Vehicle motion planning and control: Survey of approaches

Gregor Schöner

The problem

- move about in a 2D world, which is occupied by objects/stuff
- constraints
 - reach targets
 - avoid collisions
 - 📕 via points

orientations

Non-holonomic constraints

- Vehicles have typically nonholonomic constraints
 - fewer variables can be varied freely (e.g. velocities chosen) than variables that describe the physical state
 - state depends on the history of movement

What is needed to autonomously move in an environment?

- sense something about the environment
- know about the environment
- plan movement in the environment that is collision-free
- control vehicle to achieve planned movement
- estimate what vehicle actually did

Concepts for planning

local vs. global

- planning based on information only about the local environment of the robot
- vs. based on global map information about the environment
- reactive vs. planning
 - motion planning "on the fly" in response to sensory inputs
 - vs. motion planning for an entire action from initial to goal state

Concepts for planning

exact vs. heuristic

- exact: guarantee that a path that fulfills the constraints is found when one exists
- vs. generate a plan based on ad hoc approach that is likely to fulfill constraints
- continuous vs. discrete:
 - continuous state space variables
 - vs. grid state spaces, graph state spaces

Concepts for planning

sense-plan-act vs behavior-based

- based on world representation that informs all planning
- vs. based on low-level sensory information that is specific to each individual behavior, planning emerges from how behaviors interact

Approaches to vehicle path planning

- classical planning approaches
- potential field approach
- Borenstein & Koren
- (dynamic window approach)

Classical global path planning

- standard reference: Latombe: Robot motion planning, 1991
- very good general review: LaValle: Planning algorithms, 2006, 2010

[LaValle, 2006]

Classical global path planning

mathematical theories of constraint satisfaction and decision theory

searching spaces, sampling approaches

[LaValle, 2006]

Classical local path planning

- reference: Cox, Wilfong: Autonomous Robot Vehicles, 1990
- based on a known world (e.g., represented as a polygonial model of surfaces)
- taking into account a kinematic model of the vehicle
- add smoothness constraints

- invented by Khatib, 1986 (similar earlier formulation: Neville Hogan's impedance control)
- the trajectory of a manipulator or robot vehicle is generated by moving in a potential field to a minimum
- the manipulator 3D end-position or vehicle 2D position is updated by descending within that potential field
- obstacles are modeled as hills of potential field; target states are valleys/minima of the potential field

Potential field approach as a heuristic planning approach

- need a mathematical representation of target and obstacle configuration
- make potential minimum at target

- make potential maximum at obstacles
- compute downhill gradient descent for path generation

obstacle configuration

contours of associated obstacle potential field

contours of improved target potential field (by adding bubbles around obstacles)

 adding all contributions leads to solution: gradient descent for vehicle

generalization to higherdimensional configuration spaces

Comparison to human behavior

Fajen/Warren compared the fit of a potential field approach to the fit of the attractor dynamics approach of human locomotion data

Comparison to human behavior

comparison potential field vs. attractor dynamics

potential sharper than distance dependence of repellor

comparison potential field vs. attractor dynamics

potential softer than distance dependence of repellor

spurious attractors in potential field approach

Potential fields: limitations

- spurious attractors and constraint violations
- solution: making potential field approach exact and global: navigation functions
- potential computed such that it only has the right maxima and minimal
- but: computational cost
- but: requires global information

Virtual force field: Borenstein & Koren

- ultra-sound histograms: the virtual force field concept
- vector-field histogram concept: polar histogram (heading direction!); height (strength) depends on both certainty and distance
- threshold: determine free sectors
- select free direction closest to target

Virtual force field: Borenstein & Koren

Virtual force field: Borenstein & Koren

- vector toward target
- active window around robot
- use histogram within active window to compute vectors pointing away from obstacle
 - vector summing
 - ~dynamic approach!

