
Lecture 1 - Introduction

Lecture 1

Introduction to Variables and Control Statements

Jan Tekülve
jan.tekuelve@ini.rub.de

Computer Science and Mathematics
Preparatory Course

12.10.2020

12.10.2020 1 / 29

Lecture 1 - Introduction

Course Formalities

Goals:

I Learning basic programming with Python

I Refreshing elementary mathematical concepts

Concept:

I Each lecture will usually be split into a theoretical explanation and a
programming session

I On the last day (23.10.) there will be an ungraded “test”

12.10.2020 2 / 29

Lecture 1 - Introduction

Corona Formalities

https://rub.corona-erfassung.de/users/newuser

CourseNumber: 310024

12.10.2020 3 / 29

https://rub.corona-erfassung.de/users/newuser

Lecture 1 - Introduction Motivation

Overview

1. Motivation

2. Programming
ä First Steps
ä Variables
ä Control Statements
ä Utilities

3. Tasks

12.10.2020 4 / 29

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent

Braitenberg Vehicles

[Braitenberg, 1986]

12.10.2020 5 / 29

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent
Environmental Factors

(Numbers)

Braitenberg Vehicles

[Braitenberg, 1986]

12.10.2020 5 / 29

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent
Environmental Factors

(Numbers)

Relationships

(Functions)

Braitenberg Vehicles

[Braitenberg, 1986]

12.10.2020 5 / 29

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent
Environmental Factors

(Numbers)

Relationships

(Functions)

α

Distance and

Orientation

(Trigonometry)

Braitenberg Vehicles

[Braitenberg, 1986]

12.10.2020 5 / 29

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent

Environmental Factors

(Numbers)

Relationships

(Functions)

α

Distance and

Orientation

(Trigonometry)

Velocity and

Position

(Differentiation

and Integration)

Braitenberg Vehicles

[Braitenberg, 1986]

12.10.2020 5 / 29

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent
Environmental Factors

(Numbers)

Relationships

(Functions)

α

Distance and

Orientation

(Trigonometry)

Velocity and

Position

(Differentiation

and Integration)

Behavior (Differential Equations)

Braitenberg Vehicles
[Braitenberg, 1986]

12.10.2020 5 / 29

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent
Environmental Factors

(Numbers)

Relationships

(Functions)

α

Distance and

Orientation

(Trigonometry)

Velocity and

Position

(Differentiation

and Integration)

Behavior (Differential Equations)

Connections

(Matrices)

Braitenberg Vehicles

[Braitenberg, 1986]

12.10.2020 5 / 29

Lecture 1 - Introduction Motivation

ProgrammingGoal

12.10.2020 6 / 29

Lecture 1 - Introduction Motivation

Course Structure

Date Title Topics
1 12.10. Variables and Control State-

ments
Data Types, Control Statements

2 13.10. Functions in Math and Pro-
gramming

Function Types and Properties, Plot-
ting Functions, Lists

3 14.10. Full-Time Programming Ses-
sion

Deepen Programming Skills

4 15.10. Coordinate Systems Vectors, Trigonometry, �e Pygame
Module

5 16.10. Differentiation Derivative Definition, Calculating
Derivatives, Numerical Differentia-
tion, File-Input/Output

12.10.2020 7 / 29

Lecture 1 - Introduction Motivation

Course Structure

Date Title Topics
6 19.10. Integration Geometrical Definition, Calculat-

ing Integrals, Numerical Integra-
tion

7 20.10. Differential Equations Properties of Differential Equa-
tions, Euler Approximation,
Braitenberg Vehicle

8 21.10. Programming Session & Re-
cap

Repetition, Questions, Test Topics

9 22.10. “Make a wish Lecture” Individual Wishes, e.g. Object-
Oriented Programming, Matrix
Calculation

10 23.10. “Test” Self-evaluation

12.10.2020 7 / 29

Lecture 1 - Introduction Programming

1. Motivation

2. Programming
ä First Steps
ä Variables
ä Control Statements
ä Utilities

3. Tasks

12.10.2020 8 / 29

Lecture 1 - Introduction Programming

�ePython Programming Language

WhyPython?

