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Fig. 1. The cooperative robotic assistant, CoRA.

peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.
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Fig. 1. The cooperative robotic assistant, CoRA.

peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.
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peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.
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Fig. 1. The cooperative robotic assistant, CoRA.

peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.
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peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.
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peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.
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peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.
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Fig. 1. The cooperative robotic assistant, CoRA.

peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.
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Fig. 1. The cooperative robotic assistant, CoRA.

peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.
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Fig. 1. The cooperative robotic assistant, CoRA.

peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.
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Fig. 1. The cooperative robotic assistant, CoRA.

peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.
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Fig. 1. The cooperative robotic assistant, CoRA.

peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.
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Fig. 1. The cooperative robotic assistant, CoRA.

peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.
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signal, move the pointer-tip in one continuous motion to the center of the desig-
nated target ring at a fast, comfortable speed while being as accurate as possible.
Try to keep the speed consistent across all trials and movement directions.” Sub-
jects were given as many trials of practice as necessary to determine an appropri-
ate speed. In no case was this more than five trials.

Experimental Conditions. Two conditions were studied: (a) eyes open
(EO): subjects looked at the target all the time throughout the experiment; (b) eyes
closed (EC): subjects closed their eyes shortly before the go signal. They were
allowed to open their eyes after pointing to see their hand position with respect to
the target before returning to the starting position. Twenty trials of reaching in
each of the eyes-open and eyes-closed conditions were performed in a random
order for each arm. The order in which arms were tested was also pseudo-ran-
domly chosen by the experimenter.

Data Processing

Reconstruction of the Marker Positions. Reflective marker identification
and reconstruction of the three-dimensional marker positions from the six camera
views were done using VICON software. Further processing of the kinematic data
was performed using customized MATLAB programs. The marker positions were
filtered at 5 Hz using a forward and reverse low-pass, 2nd order Butterworth filter.
The start of the movement was determined as the time of the first crossing of the
acceleration profile at 5% of the peak acceleration. An automatic algorithm was

Figure 1 — Illustration of the right arm’s posture during the procedure to calibrate
the arm position for joint angle calculations. From proximal to distal, local coordinate
systems are centered at the sterno-clavicular, gleno-humeral, elbow, and wrist joint
centers. These are coordinate systems for reconstructing the joint angles. The X
dimension points to the right of the subject, the Y dimension points forward, and the Z
dimension points upward in the calibration position. The same arrangements apply to
the left arm.

[Tseng, Scholz, Schöner, 2002]
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Figure 2.3: Coordinate frames for specifying rigid motions.

point relative to some known frame. This gives a curve p(t) ∈ R3, t ∈
[0, T ], for a trajectory of the entire rigid body.

The representation of general rigid body motion, involving both trans-
lation and rotation, is more involved. We describe the position and ori-
entation of a coordinate frame B attached to the body relative to an
inertial frame A (see Figure 2.3). Let pab ∈ R3 be the position vector
of the origin of frame B from the origin of frame A, and Rab ∈ SO(3)
the orientation of frame B, relative to frame A. A configuration of the
system consists of the pair (pab, Rab), and the configuration space of the
system is the product space of R3 with SO(3), which shall be denoted as
SE(3) (for special Euclidean group):

SE(3) = {(p,R) : p ∈ R3, R ∈ SO(3)} = R3 × SO(3). (2.21)

We defer the proof of the fact that SE(3) is a group to the next subsection.
As in the case of SO(3), there is a generalization to n dimensions,

SE(n) := Rn × SO(n).

