Estela Bicho

Department of Industrial Electronics

University of Minho

4800 Guimardes, Portugal

C.N.R.S.-Centre de Recherche en Neurosciences Cognitives
13402 Marseille Cédex 20, France

estela@lnf.cnrs-mrs.fr

Pierre Mallet
Gregor Schoner

C.N.R.S.-Centre de Recherche en Neurosciences Cognitives
13402 Marseille Cédex 20, France

Abstract

How can low-level autonomous robots with only very simple sensor
systems be endowed with cognitive capabilities? Specifically, we
consider a system that uses seven infrared sensors and five micro-
phones to avoid obstacles and acquire sound targets. The cognitive
abilities of the vehicle consist of representing the direction in which a
sound source lies. This representation supports target detection, es-
timation of target direction, selection of one out of multiple-detected
targets, storage of target direction in short-term memory, continuous
updating of memory, and deletion of memorized target information
after a characteristic delay. We show that the dynanuc approach (at-
tractor dynamics) employed to control the motion of the robot can
be extended to the level of representation by using dynamic neural
[fields to interpolate sensory information. We show how the system
stabilizes decisions in the presence of multivalue sensorial infor-
mation and activates and deactivates memory. Smooth integration
of this target representation with target acquisition, in the form of
phonotaxis, and obstacle avoidance is demonstrated.

1. Introduction

Autonomous vehicles are robotic systems that are not only
able to control their motion in response to the sensory infor-
mation acquired by themselves but are also able to act in-
telligently (or flexibly) in their environment. Acting in an
intelligent way requires the system to exhibit some cognitive
capabilities. This means that the system must be able to be-
have autonomously even in response to environmental con-
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straints not directly linked to online sensory information.
Moving toward an occluded target, for instance, requires
memory. That memory must be updated when sensory in-
formation is again available, or must be deleted if such in-
formation continues to be unavailable over a characteristic
period of time. Making and stabilizing a decision in the pres-
ence of multivalued or ambiguous information is another form
of cognitive capability, in that such decisions are not directly
dictated by the incoming sensory information. We speak of
representations of information when the processing of sensory
information generates such cognitive capabilities.

Over the past decade or so, some controversy has ex-
isted regarding the appropriate role of representations within
robotic systems. At one extreme, the use of symbolic repre-
sentations has been viewed as an impediment to efficient and
effective control of autonomous robots, by roboticists sub-
scribing to a behavior-based approach (Brooks 1991; Con-
nell 1990). On the other hand, it has long been assumed and
argued that strong forms of representation are needed when
robots are aimed at that perform in ways that go beyond the
purely reactive (Chatila 1994). A consensus, which appears
to emerge now, does not reject representations as such, but
empbhasizes their integration within the architecture of an au-
tonomous robot (Arkin 1998).

The dynamic approach to autonomous robotics was devel-
oped initially as a method of planning within representations
of the navigable space (Schoner and Dose 1992). The first
implementations involved relatively high-level systems with
ample computing power and vision as the primary source of
sensory information (Schoner, Dose, and Engels 1995). For
such systems, it has been shown that the approach is not lim-
ited to the realization of relatively simple control behaviors,
such as obstacle avoidance and target acquisition, but may
generate cognitive capacities such as subsymbolic memory
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(Engels and Schoner 1995) or the representation of computed
metric information and its association with sensory input (for
ego-position estimation [Steinhage and Schoner 1997], for
instance).

That there is nothing in the approach that actually requires
us to work at such a relatively high level of abstraction has
been demonstrated when a very low-level platform with very
modest computational power and low-level sensorial infor-
mation (consisting of five infrared sensors and two light-
dependent resistors) was programmed to avoid obstacles and
move toward light sources (Bicho and Schoner 1997a). The
same dynamical systems used earlier for planning (Schoner
and Dose 1992) were employed. That system was purely
reactive, however, lacking cognitive capabilities.

Here we are exploring the extent to which the capacity of
the dynamic approach to generate cognitive properties trans-
fers to these lower-level platforms as well. Specifically, can
continuous metric representations be derived from low-level
sensory information, decisions be stabilized on such repre-
sentations, and subsymbolic memory and processes operat-
ing on memorized information (e.g., suppression of outdated
information) be implemented? This transfer to lower levels
of sensory information is not trivial. The high-end systems
deal with such cognitive functions essentially by compress-
ing large amounts of sensory information as obtained from
computer vision into reduced representations. The dynamic
decision-making and memory operations could be viewed as
sophisticated forms of noise removal and model-based esti-
mation. By contrast, low-level sensors typically provide very
limited amounts of sensory information. For instance, a small
set of microphones provides a very coarse-grained sample of
the ambient distribution of sound intensity. From this sample,
a stable and graded representation must be derived. The nature
of the problem is thus changed from information compression
and noise removal toward interpolation. In both cases, inte-
gration of the representations with stable action planning and
control must be achieved.

