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Movement generation in animals
movement generation adapted to and 
directed at a sensed environment is the core 
of animal experience… and a key 
evolutionary factor 

=> animal are amazing autonomous 
movement machines..

=> the brain is strongly organized around 
movement generation… (the basis of a 
tradition of thought called “embodied 
cognition”)



Human movement

humans are particularly skilled at movement 
directed at objects

manipulation, compliant acting on objects

humans are particularly flexible, versatile in 
their movement generation 

while some other animals excel at particular specialized 
motor acts 



A landscape of human movement

looking: eye and head movements (gaze)

orienting the body in space, upright stance

legged locomotion

navigation

steering 

reach, grasp, manipulate

sequences of motor acts

speech articulatory movement



Qualities of human movement

involuntary (reflexive)

automatic/habitual (requires little attention)

voluntary/intentional 



Qualities of human movement

whole body movements in space 

movements of hand/arm or other 
extremities while anchored in space 



Qualities of human movement

rhythmic 

discrete (in time) 



Textbooks

David Rosenbaum: Human motor control, 
Academic Press, 2009 (2nd edition)

Richard A Schmidt, Timothy D Lee: Motor 
Control and Learning, Human Kinematics, 
2011 (5th edition)

James Tresilian: Sensorimotor Control & 
Learning. Palgrave McMillan, 2012



What is entailed in generating an 
object-oriented movement? 

scene and object perception

movement preparation

movement initiation and 
termination

movement timing and 
coordination

motor control

degree of freedom problem

=> spans perception, cognition 
and control

movement
preparation

timing 

control 



What is entailed in generating an 
object-oriented movement? 

tightly interconnected 
processes

which this is why 
movement is so hard to 
study 

critical to understand 
integration

movement
preparation

timing 

control 



A neural 
architecture 
of reaching
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neural fields… dynamic field theory

Scene perception

[Zibner, Faubel: In DFT Primer (2016)]

 Dynamic Scene Representations and Autonomous Robotics 237

that there are architectural differences between the 
model presented here and the integration model 
presented in Chapter 8. The section Comparison of 
Models compares both models and illustrates simi-
larities and differences.

Retinal Level
The retinal reference frame (see Figure 9.1, top left) 
contains fields close to the sensory surface of the 
robot’s camera. The visual input from a robotic cam-
era (see Figure 9.1, top right) produces images that 
cannot be used directly to provide input into this 
level. This is because the sensory input is expressed 
in rate code, that is, the continuous activation level 
of each pixel carries information, whereas the input 
to DFs should be space-coded where the position 
of the positive activation along the field dimension 
carries information. This mismatch is dealt with by 
calculating the saliency of the input regions (Itti & 
Koch, 2001), which can be simplified to a subset of 
on- and off-center filtering operations on all chan-
nels of the YCbCr color space (assuming a homo-
geneously colored background). The YCbCr color 
space consists of a luminance channel and two 
color channels. Regions that contain objects fit-
ting the rough size of the on- and off-center filtering 
kernels contain high activation due to the contrast 
between object color and background color of the 
table surface, whereas all other regions are on a 
lower activation level.

The detection decision of DFs translates 
this input into a macroscopic decision, whether 
a visual region is interesting enough for further 
inspection (i.e., it contains a scene object) or can 
be ignored as background. Here, the retinal space 
field (see Figure  9.1a) encodes these extracted 
foreground blobs of objects in a neural way, 
containing multiple peaks at the same time in a 
multi-item regime, which represent interesting 

retinal regions. This stabilized and normalized 
representation is then used in the retinal space 
selection field (which only allows for a single peak 
at a time; see Figure 9.1b) to bring one of the reti-
nal regions into the attentional foreground (see 
Figure 9.7). The selection of an object in this way 
triggers the extraction of features, represented in 
the retinal feature fields (see Figure 9.1c; only one 
feature, color, is shown).

Scene Level
The allocentric scene reference frame (see Figure 
9.1, bottom left) is fixed to the coordinates of 
the workspace in front of the robot. Here, links 
between different metrics are represented in 
three-dimensional fields. Information stored 
in the scene space field (see Figure  9.1d) is an 
ego-motion-invariant instance of the retinal space 
field, spatially representing all objects in workspace 
coordinates. Regions of this field that cannot be 
aligned with the current camera input are put in a 
working memory regime by increasing the resting 
level of the field. Objects that get out of view are 
therefore still represented by self-sustained peak 
solutions in this field. The scene space field projects 
multi-item tube input into the three-dimensional 
scene space-feature fields (see Figure  9.1e), which 
boosts all regions of the table that have objects in 
them. Over the course of inspecting a single object, 
peaks are built in these fields by overlapping a tube 
input from the retinal space selection field with a 
slice input from a related retinal feature field in one 
of the boosted regions. Self-stabilization of peak 
solutions and the continuous tube input from the 
scene space field sustains these peaks. If object 
positions change, the tube input pulls the link to 
the new location, thereby updating the contained 
information about the object’s position and iden-
tity. A  second set of fields, the scene space-feature 

u

xy

FIGURE 9.7: Scanning. The retinal level contains a multipeak retinal space field shown in the middle, having a peak for 
each salient object location in the image seen on the left. Its activation feeds into the retinal space selection field plotted 
on the right. The leftmost object is selected, the two other objects are suppressed by inhibition—the left one through 
inhibitory input from the scene space-feature fields and the right one through global inhibition.

 

 



Movement preparation

coordinate transform into initial position of hand
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[Erlhagen Schöner, Psych Rev 2002]



[Sandamirskaya, Zibner, Schneegans, Schöner: New Ideas in Psychology (2013)]

every action is 
represented as a stable 
activation sate in an 
“intentional field” 

that predicts its 
“condition of 
satisfaction”

instabilities drive the 
transition from one 
intention to another 

Sequence generation

movement to be executed, and d = xtarget − xreal is the
remaining distance.

To summarize, a single timed movement consists of
three separate behaviors: the postural, movement, and
update behavior. In order to function properly, these be-
haviors must be activated and deactivated in the correct
sequence: the initial position must be memorized before
starting to move and the movement has to suppress the
postural behavior. The necessity of organizing behaviors
in time becomes even more apparent when building entire
architectures based on discrete behaviors.

The framework for behavioral organization is based on
DFT, which we now briefly review.

B. Dynamic Field Theory
Dynamic Field Theory (DFT) [16] is a neural variant

of the attractor dynamics approach. We use it here as
an integrating framework between the low level sensory-
motor streams of the robot and the higher level cognitive
functions of the model, for instance its perceptual repre-
sentations and its organization of behaviors.

Within DFT, dynamic neural fields (DNFs) are used to
represent neural activity patterns over continuous, metric
feature dimensions (e.g., color or space). The activation
pattern evolves in continuous time t, as described by the
following dynamic equation, which can be traced back to
Grossberg [17] and was analyzed by Amari [18]

τ u̇(x, t) = −u(x, t) + h + S(x, t)

+
∫

ω(x − x′)f(u(x, t))dx′. (5)

In Eq. 5, u(x, t) describes the activation of a DNF
at feature location x and time t. Without external
input S(x, t), the activation will relax to the resting
level h < 0 and the output of the DNF, given by
the sigmoidal function f(u(x, t)), will be zero. With
sufficient external input, the DNF will produce output as
well as lateral interaction within the feature dimension.
The type of interaction is governed by the interaction
kernel ω(∆x) and comprises local excitation and global
or mid-range inhibition, promoting the formation of
localized peaks of activation. Within DFT, such peaks
are the units of representation for motor parameters,
perceptual items, and memory items.

A zero-dimensional DNF is a dynamical node that
represents a discrete instance of a percept or behavior.

C. Behavioral organization
A framework for behavioral organization based on

DFT, previously introduced and implemented on a hu-
manoid robot in a grasping task [19], is extended to
flexibly organize timed behaviors.

1) Elementary behaviors: Within DFT, the behaviors
that are organized are elementary behaviors (EB). EBs
consist of two parts, an intention and a condition of
satisfaction (CoS), each of which is represented by a
dynamical node and a dynamic neural field (DNF) (see

Fig. 2. Elementary behavior (EB) in Dynamic Field Theory.
Each EB consists of two parts: the intention represents the desired
change of the EB in the world, while the condition of satisfaction
(CoS) represents the sensory signal expected for the successful
completion of the EB.

Fig. 2). While the intention node simply determines
whether the EB is active or inactive, the intention field
describes the EB’s connection to the world. For instance,
the intention field of an EB ‘move arm’ would represent
desired movement parameters of the arm (e.g., the target
position) and would be connected to its motors.

The CoS field of an EB receives input from the in-
tention field, describing the desired outcome of the EB
(e.g., the end-effector of the arm at the target posi-
tion). Additionally, the CoS field receives input from the
sensory system, describing the current state of the EB
(e.g., the current position of the end-effector). If the two
inputs overlap, a peak forms in the CoS field, signaling
the successful completion of the EB. This peak activates
the CoS node, which in turn inhibits the intention node,
switching off the EB. Explicitly modeling the beginning
and end of an EB in this way allows us to close the
gap between discrete actions and the continuous sensory-
motor streams they are connected to.

2) Generating sequences: By default, all EBs relevant
for a task are activated at the same time. The sequential
organization of EBs derives from constraints that are
represented by dynamic coupling terms and are defined
within pairs of EBs. A precondition constraint prevents
a first EB (e.g., here, the update EB) from becoming
active until a second EB (e.g., here, the movement
EB) is completed. The constraint is represented by a
precondition node, a dynamical node that is activated by
task input and inhibits the intention node of the second
EB. As soon as the first EB is finished, its CoS node
will activate and inhibit the precondition node, releasing
the intention node of the second EB from inhibition and
thereby allowing its execution.

A suppression constraint between two other EBs pre-
vents one of them (e.g., here, the postural EB) from
becoming active while the other (e.g., here, the move-
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timing and coordination: 
Lecture 7/Exercise 6
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human motor control: 
how forces are 
generated and regulated



Human motor control

consider  a single DoF, the elbow angle.. 

in a fixed posture 

Q



Posture is controlled

the elbow does not behave like a 
passive mechanical system with a free 
joint at the elbow: 

where J is inertial moment of 
forearm (if upper arm is held fixed) 

Instead, the elbow resists, when 
pushed => there is active control= 
stabilization of the joint 

J ✓̈ = 0 Q

=>experiment



Posture is controlled

human effectors are not very 
stiff….  unlike robotic actuators

stiffness expressed in 
Eigenfrequency => time scale ~ 
of the same order of magnitude 
as movement time

=> human movement is highly 
compliant… 

Q



The problem of human motor control

=> leads to major problems in 
human motor control: how to 
make a soft spring move fast to 
precisely reach a target and 
softly stop there… 

Q



a simplified macroscopic 
description

of the mechanics of the muscles

and the reflex control of the muscles

the invariant characteristic

The “mass spring” model

Q

force applied

L�L�

L�L�



The mass-spring model

elastic component: proportional to 
position

viscous component: resistance depends 
on joint velocity

J ✓̈ = �k(✓��)�µ✓̇

active torques generated by the muscle



Agonist-antagonist action

muscles only pull, so the 
invariant characteristic comes 
from pairs of muscle groups

one lambda per muscle 

co-contraction varies stiffness

Q

force applied

LL
agonist

antagonist

L�L�

L
L




Stiffness

the stiffness, k, can be 
measured from 
perturbations

the viscosity “mu” is 
more difficult to 
determine
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the simulated perturbation trials and the regression technique at movement end to levels comparable with those at the
onset of movement.described by Gomi and Kawato (1996) (see APPENDIX B),

we calculated joint stiffness and viscosity matrices for each Using the empirically derived joint-stiffness and viscosity
matrices, Gomi and Kawato (1996) compute a hypotheticalof the nine points in time at which perturbations were ap-

plied. equilibrium trajectory (see APPENDIX B). Their calculations
are based on the assumption that joint torques can be repre-Hand stiffness matrices were computed from the estimated

joint stiffness matrices R using the Jacobian transformation sented with the following linear equation
(see Gomi and Kawato 1995 for details) , and hand-stiffness

tin Å R(qeq 0 q) 0 Dqh (7)
ellipses were used to visualize limb stiffness at the hand.