Analogous to the rotational case, an element (p,R) ∈ SE(3) serves as
both a specification of the configuration of a rigid body and a transforma-
tion taking the coordinates of a point from one frame to another. More
precisely, let qa, qb ∈ R3 be the coordinates of a point q relative to frames
A and B, respectively. Given qb, we can find qa by a transformation of
coordinates:

qa = pab + Rabqb (2.22)

where gab = (pab, Rab) ∈ SE(3) is the specification of the configuration of
the B frame relative to the A frame. By an abuse of notation, we write
g(q) to denote the action of a rigid transformation on a point,

g(q) = p + Rq,
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description of such motion by 

the position vector

a representation of rotation (Euler angles, Rotation matrix, generator 
of Lie group)

[Murray, Li, Sastry, 1994]
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Figure 2.5: (a) A revolute joint and (b) a prismatic joint.

The solution of the differential equation is given by

p̄(t) = e
bξtp̄(0),

where e
bξt is the matrix exponential of the 4 × 4 matrix ξ̂t, defined (as

usual) by

e
bξt = I + ξ̂t +

(ξ̂t)2

2!
+

(ξ̂t)3

3!
+ · · ·

The scalar t is the total amount of rotation (since we are rotating with

unit velocity). exp(ξ̂t) is a mapping from the initial location of a point
to its location after rotating t radians.

In a similar manner, we can represent the transformation due to trans-
lational motion as the exponential of a 4 × 4 matrix. The velocity of a
point attached to a prismatic joint moving with unit velocity (see Fig-
ure 2.5b) is

ṗ(t) = v. (2.27)

Again, the solution of equation (2.27) can be written as exp(ξ̂t)p̄(0),
where t is the total amount of translation and

ξ̂ =

[
0 v
0 0

]
. (2.28)

The 4 × 4 matrix ξ̂ given in equations (2.26) and (2.28) is the gen-
eralization of the skew-symmetric matrix ω̂ ∈ so(3). Analogous to the
definition of so(3), we define

se(3) := {(v, ω̂) : v ∈ R3, ω̂ ∈ so(3)}. (2.29)

In homogeneous coordinates, we write an element ξ̂ ∈ se(3) as

ξ̂ =

[
ω̂ v
0 0

]
∈ R4×4.
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revolute joint prismatic joint
[Murray, Li, Sastry, 1994]
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Figure 3.7: Inverse kinematics of a planar two-link manipulator.

The inverse problem is to solve for θ1 and θ2, given x and y. A standard
trick is to solve the problem using polar coordinates, (r,φ), as shown in
Figure 3.7b. From this viewpoint, θ2 is determined by r =

√
x2 + y2,

and the law of cosines gives

θ2 = π ± α α = cos−1

(
l21 + l22 − r2

2l1l2

)
. (3.16)

If α "= 0, there are two distinct values of θ2 which give the appropriate
radius; the second is referred to as the “flip solution” and is shown as a
dashed line in Figure 3.7b. The complete solution is given by solving for
φ and using this to determine θ1. This problem must be solved for each
possible value of θ2, yielding

θ1 = atan2(y, x) ± β β = cos−1

(
r2 + l21 − l22

2l1r

)
,

where the sign used for β agrees with that used for α.
This planar example illustrates several important features of inverse

kinematics problems. In solving an inverse kinematics problem, one first
divides the problem into specific subproblems, such as solving for θ2 given
r and then using θ1 to rotate the end-effector to the proper position.
Each subproblem may have zero, one, or many solutions depending on
the desired end-effector location. If the configuration is outside of the
workspace of the manipulator, then no solution can exist and one of
the subproblems must fail to have a solution (consider what happens
if r > l1 + l2 in the example above). Multiple solutions occur when
the desired configuration is within the workspace but there are multiple
joint configurations which all map to the same end-effector location. If
a subproblem generates multiple solutions, then we must complete the
solution procedure for all joint angles generated by the subproblem.
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notion of work space

(a) (b)

(c) (d)

l3

θ1

l2

θ3

l1

l1 l2 l3
2l3 2l3

θ2

Figure 3.6: Workspace calculations for a planar three-link robot (a).
The construction of the workspace is illustrated in (b). The reachable
workspace is shown in (c) and the dextrous workspace is shown in (d).

