Human motor control

Gregor Schöner

Movement generation in animals

- movement generation adapted to and directed at a sensed environment is the core of animal experience... and a key evolutionary factor
- => animal are amazing autonomous movement machines..
- => the brain is strongly organized around movement generation... (the basis of a tradition of thought called "embodied cognition")

Human movement

- humans are particularly skilled at movement directed at objects
 - manipulation, compliant acting on objects
- humans are particularly flexible, versatile in their movement generation
 - while some other animals excel at particular specialized motor acts

A landscape of human movement

Iooking: eye and head movements (gaze)

- orienting the body in space, upright stance
- legged locomotion
- navigation
- steering
- reach, grasp, manipulate
- sequences of motor acts
- speech articulatory movement

Qualities of human movement

- involuntary (reflexive)
- automatic/habitual (requires little attention)
- voluntary/intentional

Qualities of human movement

- whole body movements in space
- movements of hand/arm or other extremities while anchored in space

Qualities of human movement

rhythmic

discrete (in time)

Textbooks

- David Rosenbaum: Human motor control, Academic Press, 2009 (2nd edition)
- Richard A Schmidt, Timothy D Lee: Motor Control and Learning, Human Kinematics, 2011 (5th edition)
- James Tresilian: Sensorimotor Control & Learning. Palgrave McMillan, 2012

What is entailed in generating an object-oriented movement?

- scene and object perception
- movement preparation
- movement initiation and termination
- movement timing and coordination
- motor control
- degree of freedom problem
- => spans perception, cognition and control

What is entailed in generating an object-oriented movement?

A neural architecture of reaching

[adapted from: Martin, Scholz, Schöner. Neural Computation 21, 1371–1414 (2009] the perception and cognition on which object-oriented action is based.... topic of my course in the WS

Scene perception

neural fields... dynamic field theory

[Zibner, Faubel: In DFT Primer (2016)]

Movement preparation

coordinate transform into initial position of hand

[Erlhagen Schöner, Psych Rev 2002]

Sequence generation

every action is represented as a stable activation sate in an "intentional field"

- that predicts its "condition of satisfaction"
- instabilities drive the transition from one intention to another

[Sandamirskaya, Zibner, Schneegans, Schöner: New Ideas in Psychology (2013)]

timing and coordination: Lecture 7/Exercise 6

degree of freedom problem: Lecture 6/ Exercise 5

Human motor control

consider a single DoF, the elbow angle..in a fixed posture

Posture is controlled

- the elbow does not behave like a passive mechanical system with a free joint at the elbow: $J\ddot{\theta}=0$
 - where J is inertial moment of forearm (if upper arm is held fixed)
- Instead, the elbow resists, when pushed => there is active control= stabilization of the joint

Posture is controlled

- human effectors are not very stiff.... unlike robotic actuators
- stiffness expressed in Eigenfrequency => time scale ~ of the same order of magnitude as movement time

=> human movement is highly compliant...

The problem of human motor control

=> leads to major problems in human motor control: how to make a soft spring move fast to precisely reach a target and softly stop there...

The "mass spring" model

a simplified macroscopic description

of the mechanics of the muscles

and the reflex control of the muscles

the invariant characteristic

The mass-spring model

- elastic component: proportional to position
- viscous component: resistance depends on joint velocity

$$J\ddot{\theta} = \boxed{-k(\theta - \lambda) - \mu\dot{\theta}}$$

active torques generated by the muscle

Agonist-antagonist action

- muscles only pull, so the invariant characteristic comes from pairs of muscle groups
- one lambda per muscle
- co-contraction varies stiffness

Stiffness

- the stiffness, k, can be measured from perturbations
- the viscosity "mu" is more difficult to determine

$$J\ddot{\theta} = -k(\theta \!-\! \lambda) \!-\! \mu \dot{\theta}$$

Muscle dynamics

increasing level of muscle activation

[Buchanan et al. 2014]

Muscle dynamics

force generated depends on speed of lengthening / shortening

less force for shortening

more for stretching

[Song 2017]

Muscle dynamics

Hill type models

[Song 2017]

Neural basis of invariant characteristic: stretch reflex

 alphagamma reflex loop generates the stretch reflex

[Kandel, Schartz, Jessell, Fig. 37-11]

spinal cord: reflex loops

the stretch reflex acts as a negative feedback loop

[Kandel, Schartz, Jessell, Fig. 31-12]

spinal cord: coordination

Ia inhibitory interneuron mediates reciprocal innervation in stretch reflex, leading to automatic relaxation of antagonist on activation of agonist

[Kandel, Schartz, Jessell, Fig. 38-2]

Reflex model

(A)

- monotonic relationship forcelength
- reflex threshold can be varied by descending activation signals

[Latash, Zatsiorsky, 2016]

Movement entails change of posture

the threshold lengths of the muscles must be shifted during movement so that after the movement, the postural state exists around a new combination of muscle lengths (<=> joint configuration)

Movement entails change of posture

- many models account for movement in terms of muscle activation/desired torques....
- => the shift of the EP is the single most overlooked fact in control models of movement generation

Does the "motor command" specify force/torque?