We answer these questions in the affirmative by demon-
strating the cognitive properties of a simple target represen-
tation system where targets are defined as sound sources.
A dynamic field representation of the spatial direction in
which sound targets are detected is constructed. The robot
receives sensory information from five weakly directional mi-
crophones that scan the forward 180-deg hemicircle. Input
to the field is thus a two-dimensional sound panorama (di-
rection versus intensity). A dynamic neural field represent-
ing sound target direction is endowed with the capacity to
make and stabilize decisions in response to multivalued sen-
sory information (such as when two sound sources lead to a
bimodal input distribution). Strong recurrent connections in
the dynamic neural field lead to subsymbolic memory that
enables the robot to continue moving toward a sound source
even when it is temporarily silenced. A process of adaptation
is constructed that gradually reduces the stability of mem-
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orized information so that a memorized target orientation is
deactivated if no confirmatory sensory information is received
within a particular time span. This dynamics of target repre-
sentation is coupled into a previously established dynamic
architecture for target acquisition and obstacle avoidance
(Bicho, Mallet, and Schoner 1998). Results obtained from
the implementation prove the capacity of the system to per-
form target detection and localization and target selection,
and to exhibit temporary knowledge (memory and forgetting).
Smooth overt behavior and the ability to track and follow mov-
ing sound sources are also demonstrated.

This paper is structured as follows: In Section 2, we re-
view some related work. Section 3 provides a review of the
dynamic approach to behavior generation and simultaneously
defines the target acquisition and obstacle avoidance behav-
iors used here. Dynamic fields for behavior representation are
presented in Section 4. Next, in Section 5, the dynamic field
representing sound targets is specified and its integration with
the movement control architecture is explained. Some details
of the implementation of this architecture on a robot platform
are given in Section 6. Experimental results are described in
Section 7. The paper ends with discussion and conclusions
in Section 8.

2. Related Work

Moving toward sound sources is called “phonotaxis” in bi-
ology (Braitenberg 1984), and one may think of our system
as a simple, although cognitive, realization of this basic be-
havior of organisms. Phonotaxis is exhibited by quite simple
nervous systems. For example, in cricket mating, the male
cricket attracts a female by generating noise. Successful mat-
ing entails detection, recognition, and localization in space
of the mating sound, and movement toward the sound source
(Cade and Cade 1992). This example illustrates there are two
fundamental problems solved by the female cricket: The in-
coming sound signal must be detected and recognized as the
call of a male member of the species. This detected signal
must then be used to locate the source of the sound. This bio-
logical example has inspired work on low-level robots to test
hypothesis and control mechanisms that account for phono-
taxis in crickets (Webb 1995). An interesting robot model is
reported in Lund, Webb, and Hallam (1997). They tested their
robot in a number of experiments based on cricket research.
They reproduce a set of behaviors including signal choice,
which have often been taken as evidence for complex mech-
anisms that go beyond purely peripheral nervous control. In
their model, however, phonotaxis is implemented through a
simple control-system-like mechanism. The model does not,
therefore, have any cognitive capabilities (e.g., no memory,
no representation of direction other than by physically rotat-
ing the robot). The model also does not address integration
of phonotaxis with other behaviors such as the avoidance of
obstacles during movement toward the sound source.
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A simple realization of taxis behaviors can be based on the
rule of turning left if left-looking sensors detect more signal
than right-looking sensors and conversely. Using nonlinear
dynamical systems, this qualitative form of control can be
integrated with other behaviors, in particular, with obstacle
avoidance (Bicho and Schéner 1997a). Such a solution fails,
however, to explicitly represent the spatial direction toward
the target source. That direction is only represented implic-
itly by the physical orientation of the robot once the control
mechanism has stabilized. The presence of other constraints
such as obstacle avoidance, distorts even this implicit repre-
sentation. It is therefore not possible, based on this simple
algorithm, to perform additional computations on the target
information, such as memorizing that information, or steering
at a given angle relative to the sound source (to enable, for in-
stance, multiple, sound emitting robots to drive in formation).
Moreover, this simplest mechanism does not support explicit
decision making and stabilization of decisions when sensory
information is ambiguous, for instance, because sound from
two different sources impinges on the sensors with compara-
ble intensity.

There is a considerable amount of modeling work on sound
localization by higher-level nervous systems, including mod-
els of spatial hearing in humans (Mills 1972; Blauert 1996;
Duda 1996; Shama, Shen, and Gopalawamy 1989). Binau-
ral processing is the mechanism through which humans (and
some animals, such as, for example, the barn owl) localize
sound. In humans, this entails exploiting interaural intensity
differences (for the estimation of the elevation of the source)
and interaural time differences (for the estimation of the hori-
zontal orientation of the source). Some technical systems for
sound localization have used arrays of microphones measur-
ing differences between the signals received at the different
microphones. An example, which was aimed at robotics as
its major application, is described in Guentchev and Weng
(1998). This system does not deal with multiple sources.

The approach adopted in this paper is very close to math-
ematical models of biological systems for target localization
and selection, in which the prey localization and selection by
frogs and toads (Chipalkatti and Arbib 1987; House 1988)
has been described using neural fields (Amari 1977). In these
species, prey catching is triggered by very low-level visual
cues (Ewert 1974). These models remained somewhat lim-
ited at the time as they did not deal with continuous updating
of the target representation in time, nor with the integration of
such arepresentation into other ongoing behaviors (the goal of
the models was not, of course, to create autonomous robots).

Outside the particular angle provided by analogies with bi-
ological systems, related problems are addressed in robotics
in the domain of target tracking. The location, velocity, and
other attributes of multiple moving objects are estimated from
sensor data. Modern systems for target tracking often use
multiple physically distributed sensors of different types to
provide complementary and overlapping information about

targets. Thus, fusion is necessary to extract the relevant in-
formation on the targets and integrate that information across
different sensor systems. Functional architectures for track-
ing thus require the two operations of data association, es-
tablishing which sensory measurement belongs to which tar-
get, and estimation (Liggins, Kadar, and Vannicola 1997). A
wide array of established methods of estimation exist. In most
cases, estimates of the state of each target (e.g., position and
velocity) are based on a model of the target and its motion.

