Robotic/human
manipulation and the
degree of freedom
problem

Gregor Schoner
gregor.schoener(@ini.rub.de



mailto:gregor.schoener@ini.rub.de

Movement to reach and grasp, lift,
transport, manipulate

M involves a “manipulator”,
a robotic/human arm
with a grasping
mechanism/hand




What is entailed in autonomously
reaching for objects?

B Perception: recognizing
and segmenting objects,
estimating their pose

M Scene representation:
registering the spatial
array in the arms
workspace for possible
target objects, free
space, and obstacles




What is entailed in autonomously
reaching for objects?

M Sequentially organizing
actions (“‘serial order”)
and planning

M Selecting a relevant
object or location in the
scene




What is entailed in autonomously
reaching for objects?

B Extracting parameters of
an individual movement
segment based on initial
posture of arm and
target state




What is entailed in autonomously
reaching for objects?

® Generating a time
course for the degrees
of freedom of the arm
and hand that moves the
arm from its initial
posture to a state in
which the target object
is grasped

M timed...




What is entailed in autonomously
reaching for objects?

® Controlling the arm:
translating the desired
time course into control
signals to the actuators/

muscles that move the
arm

B potentially update these

signals based on
feedback




What is entailed in autonomously
reaching for objects?

M Detect termination of
the movement

M Transition to the next
element in a sequence o
movements...




The kinematic gap... the kinematic
degree of freedom problem

B The target state is
defined by task variables

M e.g. 3D position of gripper/
hand

M e.g. 2D or 3D orientation of
gripper/hand

B Other task constraints
may invoke other task
variables

B e.g. 3D position of arm
surface for obstacle avoidance




The kinematic gap... the kinematic
degree of freedom problem

M The time course/motor
plan may also be about
such task variables

B e.g. hand at the right position
at the right time for catching..




The kinematic gap... the kinematic
degree of freedom problem

B The control signals are
at the level of the
actuated degrees of
freedom...

B e.g. joint angles

B e.g. muscle activation levels




The kinematic gap... the kinematic
degree of freedom problem

B For each individual task,
there are typically more
such control variables
than task variables

M e.g. |10 joints for human
arm vs 3+3 coordinates
for hand position and
orientation




The kinematic gap... the kinematic
degree of freedom problem

B That gap between task
and actuation level is the
“degree of freedom
problem”




The kinematic gap... the kinematic
degree of freedom problem

M Many conventional robot
arms do not have the
DoF problem because
they are build for a fixed
task for which they have
the right number of
degrees of freedom

B most commonly: 3+3 hand/
gripper taks variables and 6
joints

[Kuka KR 16KS: Dahari, Tan 2012]]



The kinematic gap... the kinematic
degree of freedom problem

B But some robot arms a
redundant: more DoF
than needed for any
single task

M so that they can
combine multiple
tasks...




The kinematic gap... the kinematic
degree of freedom problem

B The human motor
system is redundant...

B> |0 Dof
B ca. 40 muscles

M 3-6 task variables hand
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[ Tseng, Scholz, Schoner, 2002]



Rigid body motion

B very good source (from which | will use
some illustrations)

B Murray, Li, Sastry: A Mathematical Introduction to
Robotic Manipulation, CRC Press, Boca Raton FL USA
1994

M a pdf is made available by the authors

M (quite an advanced text)

[Murray, Li, Sastry, 1994]



Rigid body motion

M a rigid body performs motion in 6D

M three positions, three orientations q

B three linear, three angular velocities
<
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T Gab
B description of such motion by [Murray, Li, Sastry, 1994]

B the position vector

B a representation of rotation (Euler angles, Rotation matrix, generator
of Lie group)



Rigid body motion
B constraints... revolute, prismatic, spherical.. joints

M reduce the number of degrees of freedom

B holonomic: can be formalized by reducing the
number of variables

)

| revolute joint prismatic joint
[Murray, Li, Sastry, 1994]



Rigid body motion

M in a in a kinematic chain, the degrees of freedom of
each rigid segment is reduced

B for revolute prismatic joints to a single(!) degree of
freedom captured

[Murray, Li, Sastry, 1994]




Kinematics vs Kinetics

B kinematics: the description of the possible spatial
(and velocity space) configurations of an arm
taking into account the constraints

B treated now

M kinetics: the dynamic equations of motion of an
arm taking into account the constraints, gravity,
and actuators mounted on the joints

B (later in the lecture series)



Kinematic chain

® notion of work space

(a) (b)

[Murray, Li, Sastry, 1994] reachable space dexterous space



Basic concepts manipulator kinematics

M end-effector

M e.g. with 3 translational and 3
rotational degrees of freedom

B configuration space

B e.g. 7 actuated joint angles




. . [Murray, Li, Sastry | 994]
Forward kinematics
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B where is the hand,
given the joint angles..