where R and D are stiffness and viscosity matrices derivedFigure 2, top, shows hand-stiffness ellipses estimated during
from the perturbation procedure, tin are the calculated jointthe simulated movement. The size and orientation of the
torques (see APPENDIX B), qeq is the equilibrium trajectory,ellipses are comparable with those reported by Gomi and
and q and qg are the unperturbed movement position andKawato (1996), and likewise are larger than the correspond-
velocity, respectively.ing ellipses during statics (see Fig. 9) .
To show that the Gomi and Kawato (1996) results canFigure 2, bottom, shows the elements of the estimated

be predicted using simple control signals, we used their pro-joint-stiffness matrices for the arm model during movement.
cedure to compute a hypothetical equilibrium trajectory us-The terms of the joint-stiffness matrix, R, relate joint torques
ing the stiffness and viscosity estimates from our simula-at the shoulder due to shoulder motion (Rss ) , torques at the
tions. The trajectory that results from this calculation isshoulder due to elbow motion (Res ) , and so on. The basic
shown in Fig. 3. The top panel shows the equilibrium trajec-form of the matrices is similar to those reported by Gomi
tory used to generate the movement based on the l modeland Kawato (1996), even though the equilibrium trajectory
(rrr) , the simulated movement trajectory ( – – – ), and thewe used to generate the simulated movement was simple in
hypothetical equilibrium trajectory derived using Gomi andshape. At the beginning of movement onset the shoulder

term, Rss , increases sharply from Ç18 to Ç40 Nrm/rad, Kawato’s equations ( ) , plotted in hand space. Figure
3,middle, shows the horizontal components of these trajecto-then decreases in the middle of movement to Ç20 Nrm/

rad, increases again around movement end to 40 Nrm/rad, ries plotted against time, and Fig. 3, bottom, shows the tan-
gential velocities of the hand trajectories plotted againstand finally decreases after the end of movement to Ç15

Nrm/rad. The other three terms in the stiffness matrix follow time.
The hypothetical equilibrium trajectory computed usingroughly the same form but show a less pronounced decrease

in the middle of the movement. The elbow term, Ree increases Gomi and Kawato’s procedure is ‘‘complex’’ in shape and
does not resemble the simulated movement, which is smooth,from Ç5 Nrm/rad at movement start to 20–25 Nrm/rad

during movement, and the two double-joint terms, Rse and relatively straight and looks like the movements made by
subjects in the Gomi and Kawato (1996) study. Nor does itRes , increase from Ç2 Nrm/rad at movement start to Ç7–

10 Nrm/rad during movement. Ree , Res , and Rse all decrease resemble the equilibrium trajectory that was used to generate
the movement—the equilibrium trajectory used in the simu-
lations is a simple constant-rate monotonic shift from one
position to another. Gomi and Kawato’s hypothetical equi-
librium trajectory first leads then lags the simulated move-
ment. The tangential velocity of the hypothetical equilibrium
trajectory has multiple peaks and does not resemble the ve-
locity profile of the simulated movement, which is smooth
and bell-shaped. We suggest that the discrepancy between
the equilibrium trajectory based on the l model and the
trajectory computed using Gomi and Kawato’s equations
arises from their use of a simplified model of force-genera-
tion (see DISCUSSION).
A number of additional points should be noted. Direct

estimates of joint viscosity are not provided by Gomi and
Kawato (1996). However, the present estimates correspond
to values reported elsewhere. Specifically, the simulated esti-
mates of joint viscosity have maximum values of Ç2.5–3.0
Nms/rad, which is in the range of 5–7% of corresponding
maximum joint stiffness. This is comparable with the rela-
tion between joint viscosity and stiffness during cyclical one-
joint movements (Bennett et al. 1992) and with values for
multijoint stiffness and viscosity in statics (Gomi and Osu
1996; Tsuji et al. 1995). It also should be noted that the
simulations reported above have been based on constant-rate

FIG. 2. Simulated hand-stiffness ellipses and joint-stiffness matrices for
shifts in the hand equilibrium position. We also have carried

the arm model during multijoint movement. Constant-rate equilibrium shifts
out these simulations using constant-rate shifts in l space.and constant cocontraction commands were used to produce the simulated

movements. The time-varying form and the magnitudes of joint-stiffness

J323-7/ 9k26$$mr13 02-12-98 19:36:11 neupa LP-Neurophys

J ✓̈ = �k(✓��)�µ✓̇



Muscle dynamics

Figure 6.
Normalized force-length relationship for muscle. Thick dark lines indicate maximum
activation, whereas the light thin lines are lower levels of activation. Note that the optimal fiber
length is longer as the activation decreases. In the figure, Ȝ = 0.15, which means the optimal
fiber length is 15% longer at zero activation.

Buchanan et al. Page 29
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[Buchanan et al. 2014]

increasing level of 
muscle activation

passive 
muscle



Muscle dynamics

force generated depends on speed of 
lengthening / shortening

less force for shortening

more for stretching 

[Song 2017]

B. Force propertiesA. Muscle-tendon unit
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Figure 3.4: Muscle-tendon unit model. The MTUs model is shown on the left (A). The plots on the right show

the force properties of the CE and passive elastic elements (B). fP shows the piecewise quadratic force-length

relationship of the passive elements.

parameter / description value parameter / description value

w CE force-length curve width 0.56 lopt "pe PE reference strain w

K CE force-velocity curvature 5 "se SE reference strain 0.04 lslack

N CE force-velocity enhancement 1.5 "be BE reference compression w/2

Table 3.2: Common MTU parameters.

where A is a muscle activation signal from the neural controller, Fmax is the maximum isometric

force, and fl (lce) and fv (vce) are the force-length and force-velocity relationships of the CE,

respectively. The CE’s force-length relationship is modeled as

fl (lce) = exp

 
ln(0.05)

����
lce � lopt

w

����
3
!
, (3.4)

where lce is the length of the CE, lopt is the optimum CE length, and w is a constant value defining

the width of the force-length relationship curve. The force-velocity relationship is modeled as

fv (vce) =

8
>><

>>:

vmax�vce
vmax+Kvce

, if vce < 0

N + (N � 1) vmax+vce
7.56Kvce�vmax

, o.w.
, (3.5)

where vce = d
dt lce is the rate of the CE’s length change, vmax < 0 is the maximum contraction

velocity, and K and N are constant values that define the relationship curve. The PE and SE

30

shortening stretching



Muscle dynamics

Hill type models 
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Figure 3.4: Muscle-tendon unit model. The MTUs model is shown on the left (A). The plots on the right show

the force properties of the CE and passive elastic elements (B). fP shows the piecewise quadratic force-length

relationship of the passive elements.

parameter / description value parameter / description value

w CE force-length curve width 0.56 lopt "pe PE reference strain w

K CE force-velocity curvature 5 "se SE reference strain 0.04 lslack

N CE force-velocity enhancement 1.5 "be BE reference compression w/2

Table 3.2: Common MTU parameters.

where A is a muscle activation signal from the neural controller, Fmax is the maximum isometric

force, and fl (lce) and fv (vce) are the force-length and force-velocity relationships of the CE,

respectively. The CE’s force-length relationship is modeled as

fl (lce) = exp

 
ln(0.05)

����
lce � lopt

w

����
3
!
, (3.4)

where lce is the length of the CE, lopt is the optimum CE length, and w is a constant value defining

the width of the force-length relationship curve. The force-velocity relationship is modeled as

fv (vce) =

8
>><

>>:

vmax�vce
vmax+Kvce

, if vce < 0

N + (N � 1) vmax+vce
7.56Kvce�vmax

, o.w.
, (3.5)

where vce = d
dt lce is the rate of the CE’s length change, vmax < 0 is the maximum contraction

velocity, and K and N are constant values that define the relationship curve. The PE and SE

30

[Song 2017]



Neural basis of invariant characteristic: 
stretch reflex

alpha-
gamma 
reflex loop 
generates 
the stretch 
reflex

[Kandel, Schartz, Jessell, Fig. 37-11]



[Kandel, Schartz, Jessell, Fig. 37-11]



spinal cord: reflex loops

the stretch reflex acts as a negative feedback loop

37-12

[Kandel, Schartz, Jessell, Fig. 31-12]



spinal cord: coordination

Ia inhibitory interneuron 
mediates reciprocal 
innervation in stretch 
reflex, leading to 
automatic relaxation of 
antagonist on activation 
of agonist

[Kandel, Schartz, Jessell, Fig. 38-2]



Reflex model

monotonic 
relationship force-
length 

reflex threshold can 
be varied by 
descending 
activation signals

hypothesis itself started to be developed much more rapidly to address various aspects
of motor control such as motor variability, electromyographic patterns, patterns of
equilibrium trajectories, multimuscle actions, kinesthetic perception, and links to
neurophysiological mechanisms within the human body.

12.2 Current terminology

The name equilibrium-point hypothesis emphasizes the idea that movements of phys-
ical objects may be viewed as transitions between equilibrium states (equilibrium
points). An equilibrium state, by definition, is a state in which the resultant force acting
on the object is zero. For example, a muscle acting against an external load may be in
an equilibrium state when muscle force is equal in magnitude and directed against the
load force. So, if a muscle is in equilibrium with external forces, its state may be char-
acterized with two variables, length and force. These two variables form the equilib-
rium point for the muscle on the lengtheforce plane (Figure 12.3).

There is considerable confusion due to the existence of two versions of the EP
hypothesis addressed as the a-model and the l-model. The original Feldman’s hypoth-
esis (the l-model) assumes that the neural control of a muscle can be adequately
described as setting only one variable, threshold of the tonic stretch reflex (l).
Figure 12.3 illustrates the control of a muscle according to the l-model. Setting a value
of l defines a range of muscle length values (those larger than l) associated with
muscle activation—to the right of l in Figure 12.3. If muscle length is smaller than
l, no activation is seen. The muscle shows larger activation levels and larger forces
for larger deviations of its length from l. The dependence of muscle force on the
difference between its length and l is addressed as the muscle invariant characteristic

Figure 12.3 Setting a value of l defines a range of muscle length values (those larger than l)
associated with muscle activation. Note that along the forceelength characteristic, muscle
activation increases (in contrast to Figure 12.1). The shallow dashed line illustrates the
forceelength dependence of a nonactivated muscle. A change in l (from l1 to l2) may result in a
movement (length change from L1 to L2), a change in force (in isometric conditions), or in both.

Equilibrium-Point Hypothesis 251

action potential). In this case, the frequency of firing of the neuron will not depend on
the afferent input. In contrast, if the central inputs depolarize the neuronal membrane
below the threshold, activity of the neuron will depend on the A input. In other words,
the neuron would behave as an adaptive element, changing its activation as a function
of the state of peripheral structures, from which it receives the afferent input.

Figure 12.5(B) illustrates the membrane potential and its changes under the action
of the three inputs shown in Figure 12.5(A). For simplicity, assume that the afferent
input leads to a ramp-like change in the membrane potential (dashed ramp lines).
One of the central inputs (C1) induces a steady shift of the membrane potential
(V) toward depolarization. The other input (C2) can change the threshold value itself.
Clearly the frequency of firing of the neuron will be a function of all three inputs: C1
and C2 define the effective distance from the steady-state level of depolarization to the
threshold (DTh), while A defines the speed at which the membrane potential changes
(S ¼ dV/dt). The rate of firing can be approximated as: Rf ¼ DTh/S. This is obviously
a crude approximation because it is based on cartoon assumptions and does not
consider, for example, such important features of neuronal activation as the refractory
period and the action of the sodiumepotassium pump that may not allow the A input to
reach the activation threshold.

According to the EP hypothesis, neural control of the muscle may be adequately
described as subthreshold depolarization of motoneurons in the corresponding pool.
While two central inputs are illustrated in Figure 12.5(A), we will primarily focus
on the one that leads to membrane depolarization (C1). The other input (C2) is
much less well understood. It may be related to the phenomenon of persistent inward
currents (PICs; Heckman et al., 2003, 2005) that are pronounced on dendrites; PICs
lead to an effective change in the threshold for neuronal activation and can potentially
even turn a neuron into an autogenerator of action potentials. While the potential role
of this input may be very important in animal movement (Heckman et al., 2005),

Figure 12.5 (A) A scheme of three inputs into an alpha-motoneuron (A e afferent; C1 and
C2 e central). (B) An illustration of the three methods of control of a neuron. C1 and C2 define
the effective distance to the threshold (DTh). The afferent input (A) is assumed to define
the ramp-like change in the membrane potential (V). AP show the moments of action
potential generation.

