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Lecture 4 - Sequences Motivation

Motivation

Estimating Velocity by
Differentiation
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Overview

1. Motivation

2. Function Limits
» Sequences
» Limit Definition

3. Differentiation
» Graphical Interpretation
» Formal Description
» Rules for Differentiation
» Numerical Differentiation

4. Tasks
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Lecture 4 - Sequences Function Limits

Overview

2. Function Limits
» Sequences
» Limit Definition
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Lecture 4 - Sequences Function Limits - Sequences

Sequences

Sequence Definition

Functions with the domain N are called sequence. A sequence with the
codomain R is called a sequence of real numbers: f : N — R, n — f(n)

Examples:
» Constant sequence: (3)neny = (3,3,3,3,3,...)

> Sequence of natural numbers: (n),eny = (1,2,3,4,5,...)
1111 )

’ 20 37 47 57 A

» Geometric sequence: (¢")nen = (4, 4 T - - )

> Harmonic sequence: (3 )pen = (1

» Alternating sequence: ((—1)")pen = (—1,1,-1,1, —1,...)
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Lecture 4 - Sequences Function Limits - Sequences

Recursive Sequences

Recursive Sequence Definition

A sequence (ay,),cn may be recursively defined by:
1. The first sequence element : a5, called initial value

2. Arecursive rule defining element a,,4; through previous elements a,,

Example: The Fibonacci Sequence

Apy1 =ay + ap—1 = (1,1,2,3,5,8,13,21,...),

witha; =landa, =1
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Lecture 4 - Sequences Function Limits - Sequences

Properties of Sequences

Boundedness

A sequence (ay),en has

» anupper bound, if thereisa K € R, such thata, < Kforalln € N

» alowerbound, if thereisa K € R, such thata, > Kforalln € N
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Properties of Sequences

Boundedness

A sequence (ay),en has

» anupper bound, if thereisa K € R, such thata, < Kforalln € N

» alowerbound, if thereisa K € R, such thata, > Kforalln € N

Monotonicity

A sequence (dy)yen 1S :

> (strictly) monotonically increasing, if a,(<) < a,,; foralln € N

> (strictly) monotonically decreasing, if a,(>) > a4 foralln € N

16.10.2020 9/35



Lecture 4 - Sequences Function Limits - Limit Definition

Convergence and Divergence

Definitions

> Asequence (ay),cn of real numbers converges to a real number L, if for
all € > 0, there exists a natural number N:

ap <L+€e A a,>L—¢cforalln >N

v
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Lecture 4 - Sequences Function Limits - Limit Definition

Convergence and Divergence

Definitions

> Asequence (ay),cn of real numbers converges to a real number L, if for
all € > 0, there exists a natural number N:

ap <L+€e A a,>L—¢cforalln >N

Translation:

» Lis called the limit of a sequence

lim a, =L
n—00

> A sequence that does not converge is called divergent
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Lecture 4 - Sequences Function Limits - Limit Definition

Convergence Example

The harmonic sequence (£),en = (1,2, 1,1, 1) converges to Zero
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Lecture 4 - Sequences Function Limits - Limit Definition

Convergence Example

A sequence (ay),cn of real numbers converges to a real number L, if for all
€ > 0, thereexistsN:a, <L-+¢€¢ A a, >L—cforalln >N
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Convergence Example

A sequence (ay),cn of real numbers converges to a real number L, if for all
€ > 0, thereexistsN:a, <L-+¢€¢ A a, >L—cforalln >N
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Lecture 4 - Sequences Function Limits - Limit Definition

Convergence Example

A sequence (ay),cn of real numbers converges to a real number L, if for all
€ > 0, thereexistsN:a, <L-+¢€¢ A a, >L—cforalln >N
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Lecture 4 - Sequences Function Limits - Limit Definition

Convergence Example
A sequence (ay),cn of real numbers converges to a real number L, if for all
€ > O,thereexists N:a, <L+¢€ A a, >L—eforalln >N
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Convergence Example
A sequence (ay),cn of real numbers converges to a real number L, if for all
€ > O,thereexists N:a, <L+¢€ A a, >L—eforalln >N
3=
2.5; (