place a spherical wrist at the end of the manipulator, as in the elbow
manipulator given in Example 3.2. Recall that a spherical wrist consists
of three orthogonal revolute axes which intersect at a point. If the end-
effector frame is placed at the origin of the wrist axes, then the spherical
wrist can be used to achieve any orientation at a given end-effector po-
sition. Hence, for a manipulator with a spherical wrist, the dextrous
workspace is equal to the reachable workspace, WD = WR. Furthermore,
the complete workspace for the end-effector satisfies W = WR × SO(3).
This analysis only holds when the end-effector frame is placed at the
center of the spherical wrist; if an offset is present, the analysis becomes
more complex.

Example 3.4. Workspace for a planar three-link robot
Consider the planar manipulator shown in Figure 3.6a. Let g = (x, y,φ)
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[Murray, Li, Sastry, 1994]
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Fig. 1. The cooperative robotic assistant, CoRA.

peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.
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Figure 3.2: A two degree of freedom manipulator.

adjacent frames:

gst(θ1, θ2) = gsl1(θ1)gl1l2(θ2)gl2t.

The mapping gst : T2 → SE(3) represents the forward kinematics of the
manipulator: it gives the end-effector configuration as a function of the
joint angles.

This procedure is easily extended to any open-chain mechanism. If we
define gli−1li(θi) as the transformation between the adjacent link frames,
then the overall kinematics are given by

gst(θ) = gsl1(θ1)gl1l2(θ2) · · · gln−1ln(θn)glnt. (3.1)

Equation (3.1) is a general formula for the forward kinematics map of an
open-chain manipulator in terms of the relative transformations between
adjacent link frames.

2.2 The product of exponentials formula

A more geometric description of the kinematics can be obtained by using
the fact that motion of the individual joints is generated by a twist associ-
ated with the joint axis. Recall that if ξ is a twist, then the rigid motion
associated with rotating and translating along the axis of the twist is
given by

gab(θ) = e
bξθgab(0).

If ξ corresponds to a prismatic (infinite pitch) joint, then θ ∈ R is the
amount of translation; otherwise, θ ∈ S1 measures the angle of rotation
about the axis.
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Differential forward kinematics

where is the hand moving, 
given the joint angles and 
velocities 

(x,y)

θ 

θ 

1 

2 

l1

l2

·x = − l1 sin(θ1)
·θ1 − l2 sin(θ1 + θ2)

·θ1 − l2 sin(θ1 + θ2)
·θ2

·x = J(θ) ·θ

·y = l1 cos(θ1)
·θ1 + l2 cos(θ1 + θ2)

·θ1 + l2 cos(θ1 + θ2)
·θ2



Differential forward kinematics

where is the hand moving, 
given the joint angles and 
velocities 

(x,y)
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Inverse kinematics

what joint angles are 
needed to put the hand 
at a given location

exact solution:

θ = f−1(x)

(x,y)

θ 

θ 

1 

2 

l1

l2



Inverse kinematics

what joint angles are 
needed to put the hand 
at a given location

exact solution:

θ = f−1(x)

how do I get the hand to 
where I want it?

� r

l1

l2

↵

✓2 = ⇡ ± ↵

↵ = cos�1

✓
l21 + l22 � r2

2l1l2

◆

✓1 = arctan2(y, x)± �

� = cos�1

✓
r2 + l21 � l22

2l1l2

◆

(x, y)

r2 = x2 + y2where [thanks to Jean-Stéphane Jokeit]

=> multiple “leafs” of the inverse kinematics



Differential inverse kinematics

which joint velocities to 
move the hand in a 
particular way

(x,y)

θ 
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·θ = J−1(θ) ·x

with the inverse of 

if it exists!
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Singularities

where the Eigenvalue of the Jacobian 
becomes zero (real part)… 

so that movement in a particular 
direction is not possible… 

typically at extended postures or 
inverted postures

at limit of workspace 

(a) (b)