254 Biomechanics and Motor Control

[Latash, Zatsiorsky, 2016]



Movement entails change of posture

the threshold lengths of the muscles must be shifted 
during movement so that after the movement, the 
postural state exists around a new combination of 
muscle lengths (<=> joint configuration)

joint angle, Q

force

L�

L�

equilibrium
point



many models account for movement in terms of muscle 
activation/desired torques….

=> the shift of the EP is the single most overlooked fact 
in control models of movement generation 
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Movement entails change of posture



Does the “motor command” 
specify force/torque?

Not necessarily .. 

because the same descendent neural command 
generates different levels of force depending on the 
initial length of the muscle

joint angle, Q

force
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L�

equilibrium
point



Virtual trajectory

Shifting the threshold lengths is necessary, but is it also 
sufficient? 

first answer: yes… simple ramp-like trajectories of the 
combined threshold lengths of the antagonistic muscles 
(“r” command ~ virtual trajectory) may model movement

joint angle, Q

force

L�

L�

equilibrium
point



Pilon, Feldman, 2006

first answer: yes… simple ramp-like trajectories of the “r” 
command (“virtual trajectories”) shift the equilibrium point 
smoothly in time… 

e.g. Pilon, Feldman, 2006

they are applied before the onset (Fig. 6a, b) or after the
offset of fast movement (c, d).

In all simulations shown in Figs. 4, 5 and 6, EMD=0
was used. Figure 7 shows the effect of EMD that ini-
tially was 40 ms but gradually (with time constant of
100 ms) decreased to 10 ms after the onset of muscle
activation. Thus, the electromechanical delay influences
the latency, rather than stability of posture and move-
ment.

Discussion

Threshold control is a multifaceted phenomenon that
seems to play a major role in the control of posture and
movement, expediently solves the problem of the rela-
tionship between these two components of motor ac-
tions, and is essential in the organization and
modification of spatial frames of reference in which
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Shifting the equilibrium point is 
necessary, but is it also sufficient?

such simple ramp-like trajectories of the “r” 
command (“virtual trajectories”) may be 
sufficient when movements

are sufficiently slow

interaction torques/mechanical conditions unchallenging 

but is this generally true? 

(answer: no)



Limit case: velocity dependent force field 

after adapting to a velocity dependent force field the 
hand reproduces the “natural” path, but must generate 
compensatory forces on the way

3210 Shadmehr and Mussa-lvaldi * Representation of a Learned Motor Task 

left workspace right workspace 

Figure2. Configurations of a model two-joint arm, representing typical 
kinematics of the human arm, at two workspace locations where reach- 
ing movements were performed. Typical shoulder and elbow angles at 
these two workspaces were 15” and 100” at right and 60” and 145” at 
left, using coordinates defined in Figure 1. 

domly chosen from the set (O”, 45”,. . ., 315”) and at a distance of 10 
cm was presented. After the subject had moved to the target, the next 
target, again chosen at a random direction and at 10 cm, was presented. 
A target set consisted of 250 such sequential reaching movements. All 
targets were kept with in the confines of the 15 x 15 cm workspace. 
The targets represented a pseudorandom walk. 

In some cases, the manipulandum was programmed to produce forces 
on the hand of the subject as the subject performed reaching movements. 
These forces, indicated by the vectorf, were computed as a function of 
the velocity of the hand: 

f= B%, (1) 
where X was the hand velocity vector, and B was a constant matrix 
representing viscosity of the imposed environment in end-point coor- 
dinates. In particular, we chose B to be 

B= -10.1 -11.2 
-11.2 11.1 1 N. set/m. 

Using this matrix, the forces defined by Equation 1 may be shown as 
a field over the space of hand velocities (Fig. 3A). For example, as a 
subject made reaching movements in this field, the manipulandum pro- 
duced forces shown in Figure 3B (here we have assumed that the move- 
ments are minimum jerk, as specified by Flash and Hogan, 1985, with 
a period of 0.5 set). 

Note that in the field defined by Equation 1, forces that act on the 
hand are invariant to the location ofthe workspace in which a movement 
is done; that is, the forces are identical in the left and right workspaces 
of Figure 2. Therefore, we say that the force field defined in Equation 
1 is translation invariant in end-point coordinates. 

In some cases, a different kind of a force field was produced by the 
manipulandum, one that was not translation invariant in end-point 
coordinates. This field was represented as a function of the velocity of 
the subject’s shoulder and elbow joints during the reaching movements: 

1= wq, (2) 
where 7 was the torque vector acting on the subject’s shoulder and elbow 
joints, 4 was the subject’s joint angular velocity, and W was a constant 
matrix representing viscosity of the imposed environment in joint co- 
ordinates of the subject. We say that the field described by Equation 2 
is translation invariant in joint coordinates. Indeed, note that the torque 
field in Equation 2 is equivalent to the following force field (i.e., forces 
acting on the hand): 

f= (JW-’ w  43 (3) 
where J(q) = dx/aq is the configuration-dependent Jacobian of the con- 
figuration mapping from q to x, and the superscript T indicates the 
transpose operation. Because the Jacobian changes as a function of the 
angular position of the limb,fvaries depending on the workspace where 
a reaching movement is performed. In particular, we chose W so that 
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Figure 3. An environment as described by the force field in Equation 
1. A, The force field. B, Forces acting on the hand during simulated 
center-out reaching movements. Movements are simulated as being 
minimum jerk with a period of 0.5 set and amplitude of 10 cm. 

the force field that resulted from Equation 3 at the right workspace was 
almost identical to the field produced by Equation 1. To accomplish 
this, the matrix W was calculated for each subject as 

W = J;BJo, 
where J,, is the Jacobian evaluated at the center of the right workspace. 
For a typical subject, we derived the following W matrix: 

IV= [i:zi -~:~:]N.m~sec/rad 

When the above joint-viscosity matrix was used to define an environ- 
ment, the resulting force field depended upon the position of the work- 
space where movements were being made. At the right workspace, this 
field (Eq. 3) was almost identical to that produced by Equation 1 (a 
correlation coefficient of0.99; see Appendix). However, at the left work- 
space, the forces produced by Equation 3 were substantially uncorrelated 
(nearly orthogonal) to that of Equation 1. The force field produced by 
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Figure 6. Typical hand trajectories at the right workspace in a null 
force field during no-visual feedback conditions. Dots are 10 msec apart. 

centripetal forces that make up the G matrix can be derived from the 
inertia tensor; cf. Slotine and Li, 199 1, p 400). For example, the dif- 
ferential equation describing the dynamics of the arm and the controller 
for movements in the force field of Equation 1 were 

kd 4 + G(a 4) + JW B J(q) 4 = C(a 4. t). (11) 
where Cis defined in Equation 9. Values for joint stiffness and viscosity 
(K and IJ’) were chosen based on measurements of Mussa-Ivaldi et al. 
(1985) and Tsuji and Goto (1994). The desired trajectory q*(t) was 
assumed to be minimum jerk in hand-based coordinates lasting 0.65 
sec. Values used for these variables are summarized in Table 1. 

Results 
Reaching movements were made while the hand interacted with 
a mechanical environment. This environment was a program- 
mable force field implemented by a light-weight robot mani- 
pulandum whose end-effector the subject grasped while making 
reaching movements. When the manipulandum was producing 
a force field, there were forces that acted on the hand as it made 
a movement, changing the dynamics of the arm. When the 
manipulandum’s motors were turned off, we say that the hand 
was moving in a “null field.” 

Hand trajectories before adaptation 
Our first objective was to determine how an unanticipated ve- 
locity-dependent field affected the execution of reaching move- 
ments. The forces in the field (e.g., Eq. 1, as shown in Fig. 3.4) 
vanished when the hand was at rest, that is, at the beginning 
and at the end of the movement. However, as shown in Figure 
4B, a significant force was exerted midway, when the hand 
velocity was near maximum. How would this force influence 
the execution of a movement? Would subjects follow a pre- 
planned trajectory that was scarcely influenced by this pertur- 
bation or would they modify the movement and the final po- 
sition in response to the perturbing force? To answer this question, 
we compared reaching movements in the null field with those 
in a force field. Trajectories in the null field are shown in Figure 
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Figure 7. Performance during initial exposure to a force field. Shown 
are hand trajectories to targets at the right workspace while moving in 
the force field shown in Figure 3. Movements originate at the center. 
All trajectories shown are under no-visual feedback condition. Dots are 
10 msec apart. 

6. As observed in previous reports (Morasso, 1981; Flash and 
Hogan, 1985), the hand path was essentially along a straight 
line to the target. The velocity profile (see Fig. 1OA) had one 
peak, with approximately equal times spent to accelerate and 
decelerate the hand. 

Once our subjects were familiar with the task of reaching 
within the null field, we began to introduce a force field in 
random trials. Note that subjects could not anticipate the pres- 
ence of the field before the onset of the movement because the 
force field was not effective when the hand was at rest and no 
other clues were available. Furthermore, during the movement, 
the cursor indicating hand position was blanked, eliminating 
visual feedback. Figure 7 shows the hand trajectories ofa typical 
subject when the movements were executed under the influence 
of the field shown in Figure 3A (Fig. 10B shows the tangential 
velocity of hand trajectories in this field). This field was designed 
to have opposing effects along two directions. At approximately 
30” and 210” the field produced resisting forces that opposed 
movement as a viscous fluid would do. At approximately 120” 
and 300” the forces assisted the movement, thus producing a 
destabilizing effect. 

Note that the effect of the field on the hand trajectory was 
quite significant and may be divided into two parts. In the first 
part, the hand was driven off course by the field and forced 
toward the unstable direction of the field. Movements to targets 
at o”, 225”, 270”, and 3 15” are pulled toward the unstable region 
at 300”, while movements to the remaining targets are pulled 
toward the unstable region at 120”. At the end of this first part, 
the field had caused the hand to veer off the direction of the 
target and the hand decelerated and stopped before making a 
second movement to the target. The pictorial effect of these two 
parts of the hand trajectory appeared as a “hook” that was 
oriented either clockwise or counterclockwise. The orientation 
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a reaching movement, with practice the subjects tended to con- 
verge upon this straight-line trajectory. This recovery of the 
original unperturbed response constitutes a clear example of an 
adaptive behavior. 

Further evidence of motor adaptation is offered by the sig- 
nificant change that occurred in the hand velocity profile at the 
onset of exposure to the force field, and after completion of the 
practice trials. Figure 10A shows the hand tangential velocity 
traces obtained when the hand was moving in a null field (cor- 
responding to the hand position traces of Fig. 6). Consistent 
with previous studies (cf. Flash and Hogan, 1985) these velocity 
traces are approximately along straight lines and symmetric in 
time. The hand velocity traces at the initial stage of practice in 
the force field (corresponding to the hand position traces of Fig. 
7) are shown in Figure 1 OB. In Figure 1 OC we have the velocity 
traces near the end of the practice trials (corresponding to the 
hand position traces of Fig. 9D). Although the average velocity 
of the hand trajectory is now larger (as compared to Fig. lOA), 
the velocity trace for each target has essentially the same pattern 
as that observed for movements in a null field. 

practiced in the force field. This comparison was made through 
computation of a correlation coefficient between pairs of tra- 
jectories (see Appendix). We found that the average correlation 
between a trajectory in the null field and one in the force field 
increased with the amount of practice movements performed 
by the subject in the force field. The computed correlation co- 
efficients for trajectories performed by all subjects are shown in 
Figure 11. Remarkably, all the subjects displayed a strictly 
monotonic evolution of the correlation coefficient. 

Our subjects did not seem to be aware of the process of ad- 
aptation and of the change in their performance. The only sub- 
jective indication that some adaptive change had occurred was 
given by a reduction in the sense of effort associated with the 
task: during the first batch of 250 movements within the force 
field, some subjects reported an intense sense of effort. Para- 
doxically, this sense of effort diminished drastically after about 
500 movements. At the end of the training period many com- 
mented that they were “not feeling” the field anymore. 

Aftereffects 
In order to quantify the time course of adaptation, we studied One way-although by no means the only way-for the subjects 

how the hand trajectories evolved as compared to those ob- to recover the initial motor performance (what we have called 
served in the null field. For each subject, we compared the the desired trajectory) after the exposure to the test field was by 
trajectories in the null field to those obtained as the subject developing an internal model of this field. This internal model 
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Shifting the equilibrium point is 
necessary, but is it also sufficient?