0.5+

16.10.2020 11/35



Lecture 4 - Sequences Function Limits - Limit Definition

Properties of Limits

Calculating with Limits

For two converging sequences (X, )nen and (v, )nen with limits
lim, o0 %, = Ly and limy,_,oc y» = Ly the following holds:

» Scalar multiplication: lim,,_,, (ax,) = aL, fora € R
» Addition: lim, o (xy +yu) = Lc + L,

» Multiplication: lim, o (X,ys) = LyL,

» Division: limnﬁoo(;f—z) = f—;

» Norm: limy,_, o (|x,|) = |Ly|
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Lecture 4 - Sequences Differentiation

3. Differentiation
» Graphical Interpretation
» Formal Description
» Rules for Differentiation
» Numerical Differentiation
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Lecture 4 - Sequences Differentiation - Graphical Interpretation

A function and its derivative

flx) == fl(x) =2x
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Lecture 4 - Sequences Differentiation - Graphical Interpretation

A function and its derivative

flx) =05 fllx) =0
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Lecture 4 - Sequences Differentiation - Graphical Interpretation

A function and its derivative

flx) = sin(x) () = cos(x)
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Lecture 4 - Sequences Differentiation - Graphical Interpretation

Derivative as a Tangent

fx) =sinx)  f(x) = cos(x)
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Lecture 4 - Sequences Differentiation - Formal Description

Formal Definition

Differentiable Function

» A function f with domain M is called differentiable at position xo if, if

the limit value
)~ f)
X—Xo X — Xo

exists.

v
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Lecture 4 - Sequences Differentiation - Formal Description

Formal Definition

Differentiable Function

» A function f with domain M is called differentiable at position xo if, if

the limit value
)~ f)
X—Xo X — Xo

exists.

» This limit is called f” or derivative of f at position x,. If f’ is defined for
allxy € M, then f” becomes a new function called the derivative of f

v
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Lecture 4 - Sequences Differentiation - Formal Description

Formal Definition

Differentiable Function

» A function f with domain M is called differentiable at position xo if, if

the limit value
)~ f)
X—Xo X — Xo

exists.

» This limit is called f” or derivative of f at position x,. If f’ is defined for
allxo € M, then f’ becomes a new function called the derivative of f

» Alternate notations:

£ = L) = im

h—0

fle+h) —f(x)
h

v
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Lecture 4 - Sequences Differentiation - Formal Description

Differentiation as Limit Example

» Statement: The derivative of f(x) = x* is f'(x) = 2x
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Differentiation as Limit Example

» Statement: The derivative of f(x) = x* is f'(x) = 2x
» Applying the formula

_ 2 2
iy T = flx0) _ % — %"
X—Xo X — Xo X—%o X — Xp

» Simplifying

X—Xo X — Xo X—Xo X=X X—Xo
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Lecture 4 - Sequences Differentiation - Formal Description

Differentiation as Limit Example

» Statement: The derivative of f(x) = x* is f'(x) = 2x
» Applying the formula

_ 2 2
iy T = flx0) _ % — %"
X—Xo X — Xo X—%o X — Xp

» Simplifying

X—Xo X — Xo X—Xo X=X X—Xo

» Applying the limit:

lim (x + xp) = 2x
X—>Xo
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Differentiation is a linear operator

» Constant Factor P
d—(“f) = “d—(f)
> Sums
Ly =L+L)
Y YT ix 7
Example:
d 0 d 5, B
E(4x ) = 4%@ ) = 4(2x) = 8x
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Differentiation is a linear operator

» Constant Factor

d
= (af) = a()
> Sums
d d
d—(f'i‘g) = a(f)‘i‘a(g)
Example:
d a8 2 _ _
£(4x ) = 4dx(x ) =4(2x) = 8x
d 2 2\ d 2 d 2\ __ _
&(4x + x%) _4@@ )+ &(x ) = 4(2x) + 2x = 10x
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Differentiation for Products and Quotients

Rules

» Multiplication
—d(f)——d(f) +f—d()
) = BT

> Exponentiation

d d

___(fn

L N |
dx )= ndx )
» Division

% @ _ %(f)gg—zf%(g)