(c) (d)

l3

θ1

l2

θ3

l1

l1 l2 l3
2l3 2l3

θ2

Figure 3.6: Workspace calculations for a planar three-link robot (a).
The construction of the workspace is illustrated in (b). The reachable
workspace is shown in (c) and the dextrous workspace is shown in (d).

place a spherical wrist at the end of the manipulator, as in the elbow
manipulator given in Example 3.2. Recall that a spherical wrist consists
of three orthogonal revolute axes which intersect at a point. If the end-
effector frame is placed at the origin of the wrist axes, then the spherical
wrist can be used to achieve any orientation at a given end-effector po-
sition. Hence, for a manipulator with a spherical wrist, the dextrous
workspace is equal to the reachable workspace, WD = WR. Furthermore,
the complete workspace for the end-effector satisfies W = WR × SO(3).
This analysis only holds when the end-effector frame is placed at the
center of the spherical wrist; if an offset is present, the analysis becomes
more complex.

Example 3.4. Workspace for a planar three-link robot
Consider the planar manipulator shown in Figure 3.6a. Let g = (x, y,φ)
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Singularities

leading to non-invertability! 

and to sensitive dependence on 
parameters

=> avoid singularities in motor 
planning… major effort in robotics

humans: joint angles prevent us from 
getting near singularities (for the most 
part)

(a) (b)

(c) (d)
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Figure 3.6: Workspace calculations for a planar three-link robot (a).
The construction of the workspace is illustrated in (b). The reachable
workspace is shown in (c) and the dextrous workspace is shown in (d).

place a spherical wrist at the end of the manipulator, as in the elbow
manipulator given in Example 3.2. Recall that a spherical wrist consists
of three orthogonal revolute axes which intersect at a point. If the end-
effector frame is placed at the origin of the wrist axes, then the spherical
wrist can be used to achieve any orientation at a given end-effector po-
sition. Hence, for a manipulator with a spherical wrist, the dextrous
workspace is equal to the reachable workspace, WD = WR. Furthermore,
the complete workspace for the end-effector satisfies W = WR × SO(3).
This analysis only holds when the end-effector frame is placed at the
center of the spherical wrist; if an offset is present, the analysis becomes
more complex.

Example 3.4. Workspace for a planar three-link robot
Consider the planar manipulator shown in Figure 3.6a. Let g = (x, y,φ)
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Fig. 1. The cooperative robotic assistant, CoRA.

peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.

x = f(θ)

θ = f−1(x)

kinematic model

inverse kinematic model

·x = J(θ) ·θ
·θ = J−1(θ) ·x



Redundant kinematics

redundant arms/tasks: 
more joints than task-level 
degrees of freedom

(x,y)

Q

Q
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Redundant kinematics

=> (continuously) many 
inverse solutions… 

(x,y)



Redundant kinematics

use pseudo-inverses that minimize a 
functional (e.g., total joint velocity 
or total momentum)

·x = J(θ) ·θ
·θ = J+(θ) ·x

pseudo-inverse

(x,y)

range space
motion

J+(θ) = JT(JJT)−1



Spaces for robotic motion planning

or use extra degrees of 
freedom for additional tasks 
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Fig. 1. The anthropomorphic robotic assistant CORA.

kinematic attractor dynamics approach, which we generalize
to include dynamic collision-avoidance of the arm itself and
the consideration of joint limits. The approach is heuristic and
makes use of a number of simplifying assumptions, but is
considerably simpler than more general methods (e.g., [17])
and maintains the human-like movement trajectories.

One simplification arises from the scenario we are address-
ing: The human user and the robot arm reach for objects on a
table surface (Fig. 1). The robot arm avoids all obstacles, be
they objects positioned on the table or body parts of the human
operator by moving above the occupied regions in space, never
by moving below the the occupied space (e.g., never in the
space between the table and the human operator).