=> r-command must still shift from initial to final 
posture, but must also generate the forces to 
compensate for the force field during the 
movement 

that probably takes the form of non-monotonic, 
“complex” time courses… 

are such temporally complex (e.g,. non-monotonic) 
r-commands necessary during unperturbed 
movement



Estimating the descending signal 
(~virtual trajectory)
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(1) Estimate the descending activation by 
inverting a neuro-muscular model

simplified version Hill type mode:[Gribble, Ostry et al., 
98] ..  4 muscles

[Hummert, Zhang, Schöner]



two joint limb with 4 muscles

= 2 pairs of mono-articulatory m.

neglect: bi-articulatory muscles

BIARTICULAR MUSCLES

MONOARTICULAR SHOULDER
JOINT MUSCLES

MONOARTICULAR ELBOW
JOINT MUSCLES

ENDEFFECTOR

Figure 3.1: Schematic sketch of the arm model. The model comprises a two joint
arm with two monoarticular elbow joint muscles (red), two monoarticular shoul-
der muscles (blue) and two biarticular muscles that span elbow and shoulder joint
(black).

3.1.1 Modeling of Muscle Lengths

In general, muscles span along joints and stretch or contract to change the angle-
configuration and thus induce a movement. Thus, the muscles resting length and
the angle configuration determine the actual length of a muscle. We modeled the
muscle length l as a first-order polynomial depending on the elbow and the shoulder
angle ✓e and ✓s :

li = ci + c
0
i,s✓s + c

0
i,e✓e i 2 [1, 6]. (3.1)

The values for ci and c
0
i indicate the resting length and the moment arms of the

corresponding muscles and can be found in table 3.1. The resting lengths are taken
from [Winters andWoo] and the moment arms from [Kistemaker et al., 2006]. Equa-
tion 3.1 is a slightly simplified version of the second order polynomial introduced in
[Kistemaker et al., 2006]. The simplification is reasonable, because within the range
of the reproduced movements, the appearing e↵ects are negligible. Corresponding
to table 3.1, the velocity of muscle lengthening and shortening is

l̇i = ci + c
0
i,s✓̇2 + c

0
i,e✓̇1 i[1, 6]. (3.2)
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muscle length link to joint angles

Kinematics

Figure 2: The model includes shoulder and elbow joints in the horizontal plane,
articulated by two monoarticular elbow joint muscles (red), two monoarticular
shoulder muscles (blue) and two biarticular muscles that span elbow and shoul-
der joint (green). The illustrated geometry leaves muscle lever arms invariant across
workspace.

where ci is the passive resting length of the muscle and the factors f1 to f4 and
k were adjusted to reproduce the results of (Gribble et al., 1998) (values listed in
Appendix A).

The active joint torques, ~T , are obtained from the muscle forces, Fi, taking the
moment arms into account:

~T =

✓
Te

Ts

◆
=

✓
c01,eF1 + c02,eF2 + c05,eF5 + c06,eF6

c03,sF3 + c04,sF4 + c05,sF5 + c06,sF6

◆
(8)

3.1.3 Reference command and reflex model

The activation, Ai, of each muscle is assumed to reflect the descending reference
command, �i, that acts as the threshold of a reflex loop modeled as:

Ai = [li � �i + µ l̇i]
+ (9)

where [·]+ signifies a semi-linear threshold function, and µ is a parameter that reflects
the sensitivity of muscle spindles to the rate of muscle length change (Gribble et al.,
1998).

8



muscle moment arm at moment arm at length
shoulder (in m) elbow (in m) (in m)

monoarticular elbow flexor 0.000 -0.014 0.287
monoarticular elbow extensor 0.000 0.025 0.246
monoarticular shoulder flexor -0.030 0.000 0.216
monoarticular shoulder extensor 0.030 0.000 0.191
biarticular flexor -0.030 -0.016 0.333
biarticular extensor 0.030 0.030 0.312

Table 3.1: Moment arms of the muscles which were used in the model. The values
were taken from [Kistemaker et al., 2006]

upper arm lower arm
length (in m) 0.3348 0.2628
mass (in Kg) 2.1 1.2
inertia (in Nm) 0.0244 0.0076

Table 3.2: Biomechanical parameters of the body [Winters et al., 2012].

3.1.2 Generation of Muscle Force

Each of the six muscles is modeled separately and in the following way: The activa-
tion of a muscle is proportional to the length di↵erence between the actual muscle
length li and the length of the descending signal �i. Furthermore it is proportional
to the rate of length change l̇i of the muscle.

Ai = [li � �i + µ · l̇i]+ (3.3)

with

[x]+ =

(
x, if x > 0

0, if x  0
.

The parameter µ relates the muscles threshold length to its velocity and is a damp-
ing factor representing the strength of proprioceptive feedback.

The actual force of a muscle M̃i is approximated by an exponential function

M̃i = ⇢i · (esAi � 1). (3.4)

The factor s is constant for all muscles and is estimated from empirical data of the
cat’s gastrocnemius muscle [Feldman and Orlovsky, 1972]. The factor ⇢i represents
the muscles ability of force-generation and is assumed to vary in proportion to the
physiological cross-sectional area (PCSA). Thus, every muscle has its individual ⇢
value [Winters et al., 2012]. The exponential relation between muscle force and mus-
cle activation with constant s and ⇢ values is shown in [Feldman and Orlovsky, 1972].
The used values of s and ⇢ can be found in table 3.3. The computation of the ⇢

values from the corresponding PCSA was realized by scaling the PCSA by a factor
of 1 N cm�2.
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muscle PCSA
(in cm2)

⇢1 2.10
⇢2 4.52
⇢3 4.52
⇢4 3.87
⇢5 1.29
⇢6 3.87

Table 3.3: PCSA of the six modeled muscle groups. The ability of force generation
can be calculated by multiplying the PCSA with N cm�2. The values are taken from
[Winters et al., 2012]

The Calcium kinetics acts like a low pass filter on the muscle force development
[Gribble et al., 1998] and is thus modeled by a critically damped second order low
pass filter with a single parameter ⌧ :

⌧
2
M̈ + 2⌧Ṁ +M = M̃ (3.5)

Here, M̃i is the actual muscle force obtained in equation 3.4 and Mi is the graded
muscle force. The value for ⌧ is taken from [Gribble et al., 1998] and chosen such
that the response of the muscle corresponds to the empirical findings. The value of
⌧ can be found in table 3.4.
There is strong evidence for a sigmoidal relation between muscle force and muscle
lengthening and shortening [Joyce et al., 1969]. Furthermore we assume a passive
force linearly depending on the di↵erence between the actual muscle length and the
resting length ci of the muscle. The resulting force Fi yields:

Fi = Mi[(f1 + f2 · arctan(f3 + f4 · l̇i)] + k(li � ci). (3.6)

Mi is the graded force from equation 3.5. The factors f1, f2, f3, f4 and k are taken
from [Gribble et al., 1998] and then adjusted such that they reproduce the results
of [Gribble et al., 1998]. The adjusted parameters can be found in table 3.4.

Parameter Value
f1, - 0.82
f2, - 0.57
f3, - 0.43

f4, s/m 58
⌧ , s 0.015
k, - 17.35

c, 1/m 112

Table 3.4: The parameters were taken from [Gribble et al., 1998] and adjusted such
that the results of [Gribble et al., 1998] are reproduced.
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can be calculated by multiplying the PCSA with N cm�2. The values are taken from
[Winters et al., 2012]

The Calcium kinetics acts like a low pass filter on the muscle force development
[Gribble et al., 1998] and is thus modeled by a critically damped second order low
pass filter with a single parameter ⌧ :

⌧
2
M̈ + 2⌧Ṁ +M = M̃ (3.5)

Here, M̃i is the actual muscle force obtained in equation 3.4 and Mi is the graded
muscle force. The value for ⌧ is taken from [Gribble et al., 1998] and chosen such
that the response of the muscle corresponds to the empirical findings. The value of
⌧ can be found in table 3.4.
There is strong evidence for a sigmoidal relation between muscle force and muscle
lengthening and shortening [Joyce et al., 1969]. Furthermore we assume a passive
force linearly depending on the di↵erence between the actual muscle length and the
resting length ci of the muscle. The resulting force Fi yields:

Fi = Mi[(f1 + f2 · arctan(f3 + f4 · l̇i)] + k(li � ci). (3.6)

Mi is the graded force from equation 3.5. The factors f1, f2, f3, f4 and k are taken
from [Gribble et al., 1998] and then adjusted such that they reproduce the results
of [Gribble et al., 1998]. The adjusted parameters can be found in table 3.4.

Parameter Value
f1, - 0.82
f2, - 0.57
f3, - 0.43

f4, s/m 58
⌧ , s 0.015
k, - 17.35

c, 1/m 112

Table 3.4: The parameters were taken from [Gribble et al., 1998] and adjusted such
that the results of [Gribble et al., 1998] are reproduced.
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shoulder moment arm [m] elbow moment arm [m]
Gribble constant level arm Gribble constant level arm

mef -0.03 ·0.2 -0.014 - 0.0079202 ✓2 -0.02
mee 0.03 ·0.2 0.025 -0.0043202 ✓2 0.02
msf -0.03 -0.03 -0.023 ·0.2
mse 0.03 0.03 0.023 ·0.2
bef -0.03 -0.016 - 0.01146 ✓2
bee 0.03 0.03 - 0.00636 ✓2

Table 2.4: Muscle moment arm H for the six lumped muscles.

In the equation of motion the torque is used to calculate the acceleration
✓̈ from the external torque, which is here set to zero, the coriolis force C and
the inertia matrix I [Gomi and Kawato, 1996].

✓̈ = I�1(T � Text � C ✓̇) (2.11)

The Coriolis force is a force that acts in a direction perpendicular to the
rotation axis, which is the axis aligned with the arm in this case. The Coriolis
matrix combines the centrifugal and centripetal forces that act on the joint
and is calculated from the arm constants (center of mass, segment length and
segment mass) and the joint angles, thus changing with the position of the
arm [Zatsiorsky, 2002]. The magnitude of the Coriolis forces does not exceed
0.06 N and is thus small in comparison to the force of the muscles.

The angles of the arm are calculated by numerically integrating (see sec-
tion 2.2.2) the acceleration of the joints ✓̈ and then transferred to end-effector
space as

x = cos(✓1) · l1 + cos(✓1 + ✓2) · l2 (2.12)
y = sin(✓1) · l1 + sin(✓1 + ✓2) · l2 (2.13)

2.2.2 Numerical Integration
The integration of M̃ in the calcium filter and ✓̈ in the equation of motion
can be done with different numerical methods. Both equations are delayed
differential equations of second order and can thus be rewritten as a system
of differential equations, as done for the equation of motion from equation
2.11 in 2.14.

ẏ1 = y2

y2 = ✓̈ (2.14)
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2.2 inverse dynamics
Equation of motion

T = I · ✓̈ + C(✓, ✓̇)✓̇ (3)

Ti = �Hi ⇤ Fi (4)

~Hij =

✓
�c

0
iE

c
0
iE

◆

since c
0
iF = �c

0
iE

~Fi =

✓
FiF

FiE

◆

Ti(t) = �(�c
0
iE)FiF (t)� c

0
iEFiE(t)

= c
0
iE(FiF (t)� FiE(t))

F = M [f1 + f2 atan(f3 + f4l̇)] (5)

with parameters f1, ...f4

Tj(t)

c
0
iE

= MiF (t)(f1+f2 atan(f3+f4
˙liF (t))�MiE(t)(f1+f2 atan(f3+f4

˙liE(t))

(6)

ai(t) = f1 + f2 atan(f3 + f4
˙liF (t))

bi(t) = f1 + f2 atan(f3 + f4
˙liE(t))

Instantaneous muscle force M̃

⌧
2
M̈ + 2⌧Ṁ +M = M̃ (7)

parameter ⌧ = 0, 015
stationary solution

M(t) =
1

⌧ 2

Z t

(t� t
0) exp(

�(t� t
0)

⌧
)M̃(t0)dt0 (8)

Approximation of Integral leads to with ⌧ = 15ms. t̃ = t� ⌧

Mij(t) = M̃ij(t� ⌧) (9)

5
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We �nd the minimally 
changing time courses of the 
descending command u 
that move the arm from an 
initial to a target position at 
di�erent movement speeds.

