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Abstract

The dynamic approach proposes a set of concepts with the help of which autonomous systems can be specified and designed.
While the approach builds systems from elementary behaviors driven by behavior-specific sensory information, it also repre-
sents behaviors internally in terms of the state of dynamical systems, thus positioning itself somewhere between classical and
behavior-based approaches. This paper demonstrates that the dynamic approach lends itself naturally to implementation on
computationally weak platforms working with very low-level sensory information. Obstacle avoidance and target acquisition
are implemented on a micro-controller based vehicle equipped with only five infra-red detectors and two photoresistors. We
show how theoretical design, software simulation, and hardware implementation are enchained effortlessly. The resulting
behavior is particularly smooth and requires no parameter optimization. As a technical novelty we demonstrate the integration

of dynamics at two different levels of temporal derivative.
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1. Introduction

Over the last few years autonomous robotics has
experienced conceptual shifts that resulted from the
tension between the classical and the behavioral ap-
proaches. The classical approach provides clear in-
terfaces between different components by structuring
robot systems along the flow of information from sen-
sors to effectors. Information from sensory sources is
extracted and represented explicitly to enable plan-
ning. Plans are acted out using well-established prin-
ciples of control. By contrast, behavior-based robots
use sensory information at lower levels of parameter
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extraction, which, typically, are not explicitly repre-
sented. Action is not explicitly planned, but emerges
from the activation of prestructured elementary behav-
iors. (Critical discussion see, e.g., [2,3]). The dynamic
approach to autonomous robotics [9-11] was devel-
oped, in part, in response to this conceptual shift. The
main ideas are (see [10] for recent review): (1) Be-
haviors are generated by ascribing values in time to
behavioral variables. These variables are chosen such
that tasks can be expressed as values (or sets of val-
ues) of these variables. An additional constraint is the
capability to enact these variables both in terms of
being able to design control systems that impose the
values of the variables on an effector system and in
terms of being able to obtain the information that is
required to define the variables from sensory surfaces.
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(2) The time courses of the behavioral variables are
obtained as attractor solutions of dynamical systems,
the behavioral dynamics, formulated to express the
task constraints through attractive or repulsive forces.
By design, that is, through choice of variables and ad-
justment of time scales, the system is at all times in
or near an attractor. (3) Sensory information or in-
formation from other behavioral modules (dynamical
systems of other behavioral variables) determine the
location, strength, and range of attractive or repulsive
contributions to the behavioral dynamics. The inter-
play between multiple contributions to the behavioral
dynamics determines how sources of sensory infor-
mation may cooperate or compete which may lead
to categorical change of behavior or to smooth tun-
ing of behavior. Because behavior is always generated
from attractors of nonlinear dynamical systems, pow-
erful theoretical tools from the mathematical theory
of dynamical systems, such as local bifurcation anal-
ysis, can be used to design autonomous robot archi-
tectures and quantitatively evaluate their compliance
with specifications.

The dynamic approach shares with the behavioral
approach the use of task-specific sensory information
at low levels of invariance as well as the idea of design-
ing systems in terms of elementary behaviors. More in
line with the classical approach is the concept of rep-
resenting the desired or planned behavior internally
through the behavioral variables. This concept and the
mathematics of dynamical systems emphasize design,
specification and theoretical penetration of the archi-
tecture rather than invoking some form of emergence
of behaviors as sometimes argued for behavior-based
systems. The approach is open toward explicit repre-
sentation of information not currently available at the
sensory surfaces [4,12].

Previous implementations of autonomous robot
architectures based on the dynamic approach [6,10]
involved relatively large scale platforms with several
on-board and off-board computer systems. Sensory
information was visual, required extensive computa-
tion and potentially provided high precision informa-
tion (although this potential was not always realized).
In this paper we address the obvious question, if the
approach is essentially limited to this type of sys-
tem, more in line with the classical approach, or if,
reversely, it can be made to function in computation-
ally modest systems based on very low-level sensory

information, more in line with the behavior-based
approach. To demonstrate that the approach can be
usefully employed on low-level systems we designed,
simulated, and implemented obstacle avoidance and
target acquisition on one of the simplest platforms
on the market, a “rug-warrior” type microcontroller-
based vehicle [5], whose sensors consist of five
infra-red detectors and two light-dependent resis-
tors. Obstacle avoidance was based on wusing the
infra-red detectors as (uncalibrated) distance sensors.
Target acquisition consisted of photo taxis (move-
ment toward light sources) and was based on the two
light-dependent resistors. The smooth and reliable
performance obtained, but also the ease of the tran-
sition from theory and simulation to implementation
in hardware convinced us, that the dynamic approach
offers specific advantages also at this low end of the
autonomous systems field.