The idea then is to backtrack the movement plan from
the distal to the proximal segments: The tool-point trajectory
is generated through two heading-directions. We control the
arm such that the wrist and forearm follow the collision-free
path in space on which the end-effector has moved. We then
exploit the redundancy of the arm in order to control the
spatial position of the elbow both to clear obstacles with the
upper arm and to satisfy joint-limit constraints at the wrist.
All constraints are integrated by adding forces to attractor
dynamics equations for the hand orientation in space and for
the redundancy angle, which controls elbow elevation.

We first briefly review the kinematics of the redundant,
anthropomorphic arm, defining the redundancy angle and
linking it to the two constraints of obstacle avoidance and joint
limits. Then we describe the total of five dynamical systems
equations from which the arm trajectory is obtained as an
attractor solution, the system sitting at all times in the attractor.
Finally, we describe the implementation of this approach on
the robotic assistant CORA and illustrate its performance.

II. KINEMATICS

A. Inverse kinematics
The reference arm configuration is show in Figure 2. The

arm is composed of a series of roll and pitch joints. The
combination of a roll-pitch-roll-joint is functionally equivalent
to a spherical three DoF joint like the human shoulder or wrist.

The trunk of the robot is controlled separately by gener-
ating a constant joint velocity that brings the shoulder girdle
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Fig. 2. Initial Arm Configuration and coordinate systems:

from its initial position to an orientation perpendicular to the
direction from the base of the torso to the target position. This
orientation of the shoulder has been found to be best suited
for grasping (not unlike the position spontaneously adopted by
humans when they make manipulation movements).

The inverse kinematics problem for the remaining seven
degrees of freedom is solved in closed form [18][19]. Given
the hand orientation θEEF (elevation) and φEEF (azimuth)
and the hand reference point, the vector !rh from the wrist to
the hand reference tool-point (Fig. 3) is determined as

!rh = RφEEF

z · RθEEF

y · êx · lh (1)

where Rx, Rz denote rotation matrices around the z- and y-
axes, êx the unit vector in the x-direction and lh denotes the
seqment length.
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Fig. 3. The redundancy of the shoulder and the elbow joints

The redundant degree of freedom is defined by the redun-
dancy circle, the center !rm

!rm =
|!ru|2 − |!rf |2 + |!rWST |2

2 · |!rWST |2
!rWST (2)

of which lies on a ray pointing from the shoulder to the wrist
joint. The spatial position of the elbow lies on this circle of
radius R:

R =

√

√

√

√|!ru|2 −

(

|!ru|2 − |!rf |2 + |!rWST |2

2 · |!rWST |

)2

(3)

Expressing the wrist vector, !rWST , through two angles, φWST

and θWST , the elbow position can be written as

!ru =
(

RφWST

x RθWST

z Rα
x · ê

)

· R + !rm (4)

where Rx and Rz are rotation matrices around the x- and
the z-axis and the redundancy angle, α, characterizes the
position of the elbow on the redundancy circle (Fig. 3). If
the redundancy angle, α, is specified, all limb vectors are
known. A straightforward solution of the inverse kinematics
determines the joint angles θ1, θ2, θ3θ4, θ5, θ6, θ7.

[Iossifidis, Schöner, ICRA 2004]



what is a DoF?

variable that can be 
independently varied 

e.g. joint angles

muscles/muscle groups

but: assess to which extent they 
can be activated 
independently… 

.. mode picture 

Degree of freedom problem 
in human movement
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for most tasks, there are many more 
degrees of freedom than task 
constraints… 

e.g., 10 joints in the upper arm including scapular 
joints to control hand position and orientation 
(3 to 5 or 6 DoF) 

but typically more: involve upper trunk 
movements

or even make a step to move 

many muscles  per joint (e.g. about 
750 muscles in the human body vs. 
about 50 DoF) 

(x,y)