x = 1(0)
x = lycos(8,) + [, cos(0, + 6,)



Differential forward kinematics

B where is the hand moving,
given the joint angles and
velocities

x = J(6)0

X = — 1, sin(0)8, — L, sin(0, + 6,)0, — L, sin(8, + 60,)6,

).7 — ll 008(91)91 + 12 COS(Ql + 92)91 + l2 COS(@l + 62)6.2



Differential forward kinematics

B where is the hand moving,
given the joint angles and
velocities

x = J(6)0

( i ) _ ( —1y cos(0y) — Iy cos(0y + 0y) —lycos(0y + 0y) )( 01 )

y ll Sin(ﬁl) + l2 sin(91 + 92) ZQ Siﬂ(@l + 92)



Inverse kinematics

B what joint angles are
needed to put the hand
at a given location

M exact solution:

0 = £~ 1(x)



Inverse kinematics

¢1 = arctans(y,x) £ 3

o = cos 1 l% il l% =
N 21115
2 2 2
. —1 T _I_ ll - l2
£ = cos ( oL )

[thanks to Jean-Stéphane Jokeit]

B => multiple “leafs” of the inverse kinematics




Differential inverse kinematics

B which joint velocities to
move the hand in a
particular way

0 =J1(O)x

with the inverse of

—l1 cos(61) — Iy cos(B1 + 03) —lycos(6 + 65)
ll Sil’l(@l) + 12 SiH((gl + (92) l2 Siﬂ(@l + (92)

J(0) = (

if it exists!



Singularities

B where the Eigenvalue of the Jacobian
becomes zero (real part)...

M so that movement in a particular (@)
direction is not possible...

M typically at extended postures or
inverted postures

M at limit of workspace

(c)



Singularities

M |eading to non-invertability!

M and to sensitive dependence on
parameters

B => avoid singularities in motor
planning... major effort in robotics

® humans: joint angles prevent us from
getting near singularities (for the most

part)

(c)



Summary arm kinematics

kinematic model x = f(0) x = J(0)0

inverse kinematic model ¢ = f-!(x) 0 =J1(O)x




Redundant kinematics

(X.y) \%

M redundant arms/tasks:
more joints than task-level
degrees of freedom

X=11 cos(61) + |2 cos(061+02) + I3 cos(061+62+63)
y= 12 sin(61 ) + 12 sin(61+02) + 13 sin(61+62+63)



Redundant kinematics

(X,Y)

B => (continuously) many
inverse solutions...




Redundant kinematics

B use pseudo-inverses that minimize a (X,y) o\
functional (e.g., total joint velocity
or total momentum)

range space
x = J(0)0
0 = JH(O)x

JHO) =J'JIH™!  pseudo-inverse



Spaces for robotic motion planning

M or use extra degrees of
freedom for additional tasks

Arm Redundancy Angle «
T

[lossifidis, Schoner, ICRA 2004]



Degree of freedom problem
in human movement

M@ what is a DoF!?

(Xy) \gg

M variable that can be
independently varied

B e.g. joint angles
B muscles/muscle groups

M but: assess to which extent they
can be activated

independently... x= 11 cos(61) + |2 cos(61+62) + 13 cos(61+62+63)
y= |2 sin(61 ) + |2 sin(61+62) + I3 sin(01+62463)

B .. mode picture



Degree of freedom problem
in human movement

B for most tasks, there are many more  (xy)
degrees of freedom than task
constraints...

Me.g, 10 joints in the upper arm including scapular

joints to control hand position and orientation
(3 to 5 or 6 DoF)

M but typically more: involve upper trunk
movements

B or even make a step to move

B many muscles per joint (e.g.about

750 muscles in the human body vs.
about 50 DoF)



Degree of freedom problem
in human movement

B Nikolai Bernstein... 1930’s... in the Soviet
Union

B “how to harness the many DoF to achieve
the task”



Bernstein’s workers

B highly skilled workers wielding a hammer to hit a
nail... => hammer trajectory in space less variable
than body configuration

B as detected in superposing spatial trajectories of lights on hammer vs.
on body..

B but: camera frame anchored to nail/space, while initial body
configuration varied




Bernstein’s workers

M was the hammer position in space less
variable than the joint configuration?

B that is, does the task structure variance!?

M so that the solution to the degree of freedom problem
lies in the variance/stability of the joint configuration!?

M but: does this make any sense!