A second, more technical aspect of this project was
to establish how constraints arising at different orders
of temporal derivative can be integrated. Specifically,
inputs from an obstacle avoidance module arising at
the level of heading direction and inputs from a target
acquisition module arising at the level of the rate of
change of heading direction are integrated in a single
dynamical system.

Fig. 1 shows the platform we worked on, based on
the MC68HCA11AQ micro-controller with 32 Kbyte
of RAM, programmable in interactive C (compiler
provided through the MIT Media Lab, written by
Randy Sargent with the assistance of Fred Martin).
The vehicle is propelled by two wheels, each driven
by a simple uncontrolled motor, and stabilized by a

Fig. 1. The hardware platform.
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Fig. 2. Left: “Force-let” for repulsion from a heading direction in which obstructions are detected with limited range and strength:
The positive slope (strength) at the zero crossing (direction to-be-avoided) indicates a repellor. Middle: Its integral provides a potential
which is maximal near heading directions to-be-avoided. Right: The thresholded potential, «, serves as an indicator function of those

intervals of heading direction from which obstacle forces repel.

passive caster wheel. Five active beam infra-red de-
tectors (IRs) served for obstacle detection and two
photoresistors (LLDRs) provided information for the
photo-taxis like target acquisition. Neither motors
nor sensors were calibrated other than through rough
order-of-magnitude estimation.

2. Obstacle avoidance dynamics

For obstacle avoidance a solution within the dy-
namic approach has been elaborated previously
[9,10]. Using heading direction of the vehicle, ¢, in
an arbitrary, but fixed world reference frame, repul-
sive “force-lets”, are defined around each direction
in which obstructions are sensed. These are charac-
terized by (a) the direction, v, to be avoided, (b)
the strength, %;, of repulsion, and (c) the range, oj,
over which repulsion acts. This approach can be
straightforwardly transferred to the present platform
by erecting repulsive force-lets (Fig. 2 left)

_ a2
Jobs,i (@) = }‘i(¢“1//i)exp[——u)_:] M

2‘71‘2

around each direction in space, ¥ = 6;+¢, into which
an IR sensor, mounted at angle 6; from the frontal
direction, is pointing. The strength of repulsion, A;,
is a decreasing function of sensed distance, d;, to the
obstruction, as estimated from the IR output with crude
calibration. The functional form

Ai = Prexpl—di/Ba] 2

depends on two parameters controlling the overall
strength (B8)) and spatial rate of decay (B). The range

Af Rrobot ]
o; = arctan| tan{ — ) + ————— 3)
! [ ( 2 ) Rrobot + di

is adjusted taking both sensor sector, A, and the
minimal passing distance of the vehicle (at size Ryopot
of the platform) into account. Formally, this form of
the obstacle avoidance dynamics reads:

d) = Fobs = Z fobs,i- 4)

Note that the right-hand side really only depends on
the distance measures, d;, obtained from the sensors,
not actually on ¢ (to see this, replace ¢ — ¥; by 6,
which is fixed).

We found both in simulation and in implementa-
tion that this approach to obstacle avoidance works
very well, leading to particularly smooth maneuvers
which are suggestive of a capacity to *“‘plan ahead”,
although the dynamics are based entirely on instan-
taneous and local information, of course. This is il-
lustrated in Fig. 5(a) which shows a trajectory of the
simulated robot dynamics of Eq. (4). Because sen-
sory information is used at a particularly low level,
the sensor model of the simulation consists simply of
a monotonic function mapping distance onto a sensor
reading.

