Lecture 4 Function Limits and Differentiation

Jan Tekülve

jan.tekuelve@ini.rub.de

Computer Science and Mathematics Preparatory Course

16.10.2020

Motivation

Motivation

Estimating Velocity by Differentiation

Motivation

Overview

1. Motivation

2. Function Limits

- Sequences
- Limit Definition

3. Differentiation

- ► Graphical Interpretation
- ► Formal Description
- ► Rules for Differentiation
- Numerical Differentiation

4. Tasks

Overview

1. Motivation

2. Function Limits

SequencesLimit Definition

3. Differentiation

- > Graphical Interpretation
- ► Formal Description
- Rules for Differentiation
- Numerical Differentiation

4. Tasks

Sequences

Sequence Definition

Functions with the domain \mathbb{N} are called **sequence**. A sequence with the codomain \mathbb{R} is called a sequence of real numbers: $f : \mathbb{N} \to \mathbb{R}$, $n \to f(n)$

Examples:

- Constant sequence: $(3)_{n \in \mathbb{N}} = (3, 3, 3, 3, 3, ...)$
- Sequence of natural numbers: $(n)_{n \in \mathbb{N}} = (1, 2, 3, 4, 5, ...)$
- Harmonic sequence: $(\frac{1}{n})_{n \in \mathbb{N}} = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots)$
- Geometric sequence: $(q^n)_{n \in \mathbb{N}} = (q, q^2, q^3, q^4, q^5, \dots)$
- Alternating sequence: $((-1)^n)_{n \in \mathbb{N}} = (-1, 1, -1, 1, -1, ...)$

Recursive Sequences

Recursive Sequence Definition

A sequence $(a_n)_{n \in \mathbb{N}}$ may be recursively defined by:

- **1.** The first sequence element : a_1 , called **initial value**
- **2.** A recursive rule defining element a_{n+1} through previous elements a_n

Example: The Fibonacci Sequence

$$a_{n+1} = a_n + a_{n-1} = (1, 1, 2, 3, 5, 8, 13, 21, ...),$$

with $a_1 = 1$ and $a_2 = 1$

Properties of Sequences

Boundedness

- A sequence $(a_n)_{n\in\mathbb{N}}$ has
 - ▶ an **upper bound**, if there is a $K \in \mathbb{R}$, such that $a_n \leq K$ for all $n \in \mathbb{N}$
 - ▶ a **lower bound**, if there is a $K \in \mathbb{R}$, such that $a_n \ge K$ for all $n \in \mathbb{N}$

Properties of Sequences

Boundedness

- A sequence $(a_n)_{n\in\mathbb{N}}$ has
 - ▶ an **upper bound**, if there is a $K \in \mathbb{R}$, such that $a_n \leq K$ for all $n \in \mathbb{N}$
 - ▶ a **lower bound**, if there is a $K \in \mathbb{R}$, such that $a_n \ge K$ for all $n \in \mathbb{N}$

Monotonicity

A sequence $(a_n)_{n \in \mathbb{N}}$ is :

- ▶ (strictly) monotonically increasing, if $a_n(<) \le a_{n+1}$ for all $n \in \mathbb{N}$
- ▶ (strictly) monotonically decreasing, if $a_n(>) \ge a_{n+1}$ for all $n \in \mathbb{N}$

Definitions

A sequence (a_n)_{n∈ℕ} of real numbers **converges** to a real number L, if for all ε > 0, there exists a natural number N:

$$a_n < L + \epsilon \ \land \ a_n > L - \epsilon \text{ for all } n \ge N$$

Definitions

A sequence (a_n)_{n∈ℕ} of real numbers **converges** to a real number L, if for all ε > 0, there exists a natural number N:

$$a_n < L + \epsilon \land a_n > L - \epsilon$$
 for all $n \ge N$

Translation: A sequence converges to a real number *L*, if you get closer to *L* with each additional element in the sequence

Definitions

A sequence (a_n)_{n∈ℕ} of real numbers **converges** to a real number L, if for all ε > 0, there exists a natural number N:

$$a_n < L + \epsilon \land a_n > L - \epsilon$$
 for all $n \ge N$

Translation: A sequence converges to a real number *L*, if you get closer to *L* with each additional element in the sequence