Vector field histogram: Borenstein & Koren

transform active window in world grid into polar histogram

Vector field histogram: Borenstein & Koren

lab set-up

Iocal polar histogram provides "free" directions

Vector field histogram: Borenstein & Koren

Select safe direction algorithmical

Potential fields as reactive planners

- use potential field to plan locally based on low-level sensory information (reactive)
- different "behaviors" generated by different vectorfields ("schema", slight generalization of potential fields)
 - organize the different behaviors in an architecture

[Arkin, Blach: AuRA 1997]

Architecture

The reactive component

Motor schemata

- Move-ahead: move in a particular compass direction.
- Move-to-goal (both ballistic and guarded): move towards a discrete stimulus.
- Stay-on-path: move towards the center of a discernible pathway, e.g., a hall or road.
- Avoid-static-obstacle: move away from non-threatening obstacles.
- **Dodge**: sidestep approaching ballistic objects.
- **Escape**: Evade intelligent predators.
- Noise: move in a random direction for a fixed amount of time. (persistence)
- Avoid-past: move away from recently visited areas.
- **Probe**: move towards an open area.
- Dock: move in a spiral trajectory towards a particular surface.
- **Teleautonomy** introduce a human operator at the same level as other behaviors.

Vector-fields for different behaviors (schemata)

(C)

Superposing potential fields to combine behaviors

Behavior-based sequence planner

take dynamic constraints of vehicle into account (maximal decelerations/accelerations)... to drive fast

[Fox, Burghard, Thrun, 1996]

- discretize motor control space: linear and angular velocity
- => search space: circular trajectories of v, omega

- 1. Search space: The search space of the possible velocities is reduced in three steps:
 - (a) Circular trajectories: The dynamic window approach considers only circular trajectories (curvatures) uniquely determined by pairs (v, ω) of translational and rotational velocities. This results in a two-dimensional velocity search space.
 - (b) Admissible velocities: The restriction to admissible velocities ensures that only safe trajectories are considered. A pair (v, ω) is considered admissible, if the robot is able to stop before it reaches the closest obstacle on the corresponding curvature.
 - (c) **Dynamic window:** The dynamic window restricts the admissible velocities to those that can be reached within a short time interval given the limited accelerations of the robot.

2. Optimization: The objective function

 $G(v,\omega) = \sigma(\alpha \cdot \operatorname{heading}(v,\omega) + \beta \cdot \operatorname{dist}(v,\omega) + \gamma \cdot \operatorname{vel}(v,\omega))$ (13)

is maximized. With respect to the current position and orientation of the robot this function trades off the following aspects:

- (a) **Target heading:** *heading* is a measure of progress towards the goal location. It is maximal if the robot moves directly towards the target.
- (b) **Clearance:** *dist* is the distance to the closest obstacle on the trajectory. The smaller the distance to an obstacle the higher is the robot's desire to move around it.
- (c) **Velocity:** *vel* is the forward velocity of the robot and supports fast movements.

The function σ smoothes the weighted sum of the three components and results in more side-clearance from obstacles.

target cost function

clearance cost function

Figure 8. Evaluation of the distances

Figure 9. Evaluation of the velocities

smoothing the cost functions

Figure 10. Combined evaluation function

Figure 11. Objective function

two samples of actual velocities

cost function for the action velocities

Figure 13. Objective function for actual velocity (75,0)

Figure 14. Objective function for actual velocity (40,0)

example RHINO

used Borenstein Koren approach to smooth and accumulate sonar distance data

Figure 18. Example environment with obstacle lines and target point Figure 19. Determination of the distance

data 🗖

Figure 20. Trajectories chosen for different dynamic parameters

Figure 21. Trajectory through corridor

Figure 22. Trajectory through cluttered corridor

Summary

- powerful approaches exist for motion planning
- the best/exact approaches make strong demands on world representations and computation
- heuristic "reactive" approaches are state of the art (often combined in hybrid architectures with deliberative planning)
- the attractor dynamics approach is competitive as a reactive approach

Outlook

deliberative planning...

moving beyond the vehicle navigation problem

planning sequences of actions to achieve goals

searching spaces, often represented as graphs

🛋 ... a huge field...