16.10.2020
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Examples

» Multiplication

d‘i(xzsin(x)) = di(xz)sin(x) + xzdi(sin(x)) = 2xsin(x) + x*cos(x)
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Examples

» Multiplication

di(xzsin(x)) = di(xz)sin(x) + xzdi(sin(x)) = 2xsin(x) + x*cos(x)

» Division
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Exponentiation Rule derives from Multiplication Rule

» Example f'(x*)
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Exponentiation Rule derives from Multiplication Rule

» Example f'(x?)

d, 5 d .,  d , ,d
a(x ) —%(x x) = %(x )x +x @(x)
:2xx+x2:3x2
» Example f/(x*)
A4 oz L 282
dx(x)_dx(xx)_ dx(x )X +X dx(x)
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Exponentiation Rule derives from Multiplication Rule

» Example f'(x?)

d, 5 d .,  d , ,d
a(x ) —%(x x) = %(x )x +x @(x)
:2xx+x2:3x2
» Example f/(x*)
Ao d a0 d i ad
dx(x)_dx(xx)_ dx(x )X +X dx(x)

=2xx% + x%2x = 208 + 26° = 4
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Special cases

» The derivative of
flx) = evisf(x) =
» The derivative of
£(x) = In(x) is f'(x) = L
» The derivative of

f(x) = sin(x) is f' (x) = cos(x)
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Composite functions

Chain Rule

» Function h is a composition of functions g and f

h(x) = (g0 f)(x) = g(f(x))
» If gandf are differentiable, h is also differentiable

£ = & (0 (f(w)), withy = £

» Verbal rule: Inner derivative times outer derivative

16.10.2020

26 /35



Lecture 4 - Sequences Differentiation - Rules for Differentiation

Chain Rule Examples

> h(x) = 5(7x + 2)* = g(f(x))
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Chain Rule Examples

> h(x) = 5(7x + 2)* = g(f (x))
gx) =5 Af(x) =7x+2
g (x) =20 A f(x) =7
W (x) = 20(7x + 2)°7 = 140(7x + 2)°
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Chain Rule Examples
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> h(x) = ¢ = g(f(x))

16.10.2020

27/35



Lecture 4 - Sequences Differentiation - Rules for Differentiation

Chain Rule Examples

> h(x) = 5(7x + 2)* = g(f(x))

g(x) =5x* Af(x ):7x+2
g'(x) = 200° A f'(x) =
W(x) =20(7x +2)°7 = 14o(7x+2)3

> h(x) = ¢ = g(f(x))
g(x) =€ Nfx) =

16.10.2020

27/35



Lecture 4 - Sequences Differentiation - Rules for Differentiation

Chain Rule Examples

> h(x) = 5(7x + 2)* = g(f(x))

g(x) =5x* Af(x ):7x+2
g'(x) = 200° A f'(x) =
W (x) = 20(7x + 2) 7_140(7x+2)3

> h(x) = ¢ = g(f(x))

glx) =€ Nf(x) =5x
§(x) = & Afl(x) =5
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Chain Rule Examples

> h(x) = 5(7x + 2)* = g(f(x))

g(x) = sx* /\f():7x+2

g'(x) = 200° A f'(x) =

W (x) =2 (7x+2)7_14o(7x+2)3
> h(x) = e = g(f(x))

g(x) = ¢ A f(x) = 5x

gx)=enfx)=5
W(x) = &5 = 5¢*
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Finding Local Extrema

fx) = sin(x) f'(x) = cos(x)
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Finding Local Extrema

flx) == fl(x) =2
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Calculation of Local Extrema

> f(x) = 4x* + 6x
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Fl(x) = 8x+6=0
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Fl(x) = 8x+6=0
< 8x = —6
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Calculation of Local Extrema

> f(x) = 4x* + 6x

f(x) = 8x+6
Fl(x) = 8x+6=0
<= 8x = —6
—6 —3
=Sa=— = —
8 4

> f(x) = sin(x)
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Calculation of Local Extrema

> f(x) = 4x* + 6x

f(x) = 8x+6
Fl(x) = 8x+6=0
<= 8x = —6
—6 —3
== —=—
8 4

> f(x) = sin(x)
f() = cos(x)
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Calculation of Local Extrema

