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In vehicle motion planning

B movement is generated through a
“behavioral dynamics™ that is in closed loop
with the environment

M taking into account (possibly time varying)
constraints from the perceived environment

B time to reach the target was not a
constraint.. and not controlled/stabilized



Reaching movements of an arm

B reaching movements may be generated in
open loop.. by an internal “neural” dynamics

M generate movements that are “timed”, that is,

M they arrive “on time”
B the are coordinated across different effectors

M the are coordinated with moving objects (e.g., catching)

B timing implies some form of anticipation...



How is timing done in
conventional robotics?

B conventional motion planning: fixed
templates of timing encoded in digital
computers... determined from trajectory
planning algorithms that a purely kinematic,
and are realized by servo-controllers that
“track” the time plan

B optimal control: planning takes the physical
dynamics into account (e.g. optimizing a cost
function) .. timing constraints may be added



How is timing done in
autonomous robotics!?

B Koditschek’s juggling robot:

B physical dynamics of bouncing ball modeled... actuator inserts a
term into that dynamics so that a periodic solution (limit cycle)
results

M ball is kept within reach by conventional P control from contact
to contact




Timing in autonomous robotics

B Raibert’s hopping robots

B dynamics bouncing robot
modeled... actuator inserts a
term into that dynamics so
that a periodic solution (limit

cycle) results

M robot is kept upright by
controlling leg angle to
achieve particular horizontal
position for Center of Mass




Generalize this to bipedal/
quadrupedal locomotion

B template...oscillator at macro-level..

M anchor... kinematics at joint/actuator level

[Full Koditschek 99]
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How is timing done in
autonomous robotics!?

M Raibert’s bio-dog

B expand that idea to coordination among limbs

B => technical variant
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How is timing done in
autonomous robotics!?

https://www.youtube.com/
watch?v=M8YjvHYb./Z9w



https://www.youtube.com/watch?v=M8YjvHYbZ9w
https://www.youtube.com/watch?v=M8YjvHYbZ9w
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Relative vs. absolute timing

activation

threshold A

relative phase=DT/T



Absolute timing

B examples: music, prediction,
estimating time

B typical task: tapping

B self-paced vs. externally paced



human performance

T’!MEKEEPER VARIANCE .
o'c’-1-27(f-155)
400 b SE REG=-07
Mon absolute timing is
impressive 2T
@smaller variance than £ |
5% of cycle time in 2
continuation paradigm & |
50F x
0 x *xox X ox X
T o 60 490 I (MSEC)

[Wing, 1980]



Theoretical account for absolute timing

B (neural) oscillator autonomously
generates timing signal, from which
timing events emerge

B => |imit cycle oscillators

B Clocks=limit cycle oscillators



Limit cycle oscillator: Hopf
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Neural oscillator
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Neural oscillator
accounts for variance
of absolute timing

[Schoner 2002]
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Clocks

B hour glasses are also oscillators

B but:it is critical to include the “resetting”

A activation a clock
threshold
time
>
event | event 2 event 3

[from: Schoner, Brain & Cogn 48:31 (2002)]



Reduced timing variance for

bimanual movement

B observed by lvry
and colleagues

B accounted for by

averaging of two
times

® but: requires
coupling
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Relative timing: movement
coordination

B |ocomotion, interlimb and intralimb
B speaking

B mastication

B music production

B .. approximately rhythmic



Examples of coordination of
temporally discrete acts:

B reaching and grasping
® bimanual manipulation

B coordination among fingers during
grasp
B catching, intercepting



Definition of coordination

B Coordination is the maintenance of
stable timing relationships between
components of voluntary movement.

B Operationalization: recovery of
coordination after perturbations

B Example: speech articulatory work
(Gracco, Abbs, 84; Kelso et al, 84)

B Example: action-perception patterns



Is movement always timed/
coordinated?

® No, for example:

B [ocomotion: whole body
displacement in the plane

M in the presence of obstacles takes longer

B delay does not lead to compensatory acceleration

B but coordination is pervasive...