The resulting descending commands change  from an initial 
to a   target value. The transition is monotonic for slow  
and  complex for fast movements.
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The Virtual Attractor Trajectory
At any moment in time,  the virtual attractor trajectory [1] is 
determined from the set of muscle lengths at which the net active 
joint torques at each joint are zero given constant values of      
and    ...

[1] Hodgson & Hogan (2000). A model-
independent de�nition of the attractor 
behavior applicable to interactive tasks.
IEEE Transactions on Systems, Man and 
Cybernetics, Part C (Applications and 
Reviews) 30.1 (2000): 105-118.
[2] Gribble et. al. (1998). Are complex 
control signals required for human arm 
movement? Journal of neurophysiology 
79.3 (1998): 1409-1424.

Because the stretch re�ex is present throughout a voluntary movement, the descending command does 
not return to zero after the movement has ended, but remains at a shifted level that re�ects the new 
postural state. Minimizing the descending command (as in “minimum e�ort” models) does not make sense, 
therefore. We computed the minimally changing descending command that is consistent with a given 
movement based on a simple model of the stretch re�ex, a muscle model, and the biomechanics of the 
arm. We found descending commands that exhibit the predicted shift, and are increasingly complex for 
faster movements. The attractor trajectory (time course of arm postures at which net joint torques are 
zero) computed from the model are uniform across movement directions and become increasingly non-
mono-tonic with increasing speed.
 

The tonic stretch re�ex is an important element for 
the control of human movement. It interacts with 
the descending motor command and  in�uences 
such  the �-motorneuron-recruitment. In this study, 
we investigate how the structure of descending  
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The Stretch re�ex signi�cantly in�uences the  output of
 the �-Motorneuron: 

With the stretch re�ex 
the descending command 
needs to adapt to the 
new muscle length, 

,

Descending Command u 
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Muscle

Feedback

Descending Command u 
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Without the stretch 
re�ex, the decending 
command must diminish to 
zero at movement on- 
and o�set.
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motor  command is  e�ected by the inherent properties pf 
the stretch re�ex. Therefore, we compute the minimally 
changing descending commands  for movements of 
di�erent  directions and speeds.  

On the In�uence of Stretch Re�ex on the Optimal Motor Command

muscle activation from 
descending command

2.2.1 Gribble’s muscle model
In this thesis I will use the muscle model described in [Gribble et al., 1998]
with a few alterations which will be explained in the third chapter. Gribble’s
model of force generation takes into account muscle length, the dependence of
force on velocity of muscle lengthening, graded force development and passive
stiffness. How these components work together is shown in figure 2.2. The
graphic shows that the resulting muscle force has three input variables, the
central command, which consists of the descending R- and C-commands, the
muscle length l and the rate of change of length, which is the velocity of
muscle lengthening l̇. The calculations of the individual boxes are given in
the formulas of the muscle model below.

The parameters of Gribbles model are listed in table 2.1 and 2.2. Table
2.1 lists all parameters that Gribble that are the same for all muscles and
are not changed in our monoarticular new model. In the tables 2.2 and 2.3
the muscle specific constants from Gribble and our monoarticular model are
listed.

Most of the model parameters are empirical measurements of muscle prop-
erties from former studies or scaled and fitted estimates from empirical data.
To ensure the validity of the parameters Gribble included a sensitivity anal-
ysis of all parameters with respect to stiffness and viscosity. The parameters
µ and ⌧ , which both alter the damping of the system are set to values that
achieve a critically damped system. The parameter µ from equation 2.4 can
be chosen more freely than other parameters as it can be set by the central
nervous system [Feldman et al., 1990], while the cutoff-frequency ⌧ of the
calcium filter of equation 2.7 is chosen to produce a model behaviour that
fits empirical results.

Figure 2.2: The mechanism of force generation as used by Gribble. Each
box represents one equation of the msucle model. Picture taken from
[Gribble et al., 1998]
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Figure 2: The End-effector path (red, magenta backwards movements) for
one participant and the simulated End-effector path (green, cyan backwards)
for a C-commands of 1.1 rad
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model: green/cyan1 Experimental paradigm
To obtain experimental data for the estimation of descending commands, we
performed a standard movement experiment in the manner of [Hollerbach & Flash, 1982].
We aimed at naturalistic movements, restraining movement to planar, two-
joint action by instruction rather than constraining the arm mechanically by
a manipulandum. Twelve participants performed the eight movements illus-
trated in Figure 1. (A thirteenth participant was excluded due to failure to
complete enough valid trials, see below.) All participants (8 female, 4 male,
mean age = 25.67 years, SD= 3.80, age range: 22-35) were right handed and
had given informed and written consent. The participants were compensated
with 10 Euro for the one hour experimental session.

0 0.2

0.2

0.4

1
2

3

4

5

6

7

8

S

Figure 1: Top view of the experimental set-up. The participant is seated in
front of a horizontal monitor with the center of his shoulder at a distance
of 0.2m to the monitor. Participants moved their right arm between targets
displayed on the monitor. Infrared markers (red asterisks) were attached to
the shoulder and elbow joints and to the hand. Shoulder (✓S) and elbow (✓E)
joint angles are marked.

1

data: red/magenta 
(for the two directions)

Comparing data to movements predicted 
from estimated descending activation



Inverting a model of neuro-muscular control to estimate descending commands 
for fast reaching movements
 ResultsCora Hummert, Lei Zhang, Gregor Schöner

Conclusion

We used the estimated virtual 

trajectories to simulate the same 

movements  captured in the 

experiment. The simulated hand 

paths �t the experimental data, 

which was veri�ed by RMSE as a 

measure for the goodness of �t. The 

mean over all movements and 

participants was:

RMSESlow = 4.1% 

RMSEFast = 5.8%   

 

 

We developed an inverse dynamic approach to estimate the 

descending commands for reaching movements. The estimated  

descending commands converge to a level that remains shifted after 

the movement. Their time courses are increasingly complex for faster 

movements.  

The central commands are qualitatively different from 

muscle activations, in which the re�ex loop does not enter.

The virtual attractor trajectory differs for movements of 

different speeds so that R is relatively monotonic in the 

slow condition and has non-monotonic structure 

resembling Latash's[4] N-shape in the fast.

The virtual trajectory changes gradually with an increasing 

cocontraction (C= {0.2, 0.4, 0.6, 1.0}) and the N-shape is 

most pronounced for smaller C-commands

 

- descending commands show importance of re�exes

- possible to �nd an analytical solution for an inverse 

model of neuromuscular control

- N-shaped virtual trajectories for fast movements

 - complexity of virtual trajectories compensates for 

changes in cocontraction

Discussion

The deviation of the N-shape (Nj) is measured in the 

rootsquare of the distance from a linear ramp from ramp 

start to hand peak velocity. A T-test was signi�cant for 

both elbow and shoulder on a 1% level and (Elbow: 

p=0.0006; Shoulder: p=0.0007 ) 

The T-test of the RMSE for different C-commands was not 

signi�cant on 5% level

References
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Simulations

Virtual Attractor trajectory:
The virtual attractor trajectory can be 

represented in joint space an thus directly 

compared to the joint angles. The shape of the 

virtual trajectory changes with increased 

movement speed, similarly as the descending 

command u. 

The muscle activation  

returns back to zero 

after the movement 

while the central 
commands u is shifted 

to new value. Both 

activations are more 

complex for fast 

movements (solid line) 

than for slow 

movements (dotted 

line)

- The descending command is shifted to a new value after the movement

- simulations have a small time lag relative to the experimental trajectories

- fast condition: greater lag and higher curvature in hand path

- simulation error is relatively invariant to changes in C

NE = 0.0953 rad NE = 0.165 rad

NS = 0.0565 rad NS = 0.095 rad
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To obtain the descending commands  we calculated the attractor 

trajectory R from the joint angles � estimated in the experiment. To 

�nd an analytical solution to Gribbles model we simpli�ed it to a 

monoarticular muscle model with symmetric muscle pairs a constant 

delay (15ms) instead of a calcium dynamic.
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We investigated eight multi-joint, planar movements at different 

movement speeds and tracked the joint angles with the motion capture 

system VisualEyez. Two conditions were realized with an auditory 

metronome: slow (800ms) and fast movements  (400ms). 

Achieved mean movement times: DSlow = 779ms DFast = 445 ms

The descending commands are 

estimated by inverting a model of 

neuromuscular control (Gribble et al[2]). 

The descending command u is the input 

to the � motorneuron, which in turn 

activates the muscle dependent on 

length and velocity feedback.
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Contrary to the muscle activation the descending command therefore 

includes a postural shift and does not return to zero as the activation 

does. The activation can thus be easily translated to a 'threshold' 

length, like �, or to joint space like the virtual attractor trajectory R.

green: 
muscle

activation

blue: 
descending
activation

solid: fast
dashed: 
slow



time course of descending activation

… as a virtual trajectory
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The virtual attractor trajectory can be 

represented in joint space an thus directly 

compared to the joint angles. The shape of the 

virtual trajectory changes with increased 

movement speed, similarly as the descending 

command u. 

The muscle activation  

returns back to zero 

after the movement 

while the central 
commands u is shifted 

to new value. Both 

activations are more 

complex for fast 

movements (solid line) 

than for slow 

movements (dotted 

line)

- The descending command is shifted to a new value after the movement

- simulations have a small time lag relative to the experimental trajectories

- fast condition: greater lag and higher curvature in hand path

- simulation error is relatively invariant to changes in C
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monoarticular muscle model with symmetric muscle pairs a constant 

delay (15ms) instead of a calcium dynamic.

1

2

0.5

1

0 0.510

Experiment

Inverse dynamic model

We investigated eight multi-joint, planar movements at different 

movement speeds and tracked the joint angles with the motion capture 

system VisualEyez. Two conditions were realized with an auditory 

metronome: slow (800ms) and fast movements  (400ms). 

Achieved mean movement times: DSlow = 779ms DFast = 445 ms
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Contrary to the muscle activation the descending command therefore 

includes a postural shift and does not return to zero as the activation 

does. The activation can thus be easily translated to a 'threshold' 

length, like �, or to joint space like the virtual attractor trajectory R.



(2) Estimate minimal descending activation

“minimal” change of descending activation

to bring about the movement

and define the time integration of the ODE-system as the state vector ~X:

~X =

0

BBB@

~M

~̇M

~✓

~̇✓

1

CCCA
. (3.12)

Here, ~M contains the six graded forces due to the Calcium kinetics and ~̇M the cor-

responding rates of change. ~̇✓ and ~✓ stand for the angle velocity and the angle of the
two joints. Both are two-dimensional vectors each. Thus, the state vector ~X is a
16-dimensional vector including the states of 6 muscles and two joints. A movement
is fully described through the state trajectory ~X(t) which is the time course of the
state vector.
The goal of the optimization is to find a sequence of the control signals ~�(t) that
steer the modeled arm from an initial state ~X0 to an final state ~Xf and reproduce
characteristics of natural movements. For this purpose we impose boundary con-
ditions for the state vector ~X(t) and boundary conditions of the optimization for
the control sequence ~�(t). These boundary conditions guarantee that the desired
movement from ~X0 to ~Xf is executed in a biologically plausible range of ~X(t) and
~�(t). The selection of appropriate boundary conditions for a movement depends on
how detailed the description of the movement should be. In the scope of this project
boundary conditions were divided into three classes. The first class are conditions
for the state vector at the beginning and at the end of the movement. The first
condition is, that the joints should start at the initial state and end at the final
state:

~✓(t0)� ~✓start = 0, (3.13)

~✓(tf )� ~✓final = 0. (3.14)

Furthermore, the velocity at the beginning of the movement and at the end of the
movement should be zero:

~̇✓(t0) = 0, (3.15)

~̇✓(tf ) = 0. (3.16)

The third condition of this class is, that the joint angle acceleration at the beginning
and at the end of the movements should be zero:

~̈✓(t0) = 0, (3.17)

~̈✓(tf ) = 0. (3.18)

The angle acceleration does no explicitly appear in the state vector ~X but is strongly
depended on it. Equation 3.10 describes the angle acceleration. It depends on the

angle velocity ~̇✓, which is directly contained in ~X and on the joint torques ~T . Joint
torque arises as a consequence of interacting muscle forces which directly depend on
the graded force (see sec. 3.1). It is important to note that conditions 3.17 and 3.18
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how detailed the description of the movement should be. In the scope of this project
boundary conditions were divided into three classes. The first class are conditions
for the state vector at the beginning and at the end of the movement. The first
condition is, that the joints should start at the initial state and end at the final
state:

~✓(t0)� ~✓start = 0, (3.13)

~✓(tf )� ~✓final = 0. (3.14)

Furthermore, the velocity at the beginning of the movement and at the end of the
movement should be zero:

~̇✓(t0) = 0, (3.15)

~̇✓(tf ) = 0. (3.16)

The third condition of this class is, that the joint angle acceleration at the beginning
and at the end of the movements should be zero:

~̈✓(t0) = 0, (3.17)

~̈✓(tf ) = 0. (3.18)

The angle acceleration does no explicitly appear in the state vector ~X but is strongly
depended on it. Equation 3.10 describes the angle acceleration. It depends on the

angle velocity ~̇✓, which is directly contained in ~X and on the joint torques ~T . Joint
torque arises as a consequence of interacting muscle forces which directly depend on
the graded force (see sec. 3.1). It is important to note that conditions 3.17 and 3.18
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and define the time integration of the ODE-system as the state vector ~X:
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0

BBB@

~M
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~̇✓

1

CCCA
. (3.12)
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do not determine the graded force of each muscle but limits the space of possible
combinations of the individual muscles.
The second class of boundary conditions are the upper and lower bounds on the
state vector. To produce realistic movements, joint angle and joint angle velocity
are restricted to a biologically plausible range:

~✓(t) < ~✓max,

~̇✓(t) < ~̇✓max.