> f(x) = 4x* + 6x

f(x) = 8x+6
flx) =8x+6=0
<= 8x = —6
—6 —3
== —=—
8 4

> f(x) = sin(x)
£/(x) = aos(x)
(x) = cos(x) = 0
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Calculation of Local Extrema

> f(x) = 4x* + 6x

F(x) = 8x + 6
flx) =8x+6=0

<~ 8x = —6
-6 -3
== — = —
8 4

> f(x) = sin(x)

f'(x) = cos(x)
f/(%) = cos(x) = 0
<= x = cos”}(0)
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Calculation of Local Extrema

> f(x) = 4x* + 6x

F(x) = 8x + 6
flx) =8x+6=0
<~ 8x = —6
—6 -3
=ax=— = —
8 4
> f(x) = sin(x)
f'(x) = cos(x)
f/(x) = cos(x) = 0
<= x = cos”}(0)
— x=90° = 5270":31,...
2 2

16.10.2020

29/35



Lecture 4 - Sequences Differentiation - Rules for Differentiation

Differentiability is not given

ORS flo) =3
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Lecture 4 - Sequences Differentiation - Numerical Differentiation

Numerical Differentiation

» Problem: Only function values f (xy) of f (x) are known, but not the real
function f
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» Problem: Only function values f (xy) of f (x) are known, but not the real
function f

» Instead of calculating the derivative of f analytically, it is possible to
approximate f’(x) using numerical differentiation
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Lecture 4 - Sequences Differentiation - Numerical Differentiation

Numerical Differentiation

» Problem: Only function values f (xy) of f (x) are known, but not the real
function f

» Instead of calculating the derivative of f analytically, it is possible to
approximate f’(x) using numerical differentiation

(Simple) Numerical Differentiation

The set I describes the computable domain of f in the given context. It is
possible to calculate function value f (x;), where x; € L.

iy o f ) =)

Xit1 — Xi

where x; 1 is the smallest positive distance from x; in I..
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Lecture 4 - Sequences Differentiation - Numerical Differentiation

Numerical Differentiation Example

» From a sensor we receive the following values:
X; 0] 1 2 3 4 5 6 7 8 9
fl) |31 2.9 24 14 1.6 3 31 33 3.5 42
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Lecture 4 - Sequences Differentiation - Numerical Differentiation

Numerical Differentiation Example

» From a sensor we receive the following values:
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Numerical Differentiation Example

» From a sensor we receive the following values:
X; 0] 1 2 3 4 5 6 7 8 9
fl) |31 2.9 24 14 1.6 3 31 33 3.5 42

» The derivative at x; equals:

o) = flsi) —flws) | flo) —flxs) _ 16-14 _

X341 — X3 4-3 1

0.2

» The change at position x; is 0.2
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Tasks

1. Calculate the derivative of the following functions (on a piece of paper)

L1 f(x) =7x*
1.2 g(x) = 2x* + 3¢ + x* + 10x + 5
1.3 h(x) = 4¢*

14 i(x) = (12x +5)3x
L5 j(x) = =2 x)

> First think about the rule you need to use

> Identify the parts of the rule in the equation
> If possible differentiate individual parts first
> Apply the rule
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Task Template Braitenberg

» Download the archive task_template_4.zip from the course homepage.
Extract it into a folder of your choice.

» The archive contains task_4_1.py, task_4_1_student_code.py and
braitenberg.png.

» Use task_4_1.py to run the program, but edit code only in
task_4_1_student_code.py.

Explain Task Template!
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Tasks

2. Calculate the vehicle’s velocity through numerical differentiation.

» Open task_4_1_student_code.py and implement the function
calc_velocity _from_position.

> Use the given list of positions to estimate the vehicles velocity using
numerical differentiation.

> Append the resulting velocity values to the player_velocities x list.

> Tip: Use a for-loop that runs through the position values and compares
the current list-entry to the preceding one.

3. Write a script the calculates the Fibonacci sequence for an arbitrary
number N of elements. Print the numbers to the console.
> The first two elements of ¢; and a, are always 1
> Write a loop that runs N times and calculates the Fibonacci number
Ap+1 = Gp + Ap—1
> Tip: Use variables to store the values for the current value a,, and the
previous value a,,_; and update them in each loop.
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