Degree of freedom problem 
in human movement



Nikolai Bernstein… 1930’s… in the Soviet 
Union

“how to harness the many DoF to achieve 
the task”

Degree of freedom problem 
in human movement



highly skilled workers wielding a hammer to hit a 
nail… => hammer trajectory in space less variable 
than body configuration

as detected in superposing spatial trajectories of lights on hammer vs. 
on body.. 

but: camera frame anchored to nail/space, while initial body 
configuration varied

Bernstein’s workers



Bernstein’s workers

was the hammer position in space less 
variable than the joint configuration? 

that is, does the task structure variance? 

so that the solution to the degree of freedom problem 
lies in the variance/stability of the joint configuration? 

but: does this make any sense? 

different reference frames for body vs. task 

different units in the task vs joint space 



Concept of the UnControlled Manifold

more flexed here

less flexed here
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[Scholz, Schöner, EBR 126:289 (99)] 

the many DoF are 
coordinated such that 
changes that affect the task-
relevant dimensions are 
resisted against more than 
changes that do not affect 
task relevant dimension

leading to compensation



Robotic concept

self-motion manifold: within which end-effector does not 
move

the pseudo-inverse is locally orthogonal to the self-
motion manifold 

self-motion is needed to avoid hysteresis in redundant 
manipulators 

θ1

(x, y)

θ3 θ2

VN

θ1

θ2

θ3

(a) (b)

Figure 3.17: Self-motion manifold for a redundant planar manipulator.

In particular, the possible existence of internal motions, combined with
the inertial coupling between the links, can cause forces to be applied to
the end-effector even if no joint torques are applied. We defer a com-
plete discussion of this situation until Chapter 6, in which we study the
dynamics of constrained systems in full detail. Using the results of that
chapter, it will be possible to show that when a manipulator is in static
equilibrium, the previous relationship,

τ = JT
stF, (3.63)

still holds. This relationship gives the joint torques necessary to produce a
given end-effector wrench when the system is stationary. Either the body
or spatial Jacobian can be used, as long as the wrench F is represented
appropriately.

Example 3.17. Self-motion manifold for a planar manipulator
Consider the planar manipulator shown in Figure 3.17a. Holding the po-
sition of the end-effector fixed, the system obeys the following kinematic
constraints:

l1 cos θ1 + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3) = x

l1 sin θ1 + l2 sin(θ1 + θ2) + l3 sin(θ1 + θ2 + θ3) = y.

This is a set of two equations in three variables and hence there exist
multiple solutions. A self-motion manifold for this manipulator is shown
in Figure 3.17b.

The Jacobian for the mapping p : θ !→ (x, y) is

∂p

∂θ
=

[
−l1s1 − l2s12 − l3s123 −l2s12 − l3s123 −l3s123

l1c1 + l2c12 + l3c123 l2c12 + l3c123 l3c123

]
, (3.64)

131

[Murray, Li, Sastry, 1994]



Structure of variance: UCM effect

more flexed here

less flexed here
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[Scholz, Schöner, EBR 126:289 (99)] 

classical synergy
co-variation

compensatory 
co-variation

variance in movement 
lies primarily within the 
UCM, leaving the end-
effector invariant! 

=> measuring variance 
of end-effector in the 
same (embedding) space 
as the joint configuration 



align trials in time

hypothesis about task variable

compute null-space (tangent to 
the UCM) 

predict more variance within 
null space than perpendicular to 
it

UCM synergy: data analysis
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Figure 4. Depiction of hypothetical clouds of data points combining separate trials and their 

relationship to the UCMs depicted in Figure 3. In Figure 4A, structure of the data is such that the 

major axes of the ellipses is oriented parallel to the UCMs, indicating that variability is compressed 

in the orthogonal direction, stabilizing the pointer position. Figures 4B-D depict possible effects of 

learning, described greater detail in the text. In B, both axes of the data ellipses are compressed. In 