It turns out to be more difficult, however, to ex-
press photo-taxis at this level: The difference of light
intensity sensed on either side of the vehicle does not
specify a direction toward which to move in the ab-
sence of a world model (of the light source and the
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Fig. 3. The dynamics of turning rate for obstacle avoidance are shown, on top, in the from of Eq. (5) and, at the bottom, in the
form of Eq. 8. (a) The single attractor at w = 0 for negative « bifurcates in a pitchfork bifurcation into (b) two symmetric attractors
for turning left or right at positive . This bistability generates hysteresis, which ensures that a decision to turn either way persists
sufficiently to suppress oscillations. The symmetry of this dynamics is reduced by adding a constant term proportional to the obstacle
forces, Fyps. In (c) this constant is positive, enlarging the basin of attraction of the attractor at positive turning rate, but maintaining
bistability. In (d) the obstacle forces are so large and positive that the attractor at negative turning rate has undergone a tangent
bifurcation and the system is now exclusively governed by the attractor at positive turning rate.

surrounding reflective surfaces). In the next section
we show, nevertheless, how a dynamics for the turn-
ing rate, w = ¢, can be defined that has the adequate
attractor to achieve target acquisition. Thus, integrat-
ing obstacle avoidance and target acquisition involves
integration of dynamics at two different orders of tem-
poral derivative of the dynamical system. To achieve
this, we must find a way to lift the dynamics for ob-
stacle avoidance from the level of ¢ to the level of ¢.

This lifting can again be based on the basic concepts
of the dynamic approach. We must ask which state at
the level of w is specified by the obstacle contribu-
tions and can then use bifurcation analysis to select
the adequate functional form.

Quite simply, while the heading direction is out-
side the repulsion zone around each detector direction
or when obstacles are very far way (X; = 0), obsta-

cle contributions Eq. (1) are small ( fobs ~ 0) and do
not specify any change of heading direction. This can
be expressed by specifying an attractor for a dynam-
ics of w at w = 0 (“move straight ahead”). Inside the
repulsion zone at sufficient strength of the contribu-
tion, the attractor at @ = 0 must turn into a repellor.
This transition can be modelled by a pitchfork bifur-
cation, which stabilizes two new attractors at positive
and negative turning rates w # 0. Its normal form

(5)

is illustrated in the top row of Fig. 3. (see, e.g., [7],
for the mathematical background). At y > 0 fixed,
the dynamics is switched by « from a regime with a
single fixed point attractor at w = 0 (¢ < 0, top left
in Fig. 3) to a regime with two fixed point attractors
at +./a/y (turning either left or right) (« > O top

d)=aw—ya)3
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right in Fig. 3). Thus, @ must change sign as function
of whether the obstacle contributions are sufficiently
weak or not and as a function of whether or not the
current heading direction is in the repulsion zone of the
obstacle contribution. A systematic way to construct
such a function is to integrate the force-let, which leads
to something like a potential function

2 rio?
V= z Ao exp —2(;2 - :/é ©6)
1 t

of the obstacle avoidance dynamics (see middle panel
in Fig. 2). Positive values of this potential indicate that
heading direction is in a repuision zone of sufficient
strength, A;, so that @ > 0 is required. Negative values
of the potential indicate that heading direction is ei-
ther outside a repulsion zone or repulsion is weak, so
that @ < 0 is required. Applying a sigmoid threshold
function to the potential such as

« = arctanfc V] )

therefore generates the desired transition behavior. The
parameter ¢ determines the size of the transition zone.
This function is illustrated in Fig. 2 to the right.

This analysis was entirely local to @ = 0. It did
not take into account that in the presence of repul-
sive forces these also specify something beyond the
immediate vicinity of zero turning rate. In fact, from
the sign of the obstacle forces, Fyhs, we can read off,
if an attractor at positive turning rate or an attractor
at negative turning rate should be stabilized. Again, it
is useful to think of the limit in which a bifurcation
is generated: for sufficiently positive obstacle forces
we want to eliminate the attractor at negative turning
rates so that only an attractor at positive turning rates
remains. Reversely, for sufficiently negative obstacle
forces the attractor at positive turning rate must disap-
pear. These bifurcations are tangent bifurcations, the
normal form of which is @ = constant — w? where
the constant is positive for positive obstacle forces and
negative for negative obstacle forces. To integrate this
with the pitchfork bifurcation, we only need to add
the constant term (the higher-order terms covering the
rest). To compute the constant, we multiply the obsta-
cle forces, Fops With o + %n, which 1s zero wherever
the obstacle contributions fall below a threshold. This
way the attractor at @ = 0 is not shifted unnecessarily