B e.g., coordinating grasp with reach



Relative vs. absolute timing

activation

threshold A

relative phase=DT/T



Two basic patterns of
coordination

B in-phase

B synchronization, moving through like phases
simultaneously

B e.g, gallop (approximately)

® anti-phase or phase alternation
B syncopation

Beg,trott



An instability in rhythmic
movement coordination

B switch from
anti-phase to
in-phase as
rhythm gets
faster

Kelso, 1984
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Instability

B experiment
involves finger
movement

1st DI 1st D1

® why fingers!?
M no mechanical coupling a o

B constraint of maximal
frequency irrelevant

L FDI

M => pure neurallly based
coordination Vooet00 s e

msec

Schoner, Kelso (Science, 1988)



Instability

B frequency imposed by metronomes
and varied in steps

B either start out in-phase or anti-
phase
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computation
of continuous

relative phase
(Scholz, 1990)
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Pattern stability

B instability: anti-phase pattern no
longer persists

B thus: even though mean pattern is
unchanged up to transition, its
stability is lost

B => stability is an important property
of coordination patterns, that is not
captured by the mean performance
alone



Measures of stability

B variance: fluctuations in time are an
index of degree of stability

B stochastic perturbations drive system away from the
coordinated movement

M the less resistance to such perturbations, the larger
the variance



Measures of stability

B relaxation time

M time need to recover from an outside perturbation

M e.g., mechanically perturb one of the limbs, so that
relative phase moves away from the mean value, then
look how long it takes to go back to the mean pattern

B the less stable, the longer relaxation time



data example
perturbation of
fingers and
relative phase

Scholz, Kelso, Schoner, 1987

RF

30° T
LF Finger Displacement
RF
\
200°%s (C
LF Finger Velocity

Continuous Relative Phase

RF

30° [

LF Finger Displacement

RF

LF 1 Finger Velocity

Continuous Relative Phase

180° —

Q° =
Torque Pulse

Isoﬁ ms



Signatures of instability
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Neuronal process for coordination

B each component is driven by a
neuronal oscillator

B their excitatory coupling leads to in-
phase

B their inhibitory coupling leads to
anti-phase



Coordination from coupling

A
activation

® coordination=stable relative /\
timing emerges from coupling 4 /,
/

time

of neural oscillators ,

/
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[Schoner:Timing, Clocks, and Dynamical Systems. Brain and Cognition 48:31-51 (2002)]



Movement timing

® marginal stability of phase 4 do/dt =1(0)

enables stabilizing relative
timing while keeping trajectory
unaffected

phase neutrally
stable (l)

>

phase
stabilized
by coupling

[Schoner:Timing, Clocks, and Dynamical Systems. Brain and Cognition 48:31-51 (2002)]



Dynamical systems account of
instability

B coordination patterns are stable
states

B stability may vary and may be lost

B instability leads to pattern change



Dynamical systems account of
instability

dynamical system
B state of  dx/dt=f(x)

. A
dynamical
system
x=relative

phase T

fixed point, which is stable (attractor)




Dynamical systems account of

instability
B at low  d/de=f()
frequencie
s this
system is
bistable

in-phase anti-phase



Dynamical systems account of
instability

4 rate of change of relative phase
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Predicts increase in variance
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Predicts increase in relaxation time

B “critical
slowing
down’

rate of change of relative phase
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Conclusion

B to understand coordination patterns,
we need to understand the
underlying coordination dynamics

B = stabilization mechanisms
B and their strength

® from which the mean pattern
emerges



What level does the instability of
coordination come from!

B from peripheral motor control?
B from central motor control?

B from perceptual representations of
movement!



What level does
instability come
from!?

Is the instability tied to the motor system?

% ot
o b
o

Mechsner, Kerzel, Knoblich, Prinz, Nature 2001



Position, congruous; Instruction, symmetry b Position, congruous; instruction, parallel
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=> coordination in space

B rather than in effector space
Mso coordinated oscillators are central

Mrather than peripheral



Coordination of discrete movement
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Robotic demonstration: timed
movement with online updating
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... deeper issue in timing...

® contribution of the control level

B muscles and biomechanics contribute to timing

® contribution of movement planning
M on line updating
M arriving “just in time”
® contribution of movement organization

M timed movement sequences
M modulating timing in rhythms

B coarticulation