M different reference frames for body vs. task

B different units in the task vs joint space



Concept of the UnControlled Manifold

(x.y)
more flexed here ——3p N e3

less flexed here

® the many DoF are
coordinated such that
changes that affect the task-
relevant dimensions are
resisted against more than GW
changes that do not affect >
task relevant dimension ’

M |eading to compensation

[Scholz, Schoner, EBR 126:289 (99)]



Robotic concept

® self-motion manifold: within which end-effector does not
move

® the pseudo-inverse is locally orthogonal to the self-
motion manifold

® self-motion is needed to avoid hysteresis in redundant
manipulators
03

[Murray, Li, Sastry, 1994]



Structure of variance: UCM effect

(X,y)
more flexed here —3p N e3

®variance in movement TR ¥ W—
lies primarily within the
UCM, leaving the end-
effector invariant!

B => measuring v:ilrlance @y
of end-effector in the . comhensat
. O
same (embedding) space o P
as the joint configuration 35

* co-variation

L 4

classical synergy
. Co-variation - 1
' 0.8

[Scholz, Schoner, EBR 126:289 (99)]



UCM synergy: data analysis

M align trials in time o 7
M hypothesis about task variable 6\@683

B compute null-space (tangent to Q(Tst)
the UCM) 03 -

® predict more variance within

null space than perpendicular to %

It




UCM synergy: data analysis

B supplement hypothesis
testing by checking for
correlation (Hermann,
Sternad...)

B look for increase in variance of
task variable when correlation
within data is destroyed

03 @




Example |: pointing with 10 DoF arm at targets in 3D

task variable: hand movement

0.012 - L
- direction in space

0.010 -

0.008 -

UCM
orthog UCM

0.006 |

0.004 |

Variance per DOF

0.002 |

0.000
Early Middle Late Termination



Example 2: shooting with 7 DoF arm at targets in 3D

0.27

0.157

0.17

0.057

vertical [m]

-0.1~
0.4

anterior-

Posterior [m; media

[from Scholz, Schbdner, Latash: EBR 135:382 (2000]



Example 2: shooting with 7 DoF arm at targets in 3D

gun spatial position gun orientation to target

’ 4

[ 'A - [ |
0 20 40 60 80 100 0 20 40 60 80 100
percent of trajectory percent of trajectory

[from Scholz, Schoner, Latash: EBR 135:382 (2000)]

variance
within &/ariance
UCM

perpendicular
to UCM



Example 3: posture
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Example 3: posture

B but: find signature of
UCM synergy

[Hsu, Scholz, Schoner, Jeka, Kiemel, ] Neurophys 2007]

Variance per DOF (radians?
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Classical synergy

spatial (end-effector) level

M 3 feedforward neural
network from end-effector
level representation to
muscle level representation

v
O O O

muscle/joint level



Classical synergy

end-effector

variation here —»

M activation state at EE
level varies in time or
across tasks

B => covariation of

muscle/joint leads to
descending activation CO-
variation

here

O

v
O O

muscle/joint



Classical synergy

M search for such covariation
by looking for structure in

data from many DoF

across time and condition

(e.g. by non-negative
matrix factorization)

B of a small number of
factors explain variance,
conclude that classical
synergies are at work

Varying

Fixed EMG

Recruitment (C)  Weightings (W)

() —>
@—>
(e)—>

- )=
FFH

[Safavynia, Ting, 2012]



B the variance across repetitions for a given task at given
point in time = signature of stability

M that variance is structured in the OPPOSITE way than
predicted by the classical synergy!

end-effector

random s

variation here

| random
leads to co- variance here:
variation here | O O O ¢ uncorrelated

muscle/joint




UCM effect

mthe UCM effect reflects
the opposite pattern of
co-variation than the
pattern predicted by the
classical synergy concept

[Scholz, Schoner, EBR 126:289 (99)]

(x.y)
more flexed here ——3p N e3

less flexed here

T~
> - compensat

co-yariation- |

L 4

- classical synergy

co-variation - 12



classical synergy is not sufficient

variation here

leads to co-
variation
here

motor commands

I
X

'
O OO O

DoF/muscles

variance
induced here:
15
uncorrelated



UCM synergy: decoupling

insert a perturbation here

compensatory change here

motor commands

>

arm in space



UCM synergy: back-coupling

— > L O

insert a perturbation here I I ’
. . . .

(imperfect control)

yield here

enhanced UCM variance here

arm in space

[Martin, Scholz, Schoner Neural Computation 2009]
[Martin, Reimann, Schoner Biological Cybernetics 2019]



UCM synergy: from feedback

leads to change here —» ) ER)

passes this to other DoF — @

insert a perturbation here —
compensatory change here _—% .

RIY
Nais!

body in space

[Reimann, Schoner, Biological Cybernetics 2017]



Conclusion

B The problem of inverse kinematics is part of the
broader “degree of freedom problem”

B Neither robots nor human movement systems
can use a simple |:| optimal solution, but must
allow self-motion to avoid drifts into singular
configurations

B Humans have considerable self-motion and
stabilize movement much less within the UCM
(self-motion) space than orthogonal to it

B Beyond the feed-forward few-to-many
mappings, this involves compensatory coupling
among motor commands.