Such methods have, to our knowledge, not been directly
applied to the problem of estimating the direction in which
a sound source lies. This may be due, in part, to the limited
practical importance of this problem for the target-tracking
community. A more fundamental problem may be, however,
that a good model of sound propagation is difficult to establish
without taking recourse to a substantial amount of measure-
ments to establish the geometry and reflective properties of
the environment.

3. Behavior Generation through Attractor
Dynamics

In this section, we describe the method used to implement
target acquisition and obstacle avoidance and provide, on that
occasion, a brief review of the basic principles of the dynamic
approach to behavior generation (see Schoéner, Dose, and En-
gels 1995; Bicho 1999, for a review):

(1) Behavioral variables are used to describe, quantify,
and internally represent the state of the system with respect
to elementary behaviors. For target acquisition and obsta-
cle avoidance of an autonomous vehicle moving in the plane,
the heading direction, ¢ (0 < ¢ < 2m), with respect to an
arbitrary but fixed world axis, is an appropriate behavioral
variable (Schoner and Dose 1992). As is illustrated in Fig-
ure 1, the direction, Y, in which a target lies as seen from
the current position of the robot, specifies a desired value for
heading direction. Directions, ¥ops, in which obstacles lie
specify values of heading direction that must be avoided.

(2) Behavior is generated by continuously providing values
to the behavioral variables, which control the robot’s effectors.
The time course of these values is obtained from solutions
of a dynamical system. The attractor solutions (asymptoti-
cally stable states) dominate these solutions by design. In the
present system, the behavioral dynamics of heading direction,
@ (1), is a differential equation

C% = f(®) = fobs(®) + far(®) (H
built from a number of additive contributions that express
task constraints. Each constraint is cast either as a repul-
sive (Fig. 2) or as an attractive force-let (Fig. 3), which
are both characterized by three parameters: (a) which value
of the behavioral variable is specified (e.g., Yobs OF Viar);
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Obstacle.

IR sensors

Fig. 1. The heading direction, ¢, of the robot is defined relative
to an arbitrary, but fixed, external reference frame centered in
the robot. The environment specifies desired (e for targets)
or undesired (Yops ; for obstacles) values of this variable.

obs,: range’q
3n/2 210 /2 T 3n/2
— i t >

repeller at y

obs,s

slope, A;

Fig. 2. A contribution to the dynamics of heading direction
expressing the task constraint “avoid moving toward obsta-
cles” is a force-let with a zero-crossing at the direction, ¥ops.;
at which an obstacle has been detected. Every distance sensor
(i =1,2,..., 7 contributes such a force-let centered on the
direction in which the sensor points. The positive slope of the
force at the zero-crossing makes that direction a repellor. By
decreasing this slope with increasing measured distance, only
nearby surfaces repell strongly. The range of the force-let is
limited based on sensor range and on the constraint of passing
without contact.
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attractor at W

Fig. 3. A contribution to the dynamics of heading direction
expressing the task constraint “move toward target” is a force
with a zero-crossing at the specified direction toward the tar-
get, Yar. The negative slope at the zero-crossing makes this
an attractor of the dynamics. The target contribution is piece-
wise linear and extends over the entire range of heading direc-
tion. This leads to a repellor in the direction 7 + ¥, oOpposite
t0 Yeae.

(b) how strongly the repulsion or attraction effect is, and (c)
over which range of values of the behavioral variable this
force-let acts. Thus, in isolation, each force-let erects an at-
tractor (asymptotically stable state) or a repellor (unstable
state) of the dynamics of the behavioral variable. An attrac-
tive force-let serves to attract the system to a desired value
of the behavioral variable (here the direction in which a tar-
get lies). A repulsive force-let is used to avoid the values of
the behavioral variable that violate a task constraint (here the
directions in which obstacles lie). Note that a repulsive force-
let erects two semiattractors at the left and right boundaries
of the repulsive zone (corresponding to passing on the left or
right of the obstacle).

This method of constructing a behavioral dynamics can be
used on systems with low-level sensors by defining a force-
let for each sensor (Bicho and Schoner 1997a). The three
parameters defining each force-let are obtained from sensory
input. For example, the robot used in this project has seven
infrared sensors mounted on a ring that is centered on the
robot’s rotation axis. These infrared sensors are used to mea-
sure the distance to surfaces at the height of the robot, which
are thus obstacles. Each sensor (i = 1, 2, ..., 7) contributes
a repulsive force-let

— )2
(¢ 1/fobs.t) :I (2)

20,.2

Jobs,i = A (@ — Yobs,i) €Xp I:_

illustrated in Figure 2. Here Yps,; is the direction in the
world in which sensor i is pointing. As the heading direction,
¢, is defined relative to the same reference frame, the relevant
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difference, ¢ — Yobs.; = —6; is actually a constant, the inverse
of the angle, 6;, at which the IR sensor i is mounted relative
to the forward direction of the robot.