(3.19)

This not only prevents unrealistic angles and angle velocities but also unrealistic
muscle lengths, length changes and hence forces.
The third class of boundary conditions are upper and lower bounds for the control
signals ~�. Within the given model, control signals are defined as equilibrium muscle
length and should therefore always have positive values. In addition equation 3.3
shows that if the activation A is zero, a growing ~� does not have an e↵ect on the
activation. Thus, upper and lower bounds for ~� were introduced:

�min  ~�(t)  �max t 2 [t0, tf ]. (3.20)

The listed boundary conditions constrain the state-vector ~X(t) such that the an
end-e↵ector moves from an start state ~X0 to a predefined target state ~Xf within
biomechanical limits.
However, there is an infinite number of control sequences ~�(t) and resulting state
trajectories ~X(t) that fulfill the boundary conditions. Empirical studies show that
movements mostly occur in a similar way [Morasso, 1981]. This suggests that the
CNS systematically choses one of the possible movement trajectories. Since we state
that the choice of the control sequence ~�(t) is the result of an evolutionary optimiza-
tion with respect to a biologically relevant optimization criterion, the question of
an reasonable optimization criterion arises. Natural movements tend to produce
smooth characteristics in path, velocity and acceleration [Morasso, 1981]. Further-
more, we assume that evolution favors to generate simple signals. We choose the
minimization of the rate of change of the control signal as the optimization criterion:

min
~�
 (~�) =

Z tf

0

~̇�(t)2 dt. (3.21)

A decreasing rate of change ~̇�(t) causes smoother ~�(t)s since it penalizes strong
changes in the control trajectories. Within the treated model, muscle length time-
courses are the damped manifestation of the descending signals. Smooth control
signals provide smooth muscle length changes and generate smooth movements as
a result.
Dynamic equations, boundary conditions and optimization criterion together define
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to a   target value. The transition is monotonic for slow  
and  complex for fast movements.
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The Virtual Attractor Trajectory
At any moment in time,  the virtual attractor trajectory [1] is 
determined from the set of muscle lengths at which the net active 
joint torques at each joint are zero given constant values of      
and    ...

[1] Hodgson & Hogan (2000). A model-
independent de�nition of the attractor 
behavior applicable to interactive tasks.
IEEE Transactions on Systems, Man and 
Cybernetics, Part C (Applications and 
Reviews) 30.1 (2000): 105-118.
[2] Gribble et. al. (1998). Are complex 
control signals required for human arm 
movement? Journal of neurophysiology 
79.3 (1998): 1409-1424.

Because the stretch re�ex is present throughout a voluntary movement, the descending command does 
not return to zero after the movement has ended, but remains at a shifted level that re�ects the new 
postural state. Minimizing the descending command (as in “minimum e�ort” models) does not make sense, 
therefore. We computed the minimally changing descending command that is consistent with a given 
movement based on a simple model of the stretch re�ex, a muscle model, and the biomechanics of the 
arm. We found descending commands that exhibit the predicted shift, and are increasingly complex for 
faster movements. The attractor trajectory (time course of arm postures at which net joint torques are 
zero) computed from the model are uniform across movement directions and become increasingly non-
mono-tonic with increasing speed.
 

The tonic stretch re�ex is an important element for 
the control of human movement. It interacts with 
the descending motor command and  in�uences 
such  the �-motorneuron-recruitment. In this study, 
we investigate how the structure of descending  
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The Stretch re�ex signi�cantly in�uences the  output of
 the �-Motorneuron: 

With the stretch re�ex 
the descending command 
needs to adapt to the 
new muscle length, 
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motor  command is  e�ected by the inherent properties pf 
the stretch re�ex. Therefore, we compute the minimally 
changing descending commands  for movements of 
di�erent  directions and speeds.  

On the In�uence of Stretch Re�ex on the Optimal Motor Command



Why “lambda” rather than “r”?

Figure 3: For a symmetric pair of muscles (thin black lines), their threshold lengths,
�1, and �2 uniquely determine the equilibrium posture of joint, Rsym = �✓,2 � �✓,1

irrespective of co-contraction. (Note that threshold lengths are transformed from
length space to joint space by �✓,i = (�1)i(�i � ci)/c0i for i = 1, 2). At non-zero
co-contraction, the equilibrium posture, Rasym, of an asymmetrical muscle pair (fat,
red lines) depends on the level of force generated.

3.4 Estimating the virtual attractor trajectory

At any moment in time, the reference command defines a stable state of the complete
model. The time course of this stable state in terms of the physical variables, joint
angles or hand position, represents the attractor trajectory (Hodgson & Hogan,
2000). The attractor state corresponds to an equilibrium posture, in which all muscle
forces are balanced. When opposing muscles di↵er in strength, that equilibrium
posture is not, in general, determined by the reference lengths of the opposing
muscles alone. Unless co-contraction is exactly zero, the equilibrium posture also
depends on muscle force as illustrated in Figure 3.

This is why attractor trajectories may be physically more meaningful than the
reference command itself. In the model, estimating the attractor trajectory is triv-
ial. At every moment in time we compute the joint angles (and associated muscle
lengths) at which the torques contributed by all muscles sum up to zero, given the
current levels of the reference commands, ~�(t), and the current levels of the rates
of change of muscle lengths, d~l(t)/dt. Attractor trajectories in joint space can be
transformed to attractor trajectories in hand position space by the kinematic model.
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two joint limb with 6 muscles

= 2 pairs of mono-articulatory m.

+ 1 pair of bi-articulatory m.

BIARTICULAR MUSCLES

MONOARTICULAR SHOULDER
JOINT MUSCLES

MONOARTICULAR ELBOW
JOINT MUSCLES

ENDEFFECTOR

Figure 3.1: Schematic sketch of the arm model. The model comprises a two joint
arm with two monoarticular elbow joint muscles (red), two monoarticular shoul-
der muscles (blue) and two biarticular muscles that span elbow and shoulder joint
(black).

3.1.1 Modeling of Muscle Lengths

In general, muscles span along joints and stretch or contract to change the angle-
configuration and thus induce a movement. Thus, the muscles resting length and
the angle configuration determine the actual length of a muscle. We modeled the
muscle length l as a first-order polynomial depending on the elbow and the shoulder
angle ✓e and ✓s :

li = ci + c
0
i,s✓s + c

0
i,e✓e i 2 [1, 6]. (3.1)

The values for ci and c
0
i indicate the resting length and the moment arms of the

corresponding muscles and can be found in table 3.1. The resting lengths are taken
from [Winters andWoo] and the moment arms from [Kistemaker et al., 2006]. Equa-
tion 3.1 is a slightly simplified version of the second order polynomial introduced in
[Kistemaker et al., 2006]. The simplification is reasonable, because within the range
of the reproduced movements, the appearing e↵ects are negligible. Corresponding
to table 3.1, the velocity of muscle lengthening and shortening is

l̇i = ci + c
0
i,s✓̇2 + c

0
i,e✓̇1 i[1, 6]. (3.2)

13

muscle length link to joint angles

Kinematics

Figure 2: The model includes shoulder and elbow joints in the horizontal plane,
articulated by two monoarticular elbow joint muscles (red), two monoarticular
shoulder muscles (blue) and two biarticular muscles that span elbow and shoul-
der joint (green). The illustrated geometry leaves muscle lever arms invariant across
workspace.

where ci is the passive resting length of the muscle and the factors f1 to f4 and
k were adjusted to reproduce the results of (Gribble et al., 1998) (values listed in
Appendix A).

The active joint torques, ~T , are obtained from the muscle forces, Fi, taking the
moment arms into account:

~T =

✓
Te

Ts

◆
=

✓
c01,eF1 + c02,eF2 + c05,eF5 + c06,eF6

c03,sF3 + c04,sF4 + c05,sF5 + c06,sF6

◆
(8)

3.1.3 Reference command and reflex model

The activation, Ai, of each muscle is assumed to reflect the descending reference
command, �i, that acts as the threshold of a reflex loop modeled as:

Ai = [li � �i + µ l̇i]
+ (9)

where [·]+ signifies a semi-linear threshold function, and µ is a parameter that reflects
the sensitivity of muscle spindles to the rate of muscle length change (Gribble et al.,
1998).

8

[Ramadan, Hummert, Jokeit, Schöner, under revision]



Paths data vs. model

4 Results

4.1 Experimental results

4.1.1 Movement time

The movement times of the eight di↵erent movements performed at two instructed
durations are listed in Table 1. Mean movement time across all movements and
participants was 0.779 s in the slow condition and 0.445 s in the fast condition with
standard deviations of 0.032 s and 0.022 s, respectively.

Movement 1 2 3 4 5 6 7 8

slow
T [sec] 0.798 0.791 0.809 0.755 0.717 0.694 0.809 0.855

TSD [sec] 0.025 0.018 0.030 0.023 0.018 0.019 0.019 0.019
fast

T [sec] 0.455 0.448 0.460 0.443 0.400 0.495 0.482 0.479
TSD [sec] 0.025 0.018 0.030 0.023 0.018 0.019 0.019 0.019

Table 1: Movement time (T ) and its standard deviation (TSD) across participants
for each of the eight movements in the two movement conditions, slow vs. fast.
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X in [m]

0.3
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Y 
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45
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7

Figure 4: EEF path for the simulations (black) and the experiment (blue) for the
slow condition (800ms). The paths are labeled according to the movement numbers
(same conventions as in figure 1).

4.1.2 Kinematics

There is nothing new or surprising about the kinematics of these standard move-
ment data: Hand paths are relatively straight, hand velocity profiles (absolute value
of velocity along the movement path as a function of time) are bell-shaped, joint
trajectories and joint velocity profiles are smooth (Morasso, 1981). The hand paths
(means across participants) are plotted in Figure 4 together with the paths from the
simulations. Because participants have di↵erent segment lengths and were not all
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blue: experiment
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determined from the set of muscle lengths at which the net active 
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Hodgson-Hogan attractor trajectories

of the movement. There is a slight asymmetry in this N-shape in that the break-
ing phase is more strongly articulated then the acceleration phase. This matches
the stronger torques observed during breaking in the model (Fig 10) and will be
discussed below.

The orthogonal component is constant for slow speeds, reflecting approximately
straight paths. At larger speeds, the orthogonal component becomes slightly “S-
shaped” for some movements, which may reflect compensation for increasing inter-
action torques.
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Figure 13: Attractor trajectories from the model for the 8 movement directions
(rows, arrows on the left margin illustrate the movement direction). The compo-
nent along the direction from the start to the target position is shown in the first
column, its orthogonal complement in the second column. Slow (dotted), interme-
diate (dashed) and fast (solid) movements are shown.