I It is simple but high level

I It is interpreted “on the fly”

I It is the state of the art scripting language

Helpful Resources

I �e Anaconda Distribution contains all necessary software:
https://www.anaconda.com/distribution/

I You can find helpful documentation here: https://docs.python.org/3/

12.10.2020 9 / 29

https://www.anaconda.com/distribution/
https://docs.python.org/3/

Lecture 1 - Introduction Programming - First Steps

Setting Up

I Open the Spyder IDE (Integrated Development Environment)

I Create your first python script file
I Close the default temporary file
I Go to File → Save as .. .
I (Recommended) Create a new folder for your python projects
I Choose the name helloworld.py

I You are set up to write your first Python script!

12.10.2020 10 / 29

Lecture 1 - Introduction Programming - First Steps

HelloWorld

I Write the following line into the file:

print("Hello World!")

I Press the green Play button in the toolbar to execute the script

I Observe the output in the console on the right

I �e print() function writes its argument to the console

12.10.2020 11 / 29

Lecture 1 - Introduction Programming - First Steps

HelloWorld

I Write the following line into the file:

print("Hello World!")

I Press the green Play button in the toolbar to execute the script

I Observe the output in the console on the right

I �e print() function writes its argument to the console

12.10.2020 11 / 29

Lecture 1 - Introduction Programming - First Steps

Script: A series of commands

I Code is executed from top to bottom - one line after each other

print("Hello There!")

print("Haven't seen you in a while.")

print("How are you?")

I You can write comments in your code using the # character

print("Hello!") #This is a comment

Lines that start with # are ignored

print("How are you?")

#print("I am bored") This line is ignored

12.10.2020 12 / 29

Lecture 1 - Introduction Programming - First Steps

Script: A series of commands

I Code is executed from top to bottom - one line after each other

print("Hello There!")

print("Haven't seen you in a while.")

print("How are you?")

I You can write comments in your code using the # character

print("Hello!") #This is a comment

Lines that start with # are ignored

print("How are you?")

#print("I am bored") This line is ignored

12.10.2020 12 / 29

Lecture 1 - Introduction Programming - Variables

Variables
I Variables are the elementary building block of every program

greeting = "Hello, Hello!"

print(greeting) #prints "Hello, Hello!"

I Variables are assigned via ‘=’

var1 = "Hello" #variable names may be chosen arbitrarily

long_variable_name5 = "Hi"

#letters, numbers and underscores may make up a name

I Assigned variables are available for code following the assignment

print(greeting) #prints "Hello, Hello!"

greeting = "Hey!" #variables may be overwritten

print(greeting) #prints "Hey!"

12.10.2020 13 / 29

Lecture 1 - Introduction Programming - Variables

Variables
I Variables are the elementary building block of every program

greeting = "Hello, Hello!"

print(greeting) #prints "Hello, Hello!"

I Variables are assigned via ‘=’

var1 = "Hello" #variable names may be chosen arbitrarily

long_variable_name5 = "Hi"

#letters, numbers and underscores may make up a name

I Assigned variables are available for code following the assignment

print(greeting) #prints "Hello, Hello!"

greeting = "Hey!" #variables may be overwritten

print(greeting) #prints "Hey!"

12.10.2020 13 / 29

Lecture 1 - Introduction Programming - Variables

Variables
I Variables are the elementary building block of every program

greeting = "Hello, Hello!"

print(greeting) #prints "Hello, Hello!"

I Variables are assigned via ‘=’

var1 = "Hello" #variable names may be chosen arbitrarily

long_variable_name5 = "Hi"

#letters, numbers and underscores may make up a name

I Assigned variables are available for code following the assignment

print(greeting) #prints "Hello, Hello!"

greeting = "Hey!" #variables may be overwritten

print(greeting) #prints "Hey!"