when obstacle contributions are weak. The resultant
dynamics

& = (@ + 57 )Cobs Fobs + @w — y’ ®)

is illustrated in the bottom row of Fig. 3 for two dif-
ferent positive values of Fyps. On the left, the positive
obstacle forces enlarge the basin of attraction of the
attractor at positive turning rate. The attractor at neg-
ative turning rate continues to exist, however, so that
the system is stabilized by hysteresis if it arrives at this
situation while turning right. For even larger positive
obstacle forces, the attractor at negative turning rate
is eliminated by a tangent bifurcation (the dynamics
lifts off the w-axis) and the attractor at positive turning
rate is monostable.

Fig. 4 summarizes the situation by showing the four
regimes arising from a single, finite strength force-
let: (1) Outside the range of the force-let a monos-
table dynamics with an attractor at w = 0 (“move
straight ahead”). (2) To the right of the direction, 1,
into which the detector looks, negative values of fops
specify turning right, corresponding to an attractor at
a negative value of @ < 02. (3) To the left of that
direction, positive values of fops specify turning left,
corresponding to an attractor at a positive value of
w > 0. (4) In the center zone, that is, for heading di-
rections close to v;, turning either left or right is spec-
ified, expressed as a bistable dynamics of turning rate
with attractors at finite +w # 0. The transition from
the center zone into either of the neighboring zones is
a tangent bifurcation, while the transition to the outer
zone is continuous and does not involve an instability.
The pitchfork bifurcation emerges as the strength, A;,
decreases with increasing sensed distance.

The design is completed by a formal analysis of the
phase diagram of the complete second order dynamics.
Heading direction, ¢, itself is always marginally sta-
ble. Turning rate, w, is stable at either zero or one of the
non-zero values. The parameters are constrained by the
requirement that relaxation be sufficiently fast so that
the system is at all times in its attractor. At first sight,
this might appear to be a vacuous condition, since the
time units of the behavioral dynamics are really ar-
bitrary. This requirement, nevertheless, constrains the

2 Note that we use the mathematical convention for direction
so that heading direction increases for counterclockwise rotation
(turning left).
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Fig. 4. This figure illustrates how the different regimes of a single repulsive obstacle “force-let” (depicted at the center) are modelled
at the level of turning rate. The outer regime far from the specified direction leads to a monostable dynamics of turning with an
attractor at zero turning rate (top). For the direction in which the sensor points (center region) a bistable dynamics with attractors at
a positive and a negative turning rate, and a repeller at zero turning rate is erected (bottom center). In the regime of negative obstacle

force (left) a dynamics with an attractor at negative turning rates is defined (bottom left). Comrespondingly, for positive obstacle force
an attractor at positive turning rate is defined (bottom right).

system because the time units of the dynamics are lim-
ited by the realizable sensory throughput and by the
computational cycle. Specifically, time scales must be
chosen such that given the computational cycle (dur-
ing which sensory information must be updated), the
dynamics is numerically stable. Therefore, relaxation

times must be larger than the computational cycle time.
The constraint that the dynamics has relaxed then in
turn limits the achievable turning rates of the vehicle
(cf. also Section 5).