This illustrates that the calibration of the robot’s heading
direction in the world is irrelevant. The strength of repulsion,
A,, of each contribution is a decreasing function of the sensed
distance, d,, estimated from the IR sensor reading:

X, = prexp[—d;/Ba]. (3)

The parameter B determines the maximal strength of this
contribution, while B, fixes the distance over which the re-
pulsive contribution decays. The larger the sensed distance
to any obstruction detected by IR sensor i, the weaker the re-
pulsion from the direction in which this sensor is pointing in
space. The angular range over which the contribution acts is
determined by o;, which also depends on the sensed distance,
d,:

S

R
o, = arctan [tan(Ae/Z) + —mh(i—] .

Riobot + dl

The first term reflects the angular range, A8, over which the
IR sensor detects reflected infrared radiation, while the second
term expresses the angular safety margin required for the robot
of size, Riobot, tO pass next to an obstacle that could occupy
maximally the entire sensor range. The larger the distance to
the obstacle, the smaller the angle subtended by a copy of the
robot when positioned next to the obstacle and viewed from
the robot’s actual position, and hence, the smaller the angular
safety margin.

Orientation toward a target that has been detected at di-
rection yr,, (for example, by the target representation system
we introduce in Section 5) is brought about by erecting an at-
tractor at this direction with strength ;. Because target ac-
quisition is desired from any starting orientation of the robot,
the range over which this contribution exhibits its attractive
effect is the entire full circle, i.e., from 0 to 2 rad. Asa
consequence, there is a repellor at the back, in the direction
opposite to that toward the target (see Fig. 3). A simplest
mathematical form can be piecewise linear

_)\tar((p - 1;[’tar)
for Yar — /2 < @ < Yrtar + 71/2
Jiar = ’ (%)
Aar (@ — Vtar — 7T)
for Yiar +7/2 < ¢ < Ytar + 37/2

where ¢ value is mapped into the listed cases through a mod-
ulus 27 operation.

The target contribution and the contributions arising from
the detected obstacles all act at the same time. The heading
direction dynamics is thus simply the sum over these:

¢ _

7
dt = Z fobs,i + ftar- (6)

i=1
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More sophisticated control over activation and deactivation of
such contributions can be obtained using activation networks
(see Steinhage and Schéner 1997; Steinhage 1998; Large,
Christensen, and Bajcsy 1999) but is unnecessary here. Since
some of the force-lets have limited range, this superposition
is a nonlinear dynamical system, which may have multiple
attractors and repellors (typically few). By design, the sys-
tem is operated so that the heading direction is in a resulting
attractor of this dynamics most of the time. Thus, the be-
havior is really generated by an attractor solution and not by
a transient solution of the dynamical system. This way we
avoid the very difficult problem of designing a nonlinear dy-
namical system all transient solutions of which fulfill multiple
constraints. By contrast, designing a dynamical system, the
attractors of which fulfill particular constraints, is possible by
making use of the qualitative theory of dynamical systems
(Perko 1991). Local bifurcation theory helps to make design
decisions around points, at which the system must switch from
one type of solution to another (Schéner, Dose, and Engels
1995). The values of model parameters can be chosen in part
based on such analyses.

Up to this point, we have only addressed the control of the
vehicle’s heading direction. For the robot to move, it must
have some path velocity, of course. As it moves, sensory
information changes and thus attractors (and repellors) shift.
The same happens if obstacles or targets move in the world.
Since the system must be in or near an attractor at all times,
for the design principle to work, the rate of such shifts must
be limited to permit the system to track the attractor, staying
close to a stable state. One way this can be accomplished is
by controlling the path velocity, v, of the vehicle. For rest-
ing environment and constant heading, the maximal rate of
change of obstacle or target bearing, Y¥max, occurs when the
corresponding objects are seen at a right angle to the current
heading, in which case V¥max = v/d, where d is the distance
to the object and v is the path velocity. This approximate de-
scription can be turned around to compute the desired velocity
as a function of distance with dfmax as a design parameter, that
can be tuned to obtain good tracking. Because distance es-
timates are based on different mechanisms for obstacles and
targets, we compute the desired velocity separately for each
of the two constraints (i = tar or obs):

V. =4, 1/}max~ (7)

For the target constraint, the distance to the target is esti-
mated from sound intensity. This measure is completely un-
calibrated, of course, as it depends on the unknown intensity
of the sound source. The determination of the proportional-
ity constant, Ymax, 18 thus an empirical matter. The desired
velocities are imposed through a very simple linear dynamics
(Bicho and Schéner 1997a)

dv/dt = —cobs(¥ — Vobs) — Ctar (v — Viar). ®)
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The strengths, cops and crar, are adjusted such that in the
presence of strong obstacle contributions the obstacle term
dominates while in the absence of such contributions the re-
verse holds. A systematic way to construct a function that
indicates if obstacle contributions are present is to integrate
the obstacle force-lets, from which something like a potential
function of the obstacle avoidance dynamics results:

7

U@ =Y (kio? expl—($ - Vobs.)2/207] — hiot/e)
i=1
©)

Positive values of this potential function indicate that the head-
ing direction is in a repulsion zone of sufficient strength, A;,
SO Cobs > 0 and ¢rar = O are required. Conversely, nega-
tive values of the potential indicate that the heading direction
is outside the repulsion range or repulsion is weak, so now
Cobs = 0 and ¢y > 0 are required. The transformation of
levels of the potential to the strengths of the two contribu-
tions to velocity control makes use of a sigmoidal threshold
function, a(¢) = arctan[cU (¢)]/m ranging from —1/2 to
1/2:

Cobs = Cy,obs(1/2 + () (10)

Ctar = Cv,tar(l/z — a(d)). (11)

At sufficiently sharp sigmoids (c sufficiently large), this leads
to the required transition behavior. The parameters, ¢y tar
and c, gbs, determine the relaxation rate of the velocity dy-
namics in the two limit cases when either the obstacle or the
target constraints dominate. The following hierarchy of re-
laxation rates ensures that the system relaxes to the attractors
and that obstacle avoidance has precedence over the target
contribution:

Atar K Cy tars Aobs K Cy,obs, Atar K Aobs- (12)

4. Dynamic Fields for Representation

More abstract forms of behavior or processes cannot be re-
alized with attractor dynamics of the type described above.
Examples in the present context are (1) Target detection, in
which a target is indicated only if sensory information is suf-
ficiently strong and convergent while the absence of a target is
signaled for weak or disperse sensory information; (2) Inter-
polation, that is, the capacity to make continuous estimates of
the target location when sensory information is provided by
a discrete array of sensors; (3) Computations on distributed
representations of sensory information in which multiple in-
stances of a sensed quality exist or sensory information is
ambiguous; (4) Memory, that is, the representation of infor-
mation about a target location, during transient occlusions
from the sensors, so that overt behavior can be generated that
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continues to move the robot toward the target; (5) Forgetting,
that is, the gradual deactivation of a memorized target loca-
tion if no confirmatory sensory information is received within
a particular time span.

Such processes, which we continue to refer to as behaviors,
although they do not necessarily involve overt movement, en-
tail representations of information. Dynamical systems of
the type presented above have a unique state at all times (each
variable has exactly one value) and change state continuously
in time (to attain a new value, each variable must pass through
all intermediate values). Such dynamical systems are thus in-
capable of representing graded amounts of information about
a behavioral variable. For instance, the absence of any knowl-
edge about a particular variable cannot be expressed, nor can
the presence of ambiguous, multivalued information in a man-
ner that does not yet reflect a decision.

The concept of a dynamic field of activation was proposed
to overcome this limitation (see Engels and Schoner 1995;
Schoner, Dose, and Engels 1995, for a review). In a first
step, behavioral variables are now conceived of as behav-
ioral dimensions, spanning a space of possible values of these
variables. Over that space of behavioral dimensions, a field
of activation is defined. At each location of the field, the
level of activation represents the extent to which the partic-
ular value of the behavioral variable is presently specified,
which is coded into the location along the behavioral dimen-
sion. Well-defined states of the behavioral variable are thus
represented by peaks of activation, centered over the appro-
priate location in the field, that is, at the specified values on
the behavioral dimension.

For phonotaxis, we want to represent the direction, ¥, in
which a sound source lies, as viewed from the robot but refer-
enced to an external frame. This variable can take on values
in the interval [0, 27 ] rad. An activation variable, u(y), is
thus defined for each possible value of target direction, .
The function «(y) is now the dynamical state variable and
“codes” if a target in direction, ¥, is detected. Positive val-
ues of activation, #(y) > 0, indicate that a target near ¥ is
detected; negative values of activation, u(¥/) <= 0, indicate
that no target was detected near yr. The larger the activation,
the more certainty about detection of a target. A single target
is thus represented by a single localized peak of activation in
the field (Fig. 4, top). The absence of information on a pos-
sible target is expressed through a homogeneous state of the
field (u(y) <= 0 everywhere) (Fig. 4, bottom).

The second step is to lift the ideas about attractor dynamics
and bifurcations to the level of a dynamics of the entire field.
Localized peaks of activation are made attractor solutions by
a particular pattern of interactions in the field. Sensory in-
formation provides input to the field. We develop these ideas
step by step.

Assume that the readings of the sound sensors at time ¢
are given as an input sound distribution, S(¥, ¢). (In prac-
tice, the sensor readings at a small number of field locations,
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Fig. 4. A field of activation is defined over the behavioral
dimension, Y, of the direction in which a target is detected.
(a) A localized peak of activation represents a single target in
the direction, Yy, corresponding to the location of the peak.
(b) A flat, subzero level of activation represents the absence
of target information.

Y, are convolved with a Gaussian filter so that they activate
continuous regions of the field, see Section 5.) The simplest
dynamics is one in which all sites of the ficld evolve indepen-
dently of each other toward a level of activation, u(y, ¢), that
reflects the amount of input at each site:

du(y, )
Tar

This linear dynamics makes the field relax to the current in-
put pattern, u(y) = S(¥), with a low-pass characteristic.
This dynamics is thus not yet useful by itself, as it merely
reproduces the shape of the input pattern. What we need are
mechanisms that make that activation in the field become pos-
itive only when a critical amount of input is given (detection),
that activate only one site if multiple sites receive similar input
(selection), and that are capable of retaining activation after
input is removed (memory). In the last case, it becomes par-
ticularly clear that such mechanisms involve interaction, that
is, the evolution of activation at one site of the field depends
on the level of activation at other sites of the field.