5 Discussion

In this paper, we asked about the time structure of the descending reference com-
mands that generate targeted hand movements. We framed these reference com-
mands as the six reflex thresholds, �i, of the six muscles in a 2-joint planar arm,
based on a model that takes reflex-gated muscle activation, the dynamics of muscle
force generation, and arm kinetics (Gribble et al., 1998) into account. Our approach
was to estimate the reference commands that change the least while bringing about

19

slow: 
dotted

medium: 
dashed

fast: 
solid

in end-
effector
space!



attractor trajectory in hand-
space

at higher speeds (solid line), 
attractor trajectories are 
temporally structured “just 
right” for the hand to reach the 
target

phase of the N-shape appears to be very distinct although figure 8 and 9 do not
indicate that.
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Figure 10: Virtual Trajectories that emerged from the minimization in- and orthog-
onal to the movement direction. The arrows in the left of the figure indicate the
movement direction. The blue curves show the virtual attractor trajectory in move-
ment direction. The red curves show the virtual attractor trajectories orthogonal to
the movement direction. The dotted line indicates the slow movements, the dashed
lines the mid-speed movements and the solid lines the fast movements.

This is consistent with the observation that the acceleration and velocity profiles
of the optimized movements show a radical breaking. The reason for that is that
the optimization chooses a solution that makes use of the damping properties of
the muscles. Considering equation 6, we see that muscle force is composed of an
active term and a viscous term which both depend on Mi. A sudden activation of
the antagonist muscle while l̇i is still positive (due to inertia, interaction and active
agonist torques) enables the active and the viscous term to act in the same direction
and large force can be produced even with small changes of the control command.
This specific case is an example that shows that muscle properties radically influence
virtual attractor trajectories.
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Do the time courses of lambda matter? 

making a slow lambda (ramp in hand space) 
fast => doesn’t make movement fast

an underlying invariant representation of the reference command, from which timed
movement can be obtained by scaling.

The kinematic or quasi-postural conception of the reference command amounts
to postulating such an invariant. The implied scaling law is a linear rescaling of
time, in which fast movements can be obtained from slow reference commands by
a linear time compression, and slow movements can be obtained from fast reference
commands by linear time dilation. Figures 14 and 16 illustrate that this scaling law
fails for ramps and for the minimal reference commands.

First, we constructed a ramp with constant rate of change in end-e↵ector space,
which we simply gave a very short duration of 0.1 s, shorter than the fast ramps
we found for the minimal reference commands. Does such a short ramp lead to a
faster movement? Figure 14 shows that this is not the case: the movement that
is produced is, in fact, slower than the fastest movements we modeled with the
minimal reference command. In the simulation shown, co-contraction was set to 50
N. Increasing co-contraction further did not make the movement faster.
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Figure 14: Results for a linear Ramp in end-e↵ector space from [0.0m, 0.3m] to
[0.0m, 0.55m] scaled to a ramp duration of 0.1 s. Left: Hand path. Middle: Elbow
(solid red) and shoulder (solid blue) joint angle trajectories, whose target angles are
shown as dashed lines. Right: Reference commands for bi-articular (black), shoulder
(blue) and elbow (red) muscles.

Why does this scaling of the ramp to faster movements fail? This can be under-
stood by looking at the attractor trajectory implied by a short (0.1 s) ramp (Figure
15). Notice how at the end of the short ramp, the attractor trajectory sharply re-
verses and as a result acts to decelerate the joint, slowing down the movement. This
reversal is due to the contribution of the rate of change of muscle length both at the
level of muscle activation (Eq. 9) and of muscle force (Eq. 7).
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Do the time courses of lambda matter? 

making a fast lambda slow: doesn’t make a good slow 
movement 

Figure 15: Attractor (dashed) and real trajectory (solid) for the two joint angles
(shoulder, blue; elbow red) that emerge from the 0.1 s ramp in end-e↵ector space
(Fig. 14).

Second, we probed the reverse scaling in which we took the minimal reference
command obtained for fast movement of 0.4 s movement time and rescaled it lin-
early by a factor of two, nominally for a movement time of 0.8 s. Figure 16 shows
the resulting path, joint trajectories, and reference commands. The hand’s path
is clearly unrealistic in shape for slow movements with an extraneous hook at the
end of the movement. This is reflected by the joint angles’ overshooting their tar-
gets. Essentially, at this slow rate, the joint angles track the N-shaped reference
commands! So, clearly, slow movements are not scaled down fast movements.
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Figure 16: Results for a reference command obtained for a fast movement (movement
time 0.4 s) that is linearly dilated by a factor of two (nominal movement time 0.8
s). Left: Hand path. Middle: Elbow (solid red) and shoulder (solid blue) joint
angle trajectories, whose target angles are shown as dashed lines. Right: Reference
commands for bi-articular (black), shoulder (blue) and elbow (red) muscles.
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(3) Estimate descending activation from EMG

unloading experiment to 
determine linear 
relationship between EMG 
and descending activation

(by estimating threshold 
length in unloading)

[Zhang, Feldman, Schöner]

Voluntary reaching movements may be associated with the
interaction between descending motor commands and
peripheral stretch reflex. In this study, we transfer
descending motor commands into effective muscle lengths
that reflect the thresholds of stretch reflex. Then we
experimentally reconstruct the time course of such stretch
reflex thresholds to assess descending motor commands
during arm reaching movements.
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Normalization of Model Parameters

Discussions 1. It is possible to have a reasonable estimation of descending motor commands from EMG signals.
2. The time profile of descending motor commands may be non-monotonic during fast movements.
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Recording: surface EMG of wrist flexor (FCR) and extensor
(ECR) muscles; wrist position.
Data analysis: for simplicity, ்݈௛ and ݈ are defined in units of
joint angle (positive for extension). EMG was band-pass
filtered (10 – 500 Hz) and rectified.

For flexor:         ݌ଵ ൌ 0.0011 ଶ݌  ; ൌ െ0.0015
For extensor:    ݌ଵ ൌ 0.0014 ; ଶ݌ ൌ െ0.0028
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Procedure
1: Unloading experiments for normalizing model parameters
2: Voluntary movements for estimating time structure of ݑ

Time Course of Descending Commands 

Experiment: Sudden unloading of 
preloaded wrist muscles elicits 
motion to a new wrist position. 
We assume subjects maintain ࢛
thus also ࢎࢀ࢒ before and after 
unloading: ்݈௛௜ൌ ்݈௛௙ ൌ ݈௙

A series of ሼ࢏ࡳࡹࡱ, ,࢏࢒ ሽ࢏ࢎࢀ࢒ were
obtained with four torque levels
(0.4, 0.6, 0.8, 1Nm), each with 5
trials; unloading was done for
both flexor and extensor,
separately.

Slow movement: u profile
was not sensitive to ߤ

When ሶ݈ ൌ 0 and muscle is active: 𝐴 ൌ 𝑘 ݈ െ ்݈௛
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∗ݑ time profile during fast movement had multiple peaks, but
similar shape to joint trajectory during slow movement.



(3) Estimate descending activation from EMG

unloading experiment to 
determine linear 
relationship between EMG 
and descending activation

(by estimating threshold 
length in unloading)

[Zhang, Feldman, Schöner]

Voluntary reaching movements may be associated with the
interaction between descending motor commands and
peripheral stretch reflex. In this study, we transfer
descending motor commands into effective muscle lengths
that reflect the thresholds of stretch reflex. Then we
experimentally reconstruct the time course of such stretch
reflex thresholds to assess descending motor commands
during arm reaching movements.

Estimating the time course of descending motor commands during reaching movements
Lei Zhang, Gregor Schöner Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany

Control of Motoneuron

Normalization of Model Parameters

Discussions 1. It is possible to have a reasonable estimation of descending motor commands from EMG signals.
2. The time profile of descending motor commands may be non-monotonic during fast movements.

α MN

Muscle

Afferent inputs ݑ௔
(depending on ݈, ሶ݈ ሻ

Descending motor command ݑ

Activation
(𝐴ሻ

்݈௛
∗ ൌ ்݈௛ െ ߤ ሶ݈ ൌ ݈ െ ሺ𝐸𝑀𝐺 െ 1݌/2ሻ݌

which can be estimated with 𝐸𝑀𝐺, ݈, ,1݌ .2݌
∗ݑ ൌ ݑ ൅ 𝑘ߤ ሶ݈ ൌ ௛்ݑ െ 𝑘 ்݈௛ െ ߤ ሶ݈ ൌ ௛்ݑ െ 𝑘்݈௛

∗

Experiment: Slow (about 1s) and fast (about 0.5s) wrist
flexion of 40°, 10 trials each, without load.

The threshold property of MN:
𝐴 ൌ ݑ ൅ݑ௔ െ்ݑ௛ ା

௛: intrinsic electrical MN threshold்ݑ

We assume that afferent input is linearly related to 
muscle length and velocity: ݑ௔ ݈, ሶ݈ ൌ 𝑘 ݈ ൅ ߤ ሶ݈

Recording: surface EMG of wrist flexor (FCR) and extensor
(ECR) muscles; wrist position.
Data analysis: for simplicity, ்݈௛ and ݈ are defined in units of
joint angle (positive for extension). EMG was band-pass
filtered (10 – 500 Hz) and rectified.

For flexor:         ݌ଵ ൌ 0.0011 ଶ݌  ; ൌ െ0.0015
For extensor:    ݌ଵ ൌ 0.0014 ; ଶ݌ ൌ െ0.0028

Fast movement: ߤ does not affect ݑ
profile before the first peak value,
but modulates later parts of ݑ profile

𝐴 ൌ ௔ݑ െ ௛்ݑ െ ݑ ା ,where ்ݑ௛ െ ݑ is the activation 
threshold of stretch reflex, which is associated with a 
muscle length change of ்݈௛ ൌ ௛்ݑ െ ݑ /𝑘

Rewrite the equation:
𝐴 ൌ 𝑘 ݈ ൅ ߤ ሶ݈ െ ௛்ݑ െ ݑ

ା
ൌ 𝑘 ݈ ൅ ߤ ሶ݈ െ ்݈௛

ା

Procedure
1: Unloading experiments for normalizing model parameters
2: Voluntary movements for estimating time structure of ݑ

Time Course of Descending Commands 

Experiment: Sudden unloading of 
preloaded wrist muscles elicits 
motion to a new wrist position. 
We assume subjects maintain ࢛
thus also ࢎࢀ࢒ before and after 
unloading: ்݈௛௜ൌ ்݈௛௙ ൌ ݈௙

A series of ሼ࢏ࡳࡹࡱ, ,࢏࢒ ሽ࢏ࢎࢀ࢒ were
obtained with four torque levels
(0.4, 0.6, 0.8, 1Nm), each with 5
trials; unloading was done for
both flexor and extensor,
separately.

Slow movement: u profile
was not sensitive to ߤ

When ሶ݈ ൌ 0 and muscle is active: 𝐴 ൌ 𝑘 ݈ െ ்݈௛
Assuming EMG is linearly related to MN activation, the normalization
parameters can be determined with data sets of ሼ𝐸𝑀𝐺, ݈ െ ்݈௛ ሽ.
𝐸𝑀𝐺 ൌ 1݌ ൈ ݈ െ ்݈௛ ൅ 2݌ ൌ 1݌ ൈ ݈ െ ௛்ݑ െ ݑ /𝑘 ൅ 2݌

∗ݑ time profile during fast movement had multiple peaks, but
similar shape to joint trajectory during slow movement.

Voluntary reaching movements may be associated with the
interaction between descending motor commands and
peripheral stretch reflex. In this study, we transfer
descending motor commands into effective muscle lengths
that reflect the thresholds of stretch reflex. Then we
experimentally reconstruct the time course of such stretch
reflex thresholds to assess descending motor commands
during arm reaching movements.

Estimating the time course of descending motor commands during reaching movements
Lei Zhang, Gregor Schöner Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany

Control of Motoneuron

Normalization of Model Parameters

Discussions 1. It is possible to have a reasonable estimation of descending motor commands from EMG signals.
2. The time profile of descending motor commands may be non-monotonic during fast movements.

α MN

Muscle

Afferent inputs ݑ௔
(depending on ݈, ሶ݈ ሻ

Descending motor command ݑ

Activation
(𝐴ሻ

்݈௛
∗ ൌ ்݈௛ െ ߤ ሶ݈ ൌ ݈ െ ሺ𝐸𝑀𝐺 െ 1݌/2ሻ݌

which can be estimated with 𝐸𝑀𝐺, ݈, ,1݌ .2݌
∗ݑ ൌ ݑ ൅ 𝑘ߤ ሶ݈ ൌ ௛்ݑ െ 𝑘 ்݈௛ െ ߤ ሶ݈ ൌ ௛்ݑ െ 𝑘்݈௛

∗

Experiment: Slow (about 1s) and fast (about 0.5s) wrist
flexion of 40°, 10 trials each, without load.