L is called the **limit** of a sequence

$$\lim_{n\to\infty}a_n=L$$

Definitions

A sequence (a_n)_{n∈ℕ} of real numbers **converges** to a real number L, if for all ε > 0, there exists a natural number N:

$$a_n < L + \epsilon \land a_n > L - \epsilon$$
 for all $n \ge N$

Translation: A sequence converges to a real number *L*, if you get closer to *L* with each additional element in the sequence

L is called the **limit** of a sequence

$$\lim_{n\to\infty}a_n=L$$

A sequence that does not converge is called divergent

The harmonic sequence $(\frac{1}{n})_{n \in \mathbb{N}} = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots)$ converges to **Zero**

The harmonic sequence $(\frac{1}{n})_{n \in \mathbb{N}} = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots)$ converges to **Zero**

Properties of Limits

Calculating with Limits

For two converging sequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ with limits $\lim_{n \to \infty} x_n = L_x$ and $\lim_{n \to \infty} y_n = L_y$ the following holds:

Scalar multiplication: $\lim_{n\to\infty} (ax_n) = aL_x$ for $a \in \mathbb{R}$

• Addition:
$$\lim_{n\to\infty}(x_n+y_n)=L_x+L_y$$

• Multiplication: $\lim_{n\to\infty} (x_n y_n) = L_x L_y$

• **Division:**
$$\lim_{n\to\infty} \left(\frac{x_n}{y_n}\right) = \frac{L_x}{L_y}$$

▶ Norm: $\lim_{n\to\infty} (|x_n|) = |L_x|$

1. Motivation

2. Function Limits

► Sequences

Limit Definition

3. Differentiation

- ➤ Graphical Interpretation
- ► Formal Description
- Rules for Differentiation
- Numerical Differentiation

4. Tasks

Derivative as a Tangent

Derivative as a Tangent

Derivative as a Tangent

Formal Definition

Differentiable Function

A function f with domain M is called differentiable at position x_0 if, if the limit value

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists.

Formal Definition

Differentiable Function

A function f with domain M is called differentiable at position x_0 if, if the limit value

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$

exists.

▶ This limit is called f' or **derivative of** f at position x_0 . If f' is defined for all $x_0 \in M$, then f' becomes a new function called the derivative of f

Formal Definition

Differentiable Function

A function f with domain M is called differentiable at position x_0 if, if the limit value

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists.

- ▶ This limit is called f' or **derivative of** f at position x_0 . If f' is defined for all $x_0 \in M$, then f' becomes a new function called the derivative of f
- Alternate notations:

$$f'(x) = \frac{df}{dx}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Statement: The derivative of $f(x) = x^2$ is f'(x) = 2x

- **Statement:** The derivative of $f(x) = x^2$ is f'(x) = 2x
- Applying the formula

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0}$$

- **Statement:** The derivative of $f(x) = x^2$ is f'(x) = 2x
- Applying the formula

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0}$$

Simplifying

$$\lim_{x \to x_0} \frac{(x - x_0)(x + x_0)}{x - x_0} = \lim_{x \to x_0} \frac{(x - x_0)(x + x_0)}{x - x_0} = \lim_{x \to x_0} (x + x_0)$$

- **Statement:** The derivative of $f(x) = x^2$ is f'(x) = 2x
- Applying the formula

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0}$$

$$\lim_{x \to x_0} \frac{(x - x_0)(x + x_0)}{x - x_0} = \lim_{x \to x_0} \frac{(x - x_0)(x + x_0)}{x - x_0} = \lim_{x \to x_0} (x + x_0)$$

Applying the limit:

$$\lim_{x\to x_0}(x+x_0)=2x$$

Differentiation is a linear operator

Rules

 Constant Factor 	$\frac{d}{dx}(af) = a\frac{d}{dx}(f)$
Sums	$\frac{d}{dx}(f+g) = \frac{d}{dx}(f) + \frac{d}{dx}(g)$

Example:

$$\frac{d}{dx}(4x^2) = 4\frac{d}{dx}(x^2) = 4(2x) = 8x$$

Differentiation is a linear operator

Rules

 Constant Factor 	$\frac{d}{dx}(af) = a\frac{d}{dx}(f)$
Sums	$\frac{d}{dx}(f+g) = \frac{d}{dx}(f) + \frac{d}{dx}(g)$