A separate problem arises, however, because the
system is moving forward in a structured environment
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Fig. 5. Runs generated from a software simulation of the obstacle avoidance dynamics are shown. The simulator was written in
MATLAB. The sensor model here consisted of measuring directly the distances from the robot to obstacle surfaces in the directions
of the five vehicle mounted IR detectors. The vehicle is illustrated in its final position by a circle with a hair indicating its heading
direction. The path is shown as a sequence of points. The initial robot position is indicated by a small circle. The outer perimeter
and the shaded regions are simulated obstacles. Part (a) shows a run based on the first-order dynamics Eq. (4), part (b) shows a run

based on the dynamics lifted to second order Eq. (8).

so that sensory information is time-dependent. Relax-
ation to the attractor can be enforced only if we have
some handle on the rate at which sensory information
might change. That rate of change can be specified
by controlling the forward velocity, v, of the vehi-
cle such as to stabilize a particular “time-to-contact”,
T>e = d/v, where d is the distance to any obstructions
sensed in the current heading direction of the vehicle.
For the obstacle avoidance behavior, velocity control
consists of simply setting driving speed to v = d/ Tx,
although a more complete dynamic analysis will be
required to integrate multiple constraints on velocity
(see below).

In Fig. 5(b) we illustrate that this second-order ob-
stacle avoidance dynamics works in simulation equally
smoothly and in similar fashion as the first-order dy-
namics first implemented.

3. Target acquisition dynamics: photo-taxis

As a simplest form of sensory driven target acqui-
sition we implement the task of photo-taxis, that is,
the task of moving toward light sources (cf. [8] for
the biological background). This obviates the need
for explicit representation of ego-position and its up-
dating through dead-reckoning or other means (but
see [12] for a dynamic approach toward such ego-
position representation). The idea is, essentially, to
provide a dynamic version of Braitenberg’s proposal
[1]. Braitenberg pointed out that the mere feedforward
connection of two light sensors, mounted side by side,
to two motors, driving the wheels of a single axle ve-
hicle, can be organized to generate phototaxis. For in-
stance, the left light sensor might be connected to the
left wheel such as to drive the wheel the faster the less
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Fig. 5. Continued

light is sensed, and, correspondingly, the right light
sensor would drive the right wheel the faster the less
light is sensed. This leads to that wheel turning faster,
on the side of which less light is sensed, so that the
vehicle turns toward the brighter side. The result is
orientation toward light sources, that is, photo-taxis.
This proposal can be implemented quite directly
using, for instance, simple feed-forward neural nets.
Two problems must be addressed, however. First, such
simple taxis behavior must be integrated with other
behavioral constraints, here, for instance, with ob-
stacle avoidance. Second, and relatedly, the proper-
ties of the taxis behavior must be characterizable so
as to determine parameter values on a rational basis
and to specify the temporal and spatial limits within
which performance can be guaranteed. Both problems
are solved by implementing the Braitenberg proposal
within the dynamic approach. Integration with obsta-
cle avoidance is discussed in Section 4. The resultant
behavior can be characterized in terms of linear sta-
bility theory. Because these dynamics in isolation do
not undergo bifurcations, the result is equivalent to

standard control theoretic solutions. The present for-
mulation lends itself to integration with the obstacle
avoidance module (cf. Section 4).

Light intensity, /;, is sensed by two photoresistors
(LDRs), one mounted on the left, one on the right side
of the vehicle (i =left or right). The output voltage
of these LDRs is a monotonically decreasing func-
tion of light intensity. Because of the intensity of the
light source, the geometry of surfaces in the surround
and their reflectances are all unknown, the LDRs can-
not be said to specify a direction in space in which
the target lies. Translating Braitenberg’s proposal into
dynamics, we can say, however, that each light spec-
ifies a turning rate. For instance, the left LDR could
be construed to specify turning to the right, the rate
increasing with voltage (that is, decreasing with light
intensity): wieft = —Crargetlefr (keep in mind that ¢
is mathematically positive, so that negative & = ¢
means turning right). The right LDR, correspondingly,
specifies turning to the left at a rate that increases with
voltage, wright = Ctarget Iright- Thus, when the left sen-
sor receives more light than the right sensor, g 1S
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Fig. 6. Two contributions for photo taxis to the dynamics of turning rate are superposed (steeper middle curve) leading to an attractor
at an averaged turning rate because we use a rather broad range functions. On the left, the right sensor receives much less intensity
than the left sensor, which leads to an attractor at positive turning rates. On the right, both sensors are similarly stimulated leading

to an attractor close to zero turning rate.

smaller than Ijen: and hence the rate of turning right
is smaller than the rate of turning left. The vehicle
would turn left toward increasing light intensity.