12.10.2020 13 / 29

Lecture 1 - Introduction Programming - Variables

Data Types andOperations

I Variables store information of various type:

farewell = "Bye, Bye!" #String Type

num1 = 5 # Integer Type

num2 = 3.0 # Float Type

I Operations may be performed using variables

print(num1+num2) #prints 8.0

I Results may again be stored in variables

num3 = num1+num2 #num3 is now 8.0

print(num3) #prints 8.0

num3 = num3+1 #num3 updates based on its current value

print(num3) #prints 9.0

12.10.2020 14 / 29

Lecture 1 - Introduction Programming - Variables

Data Types andOperations

I Variables store information of various type:

farewell = "Bye, Bye!" #String Type

num1 = 5 # Integer Type

num2 = 3.0 # Float Type

I Operations may be performed using variables

print(num1+num2) #prints 8.0

I Results may again be stored in variables

num3 = num1+num2 #num3 is now 8.0

print(num3) #prints 8.0

num3 = num3+1 #num3 updates based on its current value

print(num3) #prints 9.0

12.10.2020 14 / 29

Lecture 1 - Introduction Programming - Variables

Data Types andOperations

I Variables store information of various type:

farewell = "Bye, Bye!" #String Type

num1 = 5 # Integer Type

num2 = 3.0 # Float Type

I Operations may be performed using variables

print(num1+num2) #prints 8.0

I Results may again be stored in variables

num3 = num1+num2 #num3 is now 8.0

print(num3) #prints 8.0

num3 = num3+1 #num3 updates based on its current value

print(num3) #prints 9.0

12.10.2020 14 / 29

Lecture 1 - Introduction Programming - Variables

Excursion:�e Spyder Debugger

I A debugger allows a look under the ‘hood’ of a program

Click here to display the current variables

These are the Debug Controls

Start Debugging Execute Line by Line Stop
 Debugging

12.10.2020 15 / 29

Lecture 1 - Introduction Programming - Variables

Useful Operations onData Types

I Operations on Numbers

2+2 #4

50-5*6 #20

(50-5*6)/4 #5.0

8/5 #1.6

17/3 #5.666666666666667

17//3 #5 Integer Division

17%3 #2 Rest of the Division

I Operations on Strings

'Wo' + 'rd' #'Word' or "Word"

'Isn't' # This results in an error!

'Isn\'t' #'Isn't' Use \ to escape characters

12.10.2020 16 / 29

Lecture 1 - Introduction Programming - Control Statements

Control Statements
I if-Statement

x = 3.5

if x > 0 : #Indentation organizes blocks

print("x is positive!")#Indent with 4 spaces

print("Program is finished!")

I else-statement

x = 3.5

if x > 0 : #Indentation organizes blocks

print("x is positive!")#Indent with 4 spaces

else :

print("x is not positive!")

print("Program is finished!")

12.10.2020 17 / 29

Lecture 1 - Introduction Programming - Control Statements

Control Statements
I if-Statement

x = 3.5

if x > 0 : #Indentation organizes blocks

print("x is positive!")#Indent with 4 spaces

print("Program is finished!")

I else-statement

x = 3.5

if x > 0 : #Indentation organizes blocks

print("x is positive!")#Indent with 4 spaces

else :

print("x is not positive!")

print("Program is finished!")

12.10.2020 17 / 29

Lecture 1 - Introduction Programming - Control Statements

Control Statements

I else if-statement

x = 3.5

if x > 0 : #Indentation organizes blocks

print("x is positive!") #Indent with 4 spaces

elif x < 0 :

print("x is negative!")

else:

print("x is zero!")

print("Program is finished!")