Example:

$$\frac{d}{dx}(4x^2) = 4\frac{d}{dx}(x^2) = 4(2x) = 8x$$
$$\frac{d}{dx}(4x^2 + x^2) = 4\frac{d}{dx}(x^2) + \frac{d}{dx}(x^2) = 4(2x) + 2x = 10x$$

Differentiation for Products and Quotients

Rules

Multiplication

$$\frac{d}{dx}(fg) = \frac{d}{dx}(f)g + f\frac{d}{dx}(g)$$

Exponentiation

$$\frac{d}{dx}(f^n) = n\frac{d}{dx}(f)^{n-1}$$

$$\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{\frac{d}{dx}(f)g - f\frac{d}{dx}(g)}{g^2}$$

Examples

Multiplication

$$\frac{d}{dx}(x^2\sin(x)) = \frac{d}{dx}(x^2)\sin(x) + x^2\frac{d}{dx}(\sin(x)) = 2x\sin(x) + x^2\cos(x)$$

Examples

Multiplication

$$\frac{d}{dx}(x^2\sin(x)) = \frac{d}{dx}(x^2)\sin(x) + x^2\frac{d}{dx}(\sin(x)) = 2x\sin(x) + x^2\cos(x)$$

Division

$$\frac{d}{dx}\left(\frac{1}{x}\right) = \frac{\frac{d}{dx}(1)x - 1\frac{d}{dx}(x)}{x^2} = \frac{0-1}{x^2} = \frac{-1}{x^2}$$

• Example $f'(x^3)$

$$\frac{d}{dx}(x^3) = \frac{d}{dx}(x^2x) = \frac{d}{dx}(x^2)x + x^2\frac{d}{dx}(x)$$

• Example $f'(x^3)$

$$\frac{d}{dx}(x^3) = \frac{d}{dx}(x^2x) = \frac{d}{dx}(x^2)x + x^2\frac{d}{dx}(x)$$
$$= 2xx + x^2 = 3x^2$$

Example $f'(x^3)$

$$\frac{d}{dx}(x^3) = \frac{d}{dx}(x^2x) = \frac{d}{dx}(x^2)x + x^2\frac{d}{dx}(x)$$
$$= 2xx + x^2 = 3x^2$$

• Example $f'(x^4)$

$$\frac{d}{dx}(x^4) = \frac{d}{dx}(x^2x^2) = \frac{d}{dx}(x^2)x^2 + x^2\frac{d}{dx}(x^2)$$

Example $f'(x^3)$

$$\frac{d}{dx}(x^3) = \frac{d}{dx}(x^2x) = \frac{d}{dx}(x^2)x + x^2\frac{d}{dx}(x)$$
$$= 2xx + x^2 = 3x^2$$

• Example $f'(x^4)$

$$\frac{d}{dx}(x^4) = \frac{d}{dx}(x^2x^2) = \frac{d}{dx}(x^2)x^2 + x^2\frac{d}{dx}(x^2)$$
$$= 2xx^2 + x^22x = 2x^3 + 2x^3 = 4x^3$$

Special cases

The derivative of

$$f(x) = e^x \operatorname{is} f'(x) = e^x$$

The derivative of

$$f(x) = \ln(x) \operatorname{is} f'(x) = \frac{1}{x}$$

► The derivative of

$$f(x) = sin(x) \text{ is } f'(x) = cos(x)$$

Composite functions

Chain Rule

Function h is a composition of functions g and f

$$h(x) = (g \circ f)(x) = g(f(x))$$

▶ If g and f are differentiable, h is also differentiable

$$\frac{d}{dx}(h(x)) = \frac{d}{dx}(g(y))\frac{d}{dx}(f(x)), \text{ with } y = f(x)$$