The averaging among the two specified turning rates
is, obviously, done by a dynamical system

® = graxis = Lleft (@) + right (@) @

with two additive contributions, each defining an at-
tractive force-let (i = right or left)

2

gilw) = —i(w—wi)exp[—2(w—Aa“;i]- (10)
w 1)

As illustrated in Fig. 6, we use a broad range function

(Aw larger than the maximal values of w;) to average

these two forces.

The time scale of this taxis dynamics is parametrized
by t,. Relaxation must be faster than the rate at
which sensory information changes, but slower than
the relaxation process driven by obstacle constribu-
tions (see Section 5). Because 1, defines the overall
times scale of turning rate in the absence of obtacles,
and this time scale is slower than that of obstacle
avoidance, this limits further the maximally realizable
turning rates, and thus constrains the choice of carget.
Again, the limit is real only because the a priori arbi-
trary time scales of the dynamics are delimited by the
minimal realizable cycle time of sensory information
acquisition and computation.

The change of sensory information due to the ac-
tual driving itself can be controlled by stabilizing
a time-to-contact, again by setting v = dyrget/ Toc.
In this case, the estimate of distance to the target,
darger, is completely uncalibrated, of course, be-
cause it depends on the unknown intensity of the
light source and the average reflectance of the sur-
round. This does not matter for the maintenance
of a slowly varying time-to-contact, although the
level at which time-to-contact is stabilized may
vary by as much as the light intensities in the sur-
roundings vary. In fact, the robot moves siowly in
a bright environment and faster in the dark (much
like Braitenberg’s first vehicle [1]). This dependence
could be eliminated in an obvious manner by adaptive
parameter change and measurement of ambient light
level.

For the present purposes, we computed analytically
the permissible ranges of values of the parameter val-
ues based on stability analysis and the time scales
relationships sketched. We chose values within those
ranges arbitrarily. The functionality of taxis was veri-
fied in simulation work, which used a simple distance-
light intensity map to simulate the light sensor (see
Section 5), not taking into account the geometry of
reflecting surfaces. The implementation on the robot
worked with the same parameters as used in simula-
tion. Taxis worked fine in both simulation and reality
(cf. Section 5).
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Fig. 7. This shows a run of the complete behavioral dynamics implemented in software simulation. The same conventions as in
Fig. 5 apply. The light sensor is modelled by assuming that within an angular range of 75°, light intensity falls off linearly with
the distance between light sensory and light source. The sensors are assumed mounted at a distance of Rpgpor symmetrically and
forward-looking. Initially, the robot is inside the “box™ heading toward a light source indicated by a cross marked “1” outside the
box. The obstacles are assumed not to block vision. The obstacle avoidance contribution steers the vehicle out of the box toward the
target. Once the target is reached, the simulated light source is shifted to the position marked by a cross labelled “2”, and so on, until
target number 5 is reached again inside the box. Note that in addition to escape from a box, this simulation illustrates successful
navigation of cluttered environments when moving from position 4 to position 5.

4. Integrating the two behaviors

Because we have formulated both behaviors at the
level of turning rate, integration of these two behav-
iors consists of simply adding the corresponding con-
tributions to the vector-field

® = gobs t+ Staxis- (1)

Precedence of obstacle avoidance is expressed by ad-
justing the time scale of obstacle avoidance to be faster
than the time scale of photo taxis (t, < 2/m). For the
velocity control, integrating the two constraints forces
necessitate to now make explicit the dynamic nature
of this control:

U= fobst(V) + frarget (v). (12)

Here, each contribution is a force-let centered at the
required velocity, v;, with strength, w; and range, o,:
(i = obst or target)

32
fi=—mi(v— vi)exr)[—g)—z—z’)—] : (13)

ov

The time scales are adjusted through choice of x such
that in the presence of strong obstacle contributions
(¢ > 0) the obstacle term dominates while in the
absence of such contributions (o < 0) the target term
dominates.
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Fig. 7 shows a simulation run of the complete sys-
tem which demonstrates the smooth behavior consis-
tent with all imposed constraints.