Figure 4C, the orthogonal axis of the ellipses is preferentially compressed while the parallel axes 

increase in size.  In D, the parallel component is compressed more than the orthogonal component. 
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supplement hypothesis 
testing by checking for 
correlation (Hermann, 
Sternad...)

look for increase in variance of 
task variable when correlation 
within data is destroyed

UCM synergy: data analysis
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Example 1: pointing with 10 DoF arm at targets in 3D

UCM
orthog UCM

task variable: hand movement 
direction in space
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Example 2: shooting with 7 DoF arm at targets in 3D



variance
within
UCM variance

perpendicular
to UCM

Example 2: shooting with 7 DoF arm at targets in 3D
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percent of trajectory
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[from Scholz, Schöner, Latash: EBR 135:382 (2000)]



Inverted pendulum 
hypothesis predicts the 
opposite than UCM

Example 3: posture



but: find signature of 
UCM synergy
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[Hsu, Scholz, Schöner, Jeka, Kiemel, J Neurophys 2007]

Example 3: posture



Classical synergy

a feedforward neural 
network from end-effector 
level representation to 
muscle level representation  

spatial (end-effector) level

muscle/joint level



Classical synergy

activation state at EE 
level varies in time or 
across tasks

=> covariation of 
muscle/joint 
descending activation

variation here

leads to 
co-

variation 
here

end-effector

muscle/joint



Classical synergy

search for such covariation 
by looking for structure in 
data from many DoF 
across time and condition 
(e.g. by non-negative 
matrix factorization)

of a small number of 
factors explain variance, 
conclude that classical 
synergies are at work

In locomotion, a few temporal patterns can be recruited across
step cycles to reproduce electromyographic (EMG) patterns
across different walking speeds (Ivanenko et al. 2004) and
when walking is combined with other voluntary tasks
(Ivanenko et al. 2005). However, it may not be possible to
dissociate spatial from temporal organization during cyclical
locomotor tasks where temporal and spatial features of muscle
activity tend to be correlated.

Recent evidence suggests that low-dimensional temporal
patterns may be used to recruit SF muscle synergies. For
example, fixed-duration temporal pulses are sufficient to ex-
plain muscle activation patterns described by SF muscle syn-
ergies in frog preparations (Hart and Giszter 2004). Similarly,
temporal patterns of muscle activity in postural perturbations
during balance are defined by a low-dimensional sensorimotor
transformation based on feedback control of center of mass
(CoM) motion (Lockhart and Ting 2007; Welch and Ting
2008, 2009). CoM kinematics are task-level variables that must

be estimated from multisensory integration (Peterka 2002) and
encapsulate the net motion of the body. By assigning unique
feedback gains to CoM displacement, velocity, and accelera-
tion for each muscle at a common delay, the model can
reconstruct the entire time course of muscle activity in multiple
muscles throughout the leg and trunk (Lockhart and Ting 2007;
Welch and Ting 2008, 2009). Moreover, the model can explain
temporal patterns of muscle activity that vary with perturbation
characteristics. While it is unknown whether this model can be
used to describe the recruitment of SF muscle synergies, CoM
feedback likely recruits SF muscle synergies because SF mus-
cle synergies produce forces necessary for CoM control across
a range of postural configurations (Chvatal et al. 2011; McKay
and Ting 2008; Ting and Macpherson 2005; Torres-Oviedo et
al. 2006). A hierarchical structure in which low-dimensional
temporal patterns recruit spatial structures defining muscle
activation patterns is also consistent with current theories about
locomotor pattern generation (Hart and Giszter 2004; McCrea
and Rybak 2008) and trajectory formation (Berniker et al.
2009; Kargo et al. 2010).