An interaction mechanism that does the job has three char-
acteristics: (1) Neighboring field sites provide each other with
positive input (“local excitation™). (2) Field sites at larger dis-
tances provide each other with negative input (“global inhibi-
tion”). (3) Only field sites with positive activation contribute
to interaction (“sigmoid threshold”). Localized peaks of ac-
tivation are thus lifted up by local excitation. This makes
it possible to sustain localized peaks of activation even once
input has been removed. That is the basis of memory. More-
over, when input creates a localized peak, there is a critical
amount of activation when the local excitation first sets in and

—u(y, 1) + S, 1). (13)

beyond which the peak can be self-sustained. This is the ba-
sis of detection. If there are multiple sites that receive input,
global inhibition sets in. As soon as one field site has gained
even only a minute advantage in activation, it wins the com-
petition and suppresses other sites more than it is suppressed
itself. This is due to the sigmoid, which weakens the influence
of sites with lower levels of activation.

A convenient mathematical format of this interaction
mechanism is

du(y.) _
TT— Il(llf,t)-’rs(l//,t)
2 14)
+/w(¢ —yNOW@’, 0)dy’ + h.
0

Interaction collects input from all field sites, v’. The sigmoid
threshold function

0 foru<0
Owy=1{u

1 for u>1

for 0 <u <1

(15)

makes sure that only sites of the field with positive activation
contribute to interaction. The interaction kernel

for —leoop < 2AY < leoop

k
wiay) = y else

e (16)
only depends on the distance, Ay =  — ', between field
sites. It is positive (k, > 0) if the two sites are closer to
each other than the cooperativity length, lco0p, and is negative
(k, > 0) for larger distances. The kernel is shown in Fig-
ure 5. Finally, the negative constant, # < 0, determines the
resting level of the field without input: ¥ = h everywhere.
This controls how much input field sites need before they first
contribute to interaction.

This equation can be viewed as a neural network with con-
tinuously many neurons. It was first proposed in the 1970s to
model activity patterns in the cortical surface, in which a very
large number of interacting neurons creates a network that is
almost homogeneous along the cortical surface and can thus
be approximated as a continuous field of neural activation
(Wilson and Cowan 1973; Amari 1977). The particular form
of the equation we are employing has been analyzed math-
ematically by Amari (1977) and by Kishimoto and Amari
(1979). Their work provides valuable information about the
different regimes of stability and the role of the different pa-
rameters for the existence and stability of localized activity
patterns.

4.1. Detection

The resting level, A < 0, makes sure that interaction kicks
in only when sufficient input is applied. For an input, S(¥),
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[wiay)

coop

Fig. 5. The interaction kernel is positive (“‘excitatory”) for sites
that are closer to each other than the cooperativity length, lcoop,
and is negative (“inhibitory”) for larger distances between the
sites.

localized around one location, for instance, this means that
while that input has a small amplitude, the homogeneous state
of the field is deformed by the input but remains negative
everywhere: u(y) = h + S(y¥), as illustrated in Figure 6
on the left. The field codes absence of information (no tar-
get detected). When the amplitude of input is sufficiently
strong, interaction becomes important. The stable state of the
field is now a localized peak of positive activation, the size of
which not only reflects input strength but is also determined
in large part by local self-excitation. The transition between
the subthreshold peak and the self-sustained peak as a func-
tion of input strength involves a dynamical instability and is
the mechanism used here for detection. Detection means that
input needs to be of sufficient size over a sufficient period of
time to generate a self-sustained peak. The location of the
self-sustained peak is determined entirely by input; however,
the peak is positioned over the location of maximal input.

4.2. Memory

Once a localized, positive peak of activation has been gener-
ated, the local self-excitation within the peak is so strong that
a peaked pattern of activation remains stable even after input
is removed (Fig. 7). This is the dynamic field mechanism for
memory. This form of memory is subsymbolic. Within the
category of memory, defined by the behavioral dimension, v,
an instance of memory is identified simply by its location.
There is no need to label peaks. When input information is
reapplied, the position of the stable peak is readjusted so as to
be centered exactly on the location of maximal input. Thus,
memory is updated automatically without need for an explicit
input-to-memory matching process.

Over the longer term, memorized information may become
obsolete. Angularinformation may become incorrect because
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Fig. 6. A single localized input, S(y), is applied to the field
(dashed line). Left: When the amplitude of that input is
below a critical level, the stable state of the field is the ho-
mogeneous resting level with the input profile superposed:
u(y¥) = h + S(¥) < 0 (solid line). Right: Beyond a criti-
cal input amplitude, activation in the field becomes positive
and interaction sets in. The stable state that emerges (solid
line)is a localized peak of positive activation, which is largely
self-sustained but positioned over the location of maximal in-
put. The transition between these two states is hysteretic and
represents the detection mechanism.

u(y)

P}

2

<

Fig. 7. A localized positive peak of activation (dashed line)
is stable in the presence of input. It remains stable if in-
put is removed (solid line). The peak is sustained by local
self-excitation. Its lateral diffusion is limited by global inhi-
bition. This is the memory mechanism in the dynamic field.
The position of the peak within the field is marginally stable,
however, so that the contents of memory may slowly degrade
with time.

Copyright 2000. All rights reserved.