5. Implementation and results

For implementation of the four dynamical equations
a simple Euler algorithm was written in interactive
C. Because the system operates close to attractors of
known stability, the maximal permissible step size can
be computed from the relaxation times of the attractors
(time scales of the two contributions). The required
time step and the cycle time needed to make one com-
putational step delimits the time scales of the dynam-
ics that can be realized by the system in real time.
The transformations from sensor readings to the var-
ious distance dependent strengths, ranges and speeds
were stored in lookup tables. A single computational
step was made for each loop of sensory information
acquisition. The cycle time in this form of operation
is approximately 300 ms. We used the parameter set-
tings obtained from analytical work and tested in the
simulations. The system worked immediately.

The most striking feature of the system is its smooth
behavior which seems to react anticipatorily to upcom-
ing changes. This is due to how the dynamic approach
permits information from various sources to affect in
a graded fashion the generated behavior.

We filmed the robot motion as viewed from top in
a few simple situations (which were limited by the
space available within the viewing range of the cam-
era). Fig. 8 illustrates the robot’s behavior through a
sequence of video images. The situation is the sim-
plest scenario testing the obstacle avoidance behavior
by setting it in conflict with the target acquisition com-
ponent: Initially the robot is separated from the target
(light source) by a row of obstacles. The robot moves
along a curved path around the obstacles to reach the
target. In Fig. 9 we illustrate a more complex sce-
nario. Initially, the robot is positioned in a box heading
toward the right (white arrow), so that it is pointing
away from the only exit from the box (at the lower
left corner of the box). The light source is off during
that period. The robot finds the exit and, in this case,
roams around in the absence of a luminosity gradient.
At some point, the light inside the box is turned on.
The robot finds its way back into the box, while suc-

Fig. 9. This video images illustrates a more complex scenario.
The initial position of the robot is shown by a dashed white
circle, with a white arrow indicating its initial heading. The dark
fuzzy shades are cardboard walls, enclosing the robot except
for an opening near the center of the image. Initially, the light
source visible in the upper right corner is off. The trajectory of
the robot was reconstructed using a PC based video tracking
system. The white solid line tracks out the robot trajectory, with
arrows indicating the direction in which the trajectory is run
through. After leaving the enclosure, the robot wanders around
until the light source within the half-open box is turned on.
The robot then finds its way back into the box and stops in
front of the light source. The final configuration of the robot is
indicated by the solid black circle and black arrow.

cessfully avoiding the side walls. It ends up stopping
in front of the light source. Stopping comes about due
to the velocity control dynamics.

We also tested for oscillations near narrow passages
and for escape from U-shaped obstacles. For both, per-
formance is very good, due to the stabilization of zero-
turning in the second-order dynamics. The absence of
memory is a limitation, leading to meandering paths
in complex obstacle arrays.

6. Conclusion

We have demonstrated that the dynamic approach
can be implemented to work with very low-level
sources of sensory information, here five IRs and two
LDRs. This is in spite of the conceptual commitment
of the dynamic approach to explicit representation
of the internal behavioral state and of the behav-
ior specified by sensory input. Moreover, a dynamic
architecture including control of turning rate and
driving velocity based on constraints from obstacle
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Fig. 8. A sequence of video images filmed from above illustrates the motion of the real robot. Time increases from top to bottom,
first along the left column, then along the right column. The vehicle is the dark round object, located in the first frame in the lower
left corner. A light source is visible in the top right corner. Four plastic cups are obstacles blocking the direct path for the robot
toward the light source. The images show these cups as black dots, but the shadows are visible as well. The work space is delimited
by pieces of cardboard, which are likewise detected as obstacles. The robot moves smoothly around the obstacles toward the light
source, stopping in the final frame in front of the light source.
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avoidance, target acquisition and the requirement
to stabilizing time-to-contact was implemented on
a slow 8 bit microcontroller with only 32 KByte of
memory. This demonstrates that computational cost
is not a limiting factor of the dynamic approach. Al-
though we did not elaborate here for space reasons,
the solution involves explicit design and specification
of all system parameters based on design principles.
This advantage can be exploited in future work to
enable tolerance against changes in the environment
by adjusting parameters adaptively.
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