Verbal rule: Inner derivative times outer derivative

►
$$h(x) = 5(7x + 2)^4 = g(f(x))$$

►
$$h(x) = 5(7x + 2)^4 = g(f(x))$$

$$g(x) = 5x^4 \wedge f(x) = 7x + 2$$

▶
$$h(x) = 5(7x + 2)^4 = g(f(x))$$

 $g(x) = 5x^4 \wedge f(x) = 7x + 2$

$$g'(x) = 20x^3 \wedge f'(x) = 7$$

►
$$h(x) = 5(7x + 2)^4 = g(f(x))$$

$$g(x) = 5x^4 \wedge f(x) = 7x + 2$$

$$g'(x) = 20x^3 \wedge f'(x) = 7$$

$$h'(x) = 20(7x + 2)^37 = 140(7x + 2)^3$$

►
$$h(x) = 5(7x + 2)^4 = g(f(x))$$

$$g(x) = 5x^{4} \wedge f(x) = 7x + 2$$

$$g'(x) = 20x^{3} \wedge f'(x) = 7$$

$$h'(x) = 20(7x + 2)^{3}7 = 140(7x + 2)^{3}$$

$$\blacktriangleright h(x) = e^{5x} = g(f(x))$$

►
$$h(x) = 5(7x + 2)^4 = g(f(x))$$

$$g(x) = 5x^{4} \wedge f(x) = 7x + 2$$

$$g'(x) = 20x^{3} \wedge f'(x) = 7$$

$$h'(x) = 20(7x + 2)^{3}7 = 140(7x + 2)^{3}$$

$$h(x) = e^{5x} = g(f(x))$$
$$g(x) = e^x \wedge f(x) = 5x$$

►
$$h(x) = 5(7x + 2)^4 = g(f(x))$$

$$g(x) = 5x^4 \wedge f(x) = 7x + 2$$

$$g'(x) = 20x^3 \wedge f'(x) = 7$$

$$h'(x) = 20(7x + 2)^37 = 140(7x + 2)^3$$

$$h(x) = e^{5x} = g(f(x))$$

$$g(x) = e^x \wedge f(x) = 5x$$

$$g'(x) = e^x \wedge f'(x) = 5$$

►
$$h(x) = 5(7x + 2)^4 = g(f(x))$$

$$g(x) = 5x^4 \wedge f(x) = 7x + 2$$

$$g'(x) = 20x^3 \wedge f'(x) = 7$$

$$h'(x) = 20(7x + 2)^37 = 140(7x + 2)^3$$

$$\blacktriangleright h(x) = e^{5x} = g(f(x))$$

$$g(x) = e^x \wedge f(x) = 5x$$

$$g'(x) = e^x \wedge f'(x) = 5$$

$$h'(x) = e^{5x}5 = 5e^{5x}$$

Finding Local Extrema

Finding Local Extrema

$$\blacktriangleright f(x) = 4x^2 + 6x$$

►
$$f(x) = 4x^2 + 6x$$

 $f'(x) = 8x + 6$

►
$$f(x) = 4x^2 + 6x$$

 $f'(x) = 8x + 6$
 $f'(x) = 8x + 6 \stackrel{!}{=} 0$

►
$$f(x) = 4x^2 + 6x$$

 $f'(x) = 8x + 6$
 $f'(x) = 8x + 6 \stackrel{!}{=} 0$
 $\iff 8x = -6$

►
$$f(x) = 4x^2 + 6x$$

 $f'(x) = 8x + 6$
 $f'(x) = 8x + 6 \stackrel{!}{=} 0$
 $\iff 8x = -6$
 $\iff x = \frac{-6}{8} = \frac{-3}{4}$

►
$$f(x) = 4x^2 + 6x$$

 $f'(x) = 8x + 6$
 $f'(x) = 8x + 6 \stackrel{!}{=} 0$
 $\iff 8x = -6$
 $\iff x = \frac{-6}{8} = \frac{-3}{4}$
► $f(x) = sin(x)$

►
$$f(x) = 4x^2 + 6x$$

 $f'(x) = 8x + 6$
 $f'(x) = 8x + 6 \stackrel{!}{=} 0$
 $\iff 8x = -6$
 $\iff x = \frac{-6}{8} = \frac{-3}{4}$
► $f(x) = sin(x)$
 $f'(x) = cos(x)$