432 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / May 2000

the robot moved. Targets may actually have been removed.
Even the memory mechanism itself is subject to degradation
as the peak position within the field is only marginally stable
in the absence of input. A mechanism for forgetting must sup-
press positive localized peaks of activation if no confirmatory
sensory input arrives within an appropriate time interval.
The resting level, & < 0, provides such a mechanism.
When the resting level is made sufficiently negative, activa-
tion in the field is generally so low that the local self-excitation
is no longer sufficient to sustain a positive peak of activa-
tion. In fact, mathematically, the field dynamics without in-
put goes through an instability when the resting level is var-
ied (Amari 1977). At levels of & below but close to zero,
the field dynamics is bistable: the homogeneous “off” state
of the field coexists with the state in which a localized pos-
itive peak of activation is positioned somewhere within the
field. This is the regime in which memory is operational: If
input has induced a positive peak of activation and is then
removed, the system maintains a localized peak of activa-
tion. If no input has been present, the homogeneous off state
persists. When the resting level is lowered below a critical
value (h < —W,, = —maxy{f w(ay)dAy})), the local-
ized positive peak solution becomes unstable and the field dy-
namics is monostable, with only the homogeneous off state
remaining. Thus, a localized memory peak can be deleted by
lowering the resting level below this critical level. The two
regimes of the field dynamics are illustrated in Figure 8.

b ()

2

- 0

m

Fig. 8. The different stable states of the field dynamics without
input are illustrated as a function of the resting level, h. Below
a critical level of h (—Wy,), only the homogeneous “off” state
of the field is stable. All sites have the same negative level of
activation. Above the critical level (but still below zero), two
types of stable states coexist. The homogeneous state persists,
but a positive localized peak of activation is likewise stable
(irrespective of where it is positioned). This bistable regime
serves the memory function, while the monostable regime
induces forgetting or resetting of memory. Memory peaks
are set by applying sufficiently strong input (see detection
mechanism).

4.3. Decision Making

When more complex shapes of input distributions are con-
sidered, additional properties of this strongly interactive field
come into play. The top of Figure 9 shows that bimodal input
patterns may lead to a single localized peak of activation that
is positioned over the mean of the two locations of maximal
input. This is, in fact, a weighted mean as different amplitudes
of the two input peaks lead to bias of the resulting position
of the localized peak of activation toward the site receiving
stronger input (left). This fusion or integration of input infor-
mation results from the local excitatory interaction. Roughly,
when the two peaks of the input distribution are within the co-
operative length, lcoop of the dynamic field, then fusion takes
place as shown.

If, by contrast, the two peaks of the input distribution are
separated by more than the cooperative length, then a de-
cision is made as to which peak to activate. The field is
bistable. A positive localized peak may be positioned over
either of the two sites. The other site remains more activated
than the background but is suppressed below zero (bottom of
Fig. 9). Which of the two sites of maximal input “wins” de-
pends on two factors: (a) The initial state of the field may bias
the competition toward maintaining positive activation where
there has previously been positive activation. This leads to
hysteresis, in which a decision once made is stabilized in the
face of multivalued or ambiguous information. (b) If the two
input peaks have different amplitude, then the site receiving
stronger input is more likely to be activated.

5. The Dynamics of Target Representation

To build a dynamic field representation of the sound sources,
we use the direction, ¥, in which the sound source lies as
viewed from the current position of the vehicle. The angle is
taken relative to a fixed but arbitrary reference orientation, so
that it would not change if the robot were to turn on the spot.
In implementation, this requires integrating heading direction
in time to maintain this reference frame. While the absolute
calibration of this reference frame is irrelevant, its drift con-
tributes to degradation of memorized information but not of
currently sensed information. A much more limiting factor
of this form of target representation is that memorized an-
gular information becomes obsolete as the robot moves over
distances comparable to the distance to the target. The main
advantage of this representation is, however, that distance in-
formation is not needed for detection, estimation, decision
making, and short-term memory of targets.

A dynamic field, as defined in the previous section, repre-
sents information about the orientation of a potential sound
target. Sensory input to the field is provided by the time-
varying signals, M,, from five microphones (i = 1, 2, ..., 5),
each pointing into a different sector on the forward field of
view of the vehicle (angles {; = (—90, —45, 0, 45, 90 deg)
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Fig. 9. A monomodal input, S(y), is applied to the field
(dashed line). Top: when the distance between the two peaks
of the input distribution is within the cooperative distance, the
stable state of the field is a localized peak of activation (solid
bold line) positioned over the weighted mean of the input dis-
tribution. The field thus fuses input information. Bottom:
when the distance between the two peaks of the input distri-
bution is beyond the cooperative distance, competition takes
place. The field is bistable, in the sense that it can evolve a
peak of activation centered at either one of the two sites re-
ceiving input (solid bold line). On the left, the site receiving
stronger input “wins.” On the right, the initial state of the field
(solid thin line) has a peak of activation at a distance to the
smaller peak, within the cooperative distance, the competition
is thus biased toward the selection of the smaller input peak.

from the main axis of the vehicle, see Fig. 10). These
signals reflect the sound pressure measured by each micro-
phone. They increase from zero with increasing sound pres-
sure. Their angular characteristic is described approximately
by a cone of about a 60-deg opening, so that neighboring mi-
crophones have overlapping sensitivity cones. Thus, these
sensors specify target orientation in the sense that a single
sound source induces a graded pattern of detected sound pres-
sure, with a maximum at the sensor pointing in the direction
closest to the one in which the sound source lies (except for
reflections, see Section 7). Interpolation is based on spread-
ing the contribution of each microphone over a range in the
field by convolving with a Gaussian kernel of width, o = 0.4
rad (£23 deg):

5 a2 5

Sy, t) = <Z M, exp [—%:‘ - Mo) H(Z M;).
1=1 1=1

(17)

Here, H(-) is the Heaviside step function. Multiplying with
this step function applied to the sum of all microphone sig-
nals turns input entirely off when no sensor receives input
(background sound below sensor threshold).
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"< Microphones

Fig. 10. Sensory information about sound targets is acquired
by five microphones, each pointing into a direction £, (=
=90, —45, 0, 45, 90 deg), with respect to the heading direc-
tion, ¢, of the robot. The direction in the world at which
microphone / is pointing is ¥; = ¢ + ;.