Here we hypothesized that during human balance control,
low-dimensional temporal feedback mechanisms recruit SF
muscle synergies. Specifically, we predicted that SF muscle
synergies are modulated by delayed feedback of CoM through-
out perturbation responses. To test this hypothesis, we exam-
ined muscle synergy structure and recruitment in 10-ms bins
throughout postural responses to support-surface translations
including later, previously unexplored epochs that extend be-
yond perturbation deceleration and feature very different com-
binations of muscle activity and CoM kinematics compared
with the initial postural response. We explicitly compared SF
versus TF muscle synergies on their ability to reconstruct EMG
activity in reactive postural responses. We then analyzed the
structure and recruitment of SF muscle synergies extracted
from epochs throughout postural responses to perturbations.
We predicted that SF muscle synergies would have consistent
structure regardless of the extraction epoch. Furthermore, we
predicted that a feedback model based on CoM kinematics
would be able to reproduce SF muscle synergy recruitment
patterns and reliably reconstruct SF muscle synergy activity
throughout postural responses to perturbations.

METHODS

Summary

To determine the organization and control of muscle synergies
throughout a postural task, we recorded human postural responses to
multidirectional ramp-and-hold translations of the support surface.
We investigated different hypotheses on muscle synergy organization
by extracting both SF and TF muscle synergies from the entire
postural response. We compared SF versus TF muscle synergy struc-
ture and EMG reconstructions. We then compared SF muscle synergy
structures across epochs to determine their degree of consistency
across the time course of postural responses. We investigated task-
level control of SF muscle synergies by applying a delayed feedback
model based on CoM kinematics to reconstruct muscle synergy
recruitment throughout anterior-posterior (A-P) perturbations. We
compared observed and reconstructed SF muscle synergy recruitment
patterns and examined the ability of the feedback model to reconstruct
trial-by-trial variability in SF muscle synergy recruitment. To ensure
that our models of SF muscle synergy recruitment were adequate to

Fig. 1. Hypotheses and concepts explored in the present study. A: muscle
synergies with fixed spatial weightings [spatially fixed (SF) muscle synergies].
Here the nervous system organizes muscle activity spatially. The nervous
system can variably recruit SF muscle synergies when a specific muscle
combination is desired throughout a task in a feedback or feedforward manner.
B: muscle synergies with fixed temporal recruitment [temporally fixed (TF)
muscle synergies]. In this hypothesis, the nervous system uses fixed temporal
sequences to recruit muscles during a task, consistent with feedforward
control. When a specific temporal sequence is executed, a set of muscles that
can vary across directions and trials is chosen to reproduce EMG activity
necessary to achieve the task.
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the variance across repetitions for a given task at given 
point in time = signature of stability

that variance is structured in the OPPOSITE way than 
predicted by the classical synergy! 

random 
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[Scholz, Schöner, EBR 126:289 (99)] 

classical synergy
co-variation

compensatory 
co-variation

the UCM effect reflects 
the opposite pattern of 
co-variation than the 
pattern predicted by the 
classical synergy concept



classical synergy is not sufficient
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UCM synergy: decoupling

arm in space

insert a perturbation here

compensatory change here

motor commands



UCM synergy: back-coupling

arm in space

insert a perturbation here
(imperfect control)

yield here

[Martin, Scholz, Schöner Neural Computation 2009]
[Martin, Reimann, Schöner Biological Cybernetics 2019]

enhanced UCM variance here



insert a perturbation here

!

Figure 1 

UCM synergy: from feedback

leads to change here !

Figure 1 

passes this to other DoF

compensatory change here

[Reimann, Schöner, Biological Cybernetics 2017]



Conclusion
The problem of inverse kinematics is part of the 
broader “degree of freedom problem”

Neither robots nor human movement systems 
can use a simple 1:1 optimal solution, but must 
allow self-motion to avoid drifts into singular 
configurations

Humans have considerable self-motion and 
stabilize movement much less within the UCM 
(self-motion) space than orthogonal to it

Beyond the feed-forward few-to-many 
mappings, this involves compensatory coupling 
among motor commands. 