►
$$f(x) = 4x^2 + 6x$$

 $f'(x) = 8x + 6$
 $f'(x) = 8x + 6 \stackrel{!}{=} 0$
 $\iff 8x = -6$
 $\iff x = \frac{-6}{8} = \frac{-3}{4}$
► $f(x) = sin(x)$
 $f'(x) = cos(x)$
 $f'(x) = cos(x) \stackrel{!}{=} 0$
 $\iff x = cos^{-1}(0)$
 $\iff x = 90^\circ = \frac{\pi}{2}, 270^\circ = \frac{3\pi}{2}, ...$

Differentiability is not given

Numerical Differentiation

Problem: Only function values f(x₀) of f(x) are known, but not the real function f

Numerical Differentiation

- **Problem:** Only function values f(x₀) of f(x) are known, but not the real function f
- ► Instead of calculating the derivative of *f* analytically, it is possible to approximate *f*′(*x*) using **numerical differentiation**

Numerical Differentiation

- Problem: Only function values f(x₀) of f(x) are known, but not the real function f
- Instead of calculating the derivative of f analytically, it is possible to approximate f'(x) using numerical differentiation

(Simple) Numerical Differentiation

The set \mathbb{I} describes the computable domain of f in the given context. It is possible to calculate function value $f(x_i)$, where $x_i \in \mathbb{I}$.

$$f'(x_i) \approx \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i},$$

where x_{i+1} is the smallest positive distance from x_i in \mathbb{I} .

▶ The derivative at *x*³ equals:

$$f'(x_3) = \frac{f(x_{3+1}) - f(x_3)}{x_{3+1} - x_3}$$

► The derivative at *x*³ equals:

$$f'(x_3) = \frac{f(x_{3+1}) - f(x_3)}{x_{3+1} - x_3} \Rightarrow \frac{f(x_4) - f(x_3)}{4 - 3}$$

▶ The derivative at *x*³ equals:

$$f'(x_3) = \frac{f(x_{3+1}) - f(x_3)}{x_{3+1} - x_3} \Rightarrow \frac{f(x_4) - f(x_3)}{4 - 3} = \frac{1.6 - 1.4}{1}$$

▶ The derivative at *x*³ equals:

$$f'(x_3) = \frac{f(x_{3+1}) - f(x_3)}{x_{3+1} - x_3} \Rightarrow \frac{f(x_4) - f(x_3)}{4 - 3} = \frac{1.6 - 1.4}{1} = 0.2$$

▶ The derivative at *x*³ equals:

$$f'(x_3) = \frac{f(x_{3+1}) - f(x_3)}{x_{3+1} - x_3} \Rightarrow \frac{f(x_4) - f(x_3)}{4 - 3} = \frac{1.6 - 1.4}{1} = 0.2$$

▶ The change at position *x*₃ is 0.2

Tasks

1. Calculate the derivative of the following functions (on a piece of paper)

1.1
$$f(x) = 7x^4$$

1.2 $g(x) = 2x^4 + 3x^3 + x^2 + 10x + 5$
1.3 $h(x) = 4e^{3x}$
1.4 $i(x) = (12x^2 + 5)3x^3$
1.5 $j(x) = \frac{3x}{\cos(x)}$

- First think about the rule you need to use
- Identify the parts of the rule in the equation
- If possible differentiate individual parts first
- Apply the rule

Task Template Braitenberg

- Download the archive task_template_4.zip from the course homepage. Extract it into a folder of your choice.
- The archive contains task_4_1.py, task_4_1_student_code.py and braitenberg.png.
- Use task_4_1.py to run the program, but edit code only in task_4_1_student_code.py.

Explain Task Template!

Tasks

- 2. Calculate the vehicle's velocity through numerical differentiation.
 - Open task_4_1_student_code.py and implement the function calc_velocity_from_position.
 - Use the given list of positions to estimate the vehicles velocity using numerical differentiation.
 - Append the resulting velocity values to the player_velocities_x list.
 - **Tip**: Use a for-loop that runs through the position values and compares the current list-entry to the preceding one.
- **3.** Write a script the calculates the Fibonacci sequence for an arbitrary number *N* of elements. Print the numbers to the console.
 - The first two elements of a_1 and a_2 are always 1
 - ► Write a loop that runs N times and calculates the Fibonacci number $a_{n+1} = a_n + a_{n-1}$
 - ▶ **Tip:** Use variables to store the values for the current value a_n and the previous value a_{n-1} and update them in each loop.