedback?
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