The threshold property of MN:
𝐴 ൌ ݑ ൅ݑ௔ െ்ݑ௛ ା

௛: intrinsic electrical MN threshold்ݑ

We assume that afferent input is linearly related to 
muscle length and velocity: ݑ௔ ݈, ሶ݈ ൌ 𝑘 ݈ ൅ ߤ ሶ݈

Recording: surface EMG of wrist flexor (FCR) and extensor
(ECR) muscles; wrist position.
Data analysis: for simplicity, ்݈௛ and ݈ are defined in units of
joint angle (positive for extension). EMG was band-pass
filtered (10 – 500 Hz) and rectified.

For flexor:         ݌ଵ ൌ 0.0011 ଶ݌  ; ൌ െ0.0015
For extensor:    ݌ଵ ൌ 0.0014 ; ଶ݌ ൌ െ0.0028

Fast movement: ߤ does not affect ݑ
profile before the first peak value,
but modulates later parts of ݑ profile

𝐴 ൌ ௔ݑ െ ௛்ݑ െ ݑ ା ,where ்ݑ௛ െ ݑ is the activation 
threshold of stretch reflex, which is associated with a 
muscle length change of ்݈௛ ൌ ௛்ݑ െ ݑ /𝑘

Rewrite the equation:
𝐴 ൌ 𝑘 ݈ ൅ ߤ ሶ݈ െ ௛்ݑ െ ݑ

ା
ൌ 𝑘 ݈ ൅ ߤ ሶ݈ െ ்݈௛

ା

Procedure
1: Unloading experiments for normalizing model parameters
2: Voluntary movements for estimating time structure of ݑ

Time Course of Descending Commands 

Experiment: Sudden unloading of 
preloaded wrist muscles elicits 
motion to a new wrist position. 
We assume subjects maintain ࢛
thus also ࢎࢀ࢒ before and after 
unloading: ்݈௛௜ൌ ்݈௛௙ ൌ ݈௙

A series of ሼ࢏ࡳࡹࡱ, ,࢏࢒ ሽ࢏ࢎࢀ࢒ were
obtained with four torque levels
(0.4, 0.6, 0.8, 1Nm), each with 5
trials; unloading was done for
both flexor and extensor,
separately.

Slow movement: u profile
was not sensitive to ߤ

When ሶ݈ ൌ 0 and muscle is active: 𝐴 ൌ 𝑘 ݈ െ ்݈௛
Assuming EMG is linearly related to MN activation, the normalization
parameters can be determined with data sets of ሼ𝐸𝑀𝐺, ݈ െ ்݈௛ ሽ.
𝐸𝑀𝐺 ൌ 1݌ ൈ ݈ െ ்݈௛ ൅ 2݌ ൌ 1݌ ൈ ݈ െ ௛்ݑ െ ݑ /𝑘 ൅ 2݌

∗ݑ time profile during fast movement had multiple peaks, but
similar shape to joint trajectory during slow movement.



slow

Voluntary reaching movements may be associated with the
interaction between descending motor commands and
peripheral stretch reflex. In this study, we transfer
descending motor commands into effective muscle lengths
that reflect the thresholds of stretch reflex. Then we
experimentally reconstruct the time course of such stretch
reflex thresholds to assess descending motor commands
during arm reaching movements.

Estimating the time course of descending motor commands during reaching movements
Lei Zhang, Gregor Schöner Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany

Control of Motoneuron

Normalization of Model Parameters

Discussions 1. It is possible to have a reasonable estimation of descending motor commands from EMG signals.
2. The time profile of descending motor commands may be non-monotonic during fast movements.

α MN

Muscle

Afferent inputs ݑ௔
(depending on ݈, ሶ݈ ሻ

Descending motor command ݑ

Activation
(𝐴ሻ

்݈௛
∗ ൌ ்݈௛ െ ߤ ሶ݈ ൌ ݈ െ ሺ𝐸𝑀𝐺 െ 1݌/2ሻ݌

which can be estimated with 𝐸𝑀𝐺, ݈, ,1݌ .2݌
∗ݑ ൌ ݑ ൅ 𝑘ߤ ሶ݈ ൌ ௛்ݑ െ 𝑘 ்݈௛ െ ߤ ሶ݈ ൌ ௛்ݑ െ 𝑘்݈௛

∗

Experiment: Slow (about 1s) and fast (about 0.5s) wrist
flexion of 40°, 10 trials each, without load.

The threshold property of MN:
𝐴 ൌ ݑ ൅ݑ௔ െ்ݑ௛ ା

௛: intrinsic electrical MN threshold்ݑ

We assume that afferent input is linearly related to 
muscle length and velocity: ݑ௔ ݈, ሶ݈ ൌ 𝑘 ݈ ൅ ߤ ሶ݈

Recording: surface EMG of wrist flexor (FCR) and extensor
(ECR) muscles; wrist position.
Data analysis: for simplicity, ்݈௛ and ݈ are defined in units of
joint angle (positive for extension). EMG was band-pass
filtered (10 – 500 Hz) and rectified.

For flexor:         ݌ଵ ൌ 0.0011 ଶ݌  ; ൌ െ0.0015
For extensor:    ݌ଵ ൌ 0.0014 ; ଶ݌ ൌ െ0.0028

Fast movement: ߤ does not affect ݑ
profile before the first peak value,
but modulates later parts of ݑ profile

𝐴 ൌ ௔ݑ െ ௛்ݑ െ ݑ ା ,where ்ݑ௛ െ ݑ is the activation 
threshold of stretch reflex, which is associated with a 
muscle length change of ்݈௛ ൌ ௛்ݑ െ ݑ /𝑘

Rewrite the equation:
𝐴 ൌ 𝑘 ݈ ൅ ߤ ሶ݈ െ ௛்ݑ െ ݑ

ା
ൌ 𝑘 ݈ ൅ ߤ ሶ݈ െ ்݈௛

ା

Procedure
1: Unloading experiments for normalizing model parameters
2: Voluntary movements for estimating time structure of ݑ

Time Course of Descending Commands 

Experiment: Sudden unloading of 
preloaded wrist muscles elicits 
motion to a new wrist position. 
We assume subjects maintain ࢛
thus also ࢎࢀ࢒ before and after 
unloading: ்݈௛௜ൌ ்݈௛௙ ൌ ݈௙

A series of ሼ࢏ࡳࡹࡱ, ,࢏࢒ ሽ࢏ࢎࢀ࢒ were
obtained with four torque levels
(0.4, 0.6, 0.8, 1Nm), each with 5
trials; unloading was done for
both flexor and extensor,
separately.

Slow movement: u profile
was not sensitive to ߤ

When ሶ݈ ൌ 0 and muscle is active: 𝐴 ൌ 𝑘 ݈ െ ்݈௛
Assuming EMG is linearly related to MN activation, the normalization
parameters can be determined with data sets of ሼ𝐸𝑀𝐺, ݈ െ ்݈௛ ሽ.
𝐸𝑀𝐺 ൌ 1݌ ൈ ݈ െ ்݈௛ ൅ 2݌ ൌ 1݌ ൈ ݈ െ ௛்ݑ െ ݑ /𝑘 ൅ 2݌

∗ݑ time profile during fast movement had multiple peaks, but
similar shape to joint trajectory during slow movement.

Voluntary reaching movements may be associated with the
interaction between descending motor commands and
peripheral stretch reflex. In this study, we transfer
descending motor commands into effective muscle lengths
that reflect the thresholds of stretch reflex. Then we
experimentally reconstruct the time course of such stretch
reflex thresholds to assess descending motor commands
during arm reaching movements.

Estimating the time course of descending motor commands during reaching movements
Lei Zhang, Gregor Schöner Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany

Control of Motoneuron

Normalization of Model Parameters

Discussions 1. It is possible to have a reasonable estimation of descending motor commands from EMG signals.
2. The time profile of descending motor commands may be non-monotonic during fast movements.

α MN

Muscle

Afferent inputs ݑ௔
(depending on ݈, ሶ݈ ሻ

Descending motor command ݑ

Activation
(𝐴ሻ

்݈௛
∗ ൌ ்݈௛ െ ߤ ሶ݈ ൌ ݈ െ ሺ𝐸𝑀𝐺 െ 1݌/2ሻ݌

which can be estimated with 𝐸𝑀𝐺, ݈, ,1݌ .2݌
∗ݑ ൌ ݑ ൅ 𝑘ߤ ሶ݈ ൌ ௛்ݑ െ 𝑘 ்݈௛ െ ߤ ሶ݈ ൌ ௛்ݑ െ 𝑘்݈௛

∗

Experiment: Slow (about 1s) and fast (about 0.5s) wrist
flexion of 40°, 10 trials each, without load.

The threshold property of MN:
𝐴 ൌ ݑ ൅ݑ௔ െ்ݑ௛ ା

௛: intrinsic electrical MN threshold்ݑ

We assume that afferent input is linearly related to 
muscle length and velocity: ݑ௔ ݈, ሶ݈ ൌ 𝑘 ݈ ൅ ߤ ሶ݈

Recording: surface EMG of wrist flexor (FCR) and extensor
(ECR) muscles; wrist position.
Data analysis: for simplicity, ்݈௛ and ݈ are defined in units of
joint angle (positive for extension). EMG was band-pass
filtered (10 – 500 Hz) and rectified.

For flexor:         ݌ଵ ൌ 0.0011 ଶ݌  ; ൌ െ0.0015
For extensor:    ݌ଵ ൌ 0.0014 ; ଶ݌ ൌ െ0.0028

Fast movement: ߤ does not affect ݑ
profile before the first peak value,
but modulates later parts of ݑ profile
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Procedure
1: Unloading experiments for normalizing model parameters
2: Voluntary movements for estimating time structure of ݑ

Time Course of Descending Commands 

Experiment: Sudden unloading of 
preloaded wrist muscles elicits 
motion to a new wrist position. 
We assume subjects maintain ࢛
thus also ࢎࢀ࢒ before and after 
unloading: ்݈௛௜ൌ ்݈௛௙ ൌ ݈௙

A series of ሼ࢏ࡳࡹࡱ, ,࢏࢒ ሽ࢏ࢎࢀ࢒ were
obtained with four torque levels
(0.4, 0.6, 0.8, 1Nm), each with 5
trials; unloading was done for
both flexor and extensor,
separately.

Slow movement: u profile
was not sensitive to ߤ

When ሶ݈ ൌ 0 and muscle is active: 𝐴 ൌ 𝑘 ݈ െ ்݈௛
Assuming EMG is linearly related to MN activation, the normalization
parameters can be determined with data sets of ሼ𝐸𝑀𝐺, ݈ െ ்݈௛ ሽ.
𝐸𝑀𝐺 ൌ 1݌ ൈ ݈ െ ்݈௛ ൅ 2݌ ൌ 1݌ ൈ ݈ െ ௛்ݑ െ ݑ /𝑘 ൅ 2݌

∗ݑ time profile during fast movement had multiple peaks, but
similar shape to joint trajectory during slow movement.
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Voluntary reaching movements may be associated with the
interaction between descending motor commands and
peripheral stretch reflex. In this study, we transfer
descending motor commands into effective muscle lengths
that reflect the thresholds of stretch reflex. Then we
experimentally reconstruct the time course of such stretch
reflex thresholds to assess descending motor commands
during arm reaching movements.

Estimating the time course of descending motor commands during reaching movements
Lei Zhang, Gregor Schöner Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany

Control of Motoneuron

Normalization of Model Parameters

Discussions 1. It is possible to have a reasonable estimation of descending motor commands from EMG signals.
2. The time profile of descending motor commands may be non-monotonic during fast movements.
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Why is this important ? 

quasi-postural picture

target is an attractor…. 

optimal control picture

a precise time course of a motor command must be computed 
and generated to move to the target and reach zero velocity 
there 

=> demands on the neural computations

=> demands on learning 



Human movement uses “soft” muscles that have 
nonlinear muscle dynamics

Postures are stabilized by reflexes, whose 
thresholds must be shifted during movement

Those shifts by descending commands so solve 
the “optimal control” problem = the right time 
course so that the effector arrives at the target 
in the desired time with small velocity and a 
smooth temporal shape

Conclusion: Human motor control