12.10.2020 18 / 29

Lecture 1 - Introduction Programming - Control Statements

Variable Scope

I Python code is organized in
blocks by indentation (4 spaces)

I Variables defined in the global
scope are available at all positions
in the code below its definition

I Variables defined in a block are
available in the block and all
blocks inside it

a = 3

b = 4

if a > 2:

c = a + b

b = 1

if c > 5:

print(a)

else:

print(a)

print(c)

print(b)

12.10.2020 19 / 29

Lecture 1 - Introduction Programming - Control Statements

Variable Scope

I Python code is organized in
blocks by indentation (4 spaces)

I Variables defined in the global
scope are available at all positions
in the code below its definition

I Variables defined in a block are
available in the block and all
blocks inside it

Global

a = 3

b = 4

if a > 2:

c = a + b

b = 1

if c > 5:

print(a)

else:

print(a)

print(c)

print(b)

Global

Global

12.10.2020 19 / 29

Lecture 1 - Introduction Programming - Control Statements

Variable Scope

I Python code is organized in
blocks by indentation (4 spaces)

I Variables defined in the global
scope are available at all positions
in the code below its definition

I Variables defined in a block are
available in the block and all
blocks inside it

Block 1

Block 2

Block 3

Global

a = 3

b = 4

if a > 2:

c = a + b

b = 1

if c > 5:

print(a)

else:

print(a)

print(c)

print(b)

Global

Global

12.10.2020 19 / 29

Lecture 1 - Introduction Programming - Control Statements

Variable Scope

I Example

a = 3 # Global Scope

b = 4

if a > 2 :

c = a + b # Block 1

b = 1

if c > 5:

print(a) # Block 2

else : # Global

print(a) # Block 3

print(c) # If a <= 2 this will result in an error

print(b) # '1' or '4' if a <= 2

12.10.2020 20 / 29

Lecture 1 - Introduction Programming - Control Statements

While Loops

I Print the numbers from 1 to 10

a = 0

while a < 10 :

a = a +1 # Increase a by 1

print(a)

I Be careful with the exit condition

a = 0

while a < 10 :

print(a) # Prints 0 until the end of time

You can kill the running programby pressing the red terminate button

12.10.2020 21 / 29

Lecture 1 - Introduction Programming - Control Statements

While Loops

I Print the numbers from 1 to 10

a = 0

while a < 10 :

a = a +1 # Increase a by 1

print(a)

I Be careful with the exit condition

a = 0

while a < 10 :

print(a) # Prints 0 until the end of time

You can kill the running programby pressing the red terminate button

12.10.2020 21 / 29

Lecture 1 - Introduction Programming - Control Statements

Boolean Statements
I Examples

3 > 2 #True, greater than

3 < 3 #False, less than

3 <= 3 # True, equal or less than

4 == 5 # False, == checks equality

4 != 5 # True, != is the opposite of ==

"ello" in "Hello" # True, only works for sequence types

"hel" not in "Hello" # True, "in" is case sensitive

I Boolean Variables

test = 7

isGreaterThanOne = test > 1

if isGreaterThanOne:

print("The number is Greater than 1!")

12.10.2020 22 / 29

Lecture 1 - Introduction Programming - Control Statements

Boolean Statements
I Examples

3 > 2 #True, greater than

3 < 3 #False, less than

3 <= 3 # True, equal or less than

4 == 5 # False, == checks equality

4 != 5 # True, != is the opposite of ==

"ello" in "Hello" # True, only works for sequence types

"hel" not in "Hello" # True, "in" is case sensitive

I Boolean Variables

test = 7

isGreaterThanOne = test > 1

if isGreaterThanOne:

print("The number is Greater than 1!")

12.10.2020 22 / 29

Lecture 1 - Introduction Programming - Utilities

User Input

I Use input to prompt the user

person = input('Enter your name: ')

print('Hello ' + person)

I Invalid Data Types

inputValue = input('Please enter a number: ')

result = 5 + inputValue # This results in an error!

I Variables might need to be type casted

result = 5 + float(inputValue)

#This works if an actual number was typed

12.10.2020 23 / 29

Lecture 1 - Introduction Programming - Utilities

User Input

I Use input to prompt the user

person = input('Enter your name: ')

print('Hello ' + person)

I Invalid Data Types

inputValue = input('Please enter a number: ')

result = 5 + inputValue # This results in an error!