Not necessarily ..

because the same descendent neural command generates different levels of force depending on the initial length of the muscle

Virtual trajectory

- Shifting the threshold lengths is necessary, but is it also sufficient?
- first answer: yes... simple ramp-like trajectories of the combined threshold lengths of the antagonistic muscles ("r" command ~ virtual trajectory) may model movement

Pilon, Feldman, 2006

Shifting the equilibrium point is necessary, but is it also sufficient?

- such simple ramp-like trajectories of the "r" command ("virtual trajectories") may be sufficient when movements
 - are sufficiently slow
 - interaction torques/mechanical conditions unchallenging
- but is this generally true?
- (answer: no)

Limit case: velocity dependent force field

after adapting to a velocity dependent force field the hand reproduces the "natural" path, but must generate compensatory forces on the way

[Shadmehr, Mussa-Ivaldi, 1994]

center-out movements before force-field adaptation

velocity dependent force-field = zero at rest

center-out movements at four stages during force-field adaptation

Shifting the equilibrium point is necessary, but is it also sufficient?

- => r-command must still shift from initial to final posture, but must also generate the forces to compensate for the force field during the movement
- that probably takes the form of non-monotonic, "complex" time courses...
- are such temporally complex (e.g., non-monotonic) r-commands necessary during unperturbed movement

Estimating the descending signal (~virtual trajectory)

(1) Estimate the descending activation by inverting a neuro-muscular model

simplified version Hill type mode:[Gribble, Ostry et al.,
98] .. 4 muscles

[Hummert, Zhang, Schöner]

Kinematics

passive stiffness

muscle activation from descending command

forces from muscle activation

$$A_{i} = [u_{i} + l_{i} + \mu \dot{l}_{i}]^{+} \quad [x]^{+} = \begin{cases} x, \text{ if } x > 0\\ 0, \text{ if } x \leq 0 \end{cases}$$
$$F_{i} = M_{i}[(f_{1} + f_{2} \cdot \arctan(f_{3} + f_{4} \cdot \dot{l}_{i})] + k(l_{i} - c_{i}).$$
$$\tau^{2} \ddot{M} + 2\tau \dot{M} + M = \tilde{M} \qquad \tilde{M}_{i} = \rho_{i} \cdot (e^{sA_{i}} - 1).$$

torques from forces $T_i = -H_i * F_i$

motion from torque

[Hummert, Zhang, Schöner]

Comparing data to movements predicted from estimated descending activation

data: red/magenta (for the two directions) model: green/cyan

time course of descending activation

(2) Estimate minimal descending activation

"minimal" change of descending activation

$$\min_{\vec{u}} \Psi(\vec{u}) = \int_0^T \dot{\vec{u}}(t)^2 dt$$

to bringsabout the movement

$$\vec{\theta}(t_0) - \vec{\theta}_{\text{start}} = 0, \qquad \dot{\vec{\theta}}(t_0) = 0, \qquad \vec{\vec{\theta}}(t_0) = 0,$$
$$\vec{\theta}(t_f) - \vec{\theta}_{\text{final}} = 0. \qquad \dot{\vec{\theta}}(t_f) = 0. \qquad \ddot{\vec{\theta}}(t_f) = 0.$$
$$\vec{\theta}(t) < \vec{\theta}_{\text{max}}, \qquad \lambda_{\min} \le \vec{\lambda}(t) \le \lambda_{\max} \qquad t \in [t_0, t_f].$$
$$\dot{\vec{\theta}}(t) < \dot{\vec{\theta}}_{\max}.$$

[Ramadan, Hummert, Jokeit, Schöner (under revision)]

Why "lambda" rather than "r"?

Kinematics

[Ramadan, Hummert, Jokeit, Schöner, under revision]

Paths data vs. model

blue: experiment black: model

Minimal descending activation

Minimal lambda trajectories

Minimal lambda trajectories

Hodgson-Hogan attractor trajectories

attractor trajectory in handspace

at higher speeds (solid line), attractor trajectories are temporally structured "just right" for the hand to reach the target

Do the time courses of lambda matter?

making a slow lambda (ramp in hand space) fast => doesn't make movement fast

Do the time courses of lambda matter?

making a fast lambda slow: doesn't make a good slow movement

(3) Estimate descending activation from EMG

- unloading experiment to determine linear relationship between EMG and descending activation
- (by estimating threshold length in unloading)

[Zhang, Feldman, Schöner]

(3) Estimate descending activation from EMG

- unloading experiment to determine linear relationship between EMG and descending activation
- (by estimating threshold length in unloading)

 $EMG = p1 \times (l - l_{Th}) + p2 = p1 \times (l - (u_{Th} - u)/k) + p2$ [Zhang, Feldman, Schöner]

$$A = [k(l + \mu \dot{l}) - (u_{Th} - u)]^{+} = k[l + \mu \dot{l} - l_{Th}]^{+}$$

Why is this important ?

quasi-postural picture

target is an attractor....

optimal control picture

a precise time course of a motor command must be computed and generated to move to the target and reach zero velocity there

=> demands on the neural computations

=> demands on learning

Conclusion: Human motor control

- Human movement uses "soft" muscles that have nonlinear muscle dynamics
- Postures are stabilized by reflexes, whose thresholds must be shifted during movement
- Those shifts by descending commands so solve the "optimal control" problem = the right time course so that the effector arrives at the target in the desired time with small velocity and a smooth temporal shape