I Variables might need to be type casted

result = 5 + float(inputValue)

#This works if an actual number was typed

12.10.2020 23 / 29

Lecture 1 - Introduction Programming - Utilities

User Input

I Use input to prompt the user

person = input('Enter your name: ')

print('Hello ' + person)

I Invalid Data Types

inputValue = input('Please enter a number: ')

result = 5 + inputValue # This results in an error!

I Variables might need to be type casted

result = 5 + float(inputValue)

#This works if an actual number was typed

12.10.2020 23 / 29

Lecture 1 - Introduction Programming - Utilities

Type Casting

I Implicit Typecast

a = 1.0 #float

b = 2 #int

c = a + b #3.0 float

I Explicit Typecasts

d = float(b) #2.0

e = 3.7

f = int(3.7) #3 Any floating point is cut off

g = str(e) #String '3.7'

h = int(g) # This results in an error!

i = float(g) # 3.7

print('Variable i is: ' +str(i)) #Print expects strings

12.10.2020 24 / 29

Lecture 1 - Introduction Programming - Utilities

Type Casting

I Implicit Typecast

a = 1.0 #float

b = 2 #int

c = a + b #3.0 float

I Explicit Typecasts

d = float(b) #2.0

e = 3.7

f = int(3.7) #3 Any floating point is cut off

g = str(e) #String '3.7'

h = int(g) # This results in an error!

i = float(g) # 3.7

print('Variable i is: ' +str(i)) #Print expects strings

12.10.2020 24 / 29

Lecture 1 - Introduction Programming - Utilities

Useful built-in Functions
I Rounding and Absolute Value

a = 3.898987897897

b = round(a,3) #3.899

c = abs(-3.2) #|-3.2| = 3.2

t = type(c) #t is <class 'float'>

test = t is float # True

I �e math module

import math #Import makes a module available

squareTwo = math.sqrt(2) #
√

2
power = math.pow(3,4) # 34

exponential = math.exp(4) #e4

piNumber = math.pi #3.14159265359

12.10.2020 25 / 29

Lecture 1 - Introduction

Lecture Slides/Material

Use the following URL to access the lecture slides:

https://www.ini.rub.de/teaching/courses/c science math 2020

12.10.2020 26 / 29

https://www.ini.rub.de/teaching/courses/c_science_math_2020

Lecture 1 - Introduction Tasks

Tasks

1. Write a script that takes a percentage and prints out the corresponding
verbal grade.

I Define a variable perc and assign it a number
between 1 and 100.

I Use If and Else to print out the correct grade
depending on the value of perc.

% Grade % Grade
86-100 A 40-55 D
71-85 B 25 -39 E
56-70 C 1 - 24 F

2. Write a script that asks the user for two different inputs and prints their
sum
I Define a variable num1 and assign it a value using the input() function
I Repeat the above step for a second variable num2
I Add num1 and num2 together in a third variable sum and print it

(Do not forget to typecast num1 and num2)

12.10.2020 27 / 29

Lecture 1 - Introduction Tasks

Tasks Continued

3*. Write a script that asks the user for number input until the sum of the
inputs is greater than 20.
I Start with a variable sum that is initialized with the value 0.
I Create a while-loop that ends when sum is greater than 20.
I Inside the while-loop ask the user for input and add the input to sum.

(Do not forget to typecast the input)
4*. Write a script that finds the maximum number out of 3 numbers.

I Example:
You choose the three numbers to be 13, 16 and 5.
�e program should print: “�e highest number is 16”.

I Define three variables each containing a different number.
I Use If and Else statements to find the highest of the three numbers.
I Print the number to the console.
I �e script should work for any three numbers.

12.10.2020 28 / 29

Lecture 1 - Introduction Tasks

References

Braitenberg, V. (1986).
Vehicles: Experiments in synthetic psychology.
MIT press.

12.10.2020 29 / 29

	Motivation
	Programming
	First Steps
	Variables
	Control Statements
	Utilities

	
	Tasks