The parameter £ is set so that the field operates in the mem-
ory mode. Thus, once sufficient input (detection) has induced
a single localized peak of positive activation (decision), that
peak persists when input is removed (e.g., because the sound
source is momentarily silent or its volume is reduced due to
occlusion). The memorized target orientation is maintained
for a time interval that permits the robot to continue moving
in the target direction. This memory peak must be deleted if
no renewed sensory input arrives within a particular period
of time, as memorized angular information becomes obsolete
as the robot moves. This forgetting behavior is modeled by
making the resting level, &, a dynamical variable with the
following dynamics:

dh

:17 = _rh,mmch(h = hmin) — rh,max(l = cp)(h — hmax).

(18)

Here, hjpax = —0.125W,,, and hnin = —1.1W,, are the two
limit values of the resting level within the bistable and the
monostable regime, respectively (see previous section and
Fig. 8 for significance of W,,). This dynamics lowers the
resting level (destabilizing memory) at the rate rj min While a
memorized peak exists (¢, = 1). It restores the maximal rest-
ing level (to enable memory) at the rate ry max otherwise. The
destabilization (forgetting) process is slower than the restor-
ing process, so that after forgetting, the field is immediately
able to again detect and memorize a new target. The presence
of a memorized peak is represented by
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cn = [H(N,) — H(Ns)1H (Ny), (19)
where
2n
N, = [ Haway (20)
0
is the total positive activation in the field and
2
N.= [ say @
0

is the total input activation (positive by construction). H(-)
is the heaviside step function. The function ¢j, is equal to 1 if
there is positive activation in the field (¥,, > 0), but no input
(Ns; = 0). It is zero if there is no peak in the field or if there
is a peak but also input.

Now we address how the direction, Y,y in which a target
lies, can be computed from the activation on the dynamic field.
Because the time scale, 7, of the field is chosen faster than
that of the heading direction and velocity dynamics (1/81), the
field has typically relaxed to a stable pattern on the time scale
on which the movement plans of the robot evolve. Directly
reading out the location in the field of maximal activation is
not a very good solution, as the maximum of the stable state
may jump and thus destroy the carefully constructed stability
properties of the system. Moreover, such a procedure does
not deal consistently with the absence of target information.
A better and elegant solution has been proposed by Kopecz
and Schoner (1995) and used in an earlier implementation
of dynamic fields on vehicles (Bicho and Schoéner 1997b).
Because the field has by construction only a single peak of
positive activation, the peak location could be computed as
a mean, if the distribution of activation is interpreted as a
probability density

27
Viar = f VH@W)AY/Na, 2)
0

where division by the total positive activation, N, 1s needed
to normalize the distribution. The normalization poses a prob-
lem when no positive activation exists in the field. This prob-
lem can be solved once it is realized that what we actually need
in the dynamics of heading direction is not necessarily Y,
itself, but —Aar(¢ — Yiar), an attractive force-let centered at
that angle. The strength of attraction must be zero if no target
is represented. Thus, Ay should be replaced by A(, N, witha
new constant, Af, > 0. This leads to —A{, (Ny¢ — NyVtar),
in which the normalization factor cancels and division by zero
never occurs. Thus, we redefine the target contribution as

M (Nup — [ (H () ¥)d )
for Yrar — /2 < < Yrar + /2

Mar(Nu(@ — 10) — [Z (H@@))W)dy)
for Yrar +7/2 < ¢ < Yrar + 37/2

faar = . (23)

6. Implementation on the Robot

The dynamic architecture was implemented and tested on the
mobile platform depicted in Figure 11. The vehicle was de-
signed and built by one of us (P. M..) at the CNRC in Marseille.
It consists of a cylindrical platform with two lateral motorized
wheels and a passive rear caster wheel. Sensory information
is acquired from seven infrared (IR) detectors (distance sens-
ing for obstacle avoidance) mounted on a first ring, and five
directional microphones (sound intensity sensing for phono-
taxis) mounted on a second ring. These two rings are centered
on the axis connecting the two active wheels.

The IR sensors are active (emitter and receiver) and are
sensitive to distances up to about 60 cm. They are sensitive
to reflected IR light from within an angular range of about 30
deg. They are arranged along the ring such that their sensi-
tivity cones just touch. The distance estimate derived from
the IR signal is roughly calibrated in the laboratory but de-
pends on the unknown reflectivity of surfaces in the robot’s
environment.

The microphones are of the cardiod type. They are most
sensitive to sound arriving from the direction at which they are
pointing in space. Sensitivity decreases for sound impinging
from other directions. Sensitivity loss (in the mounted con-
figuration) is about 6 dB for sound sources sideways from the
microphones and 20 dB for sound sources at the rear. Micro-
phones are spaced 45 deg apart on the upper ring around the
robot.

The robot has a single board computer system based on a
486DX4 processor operating at 100 MHz, equipped with 4
Mb of DRAM and 4 Mb of FLASH memory. All control and
computation is done on-board. The operating system is DOS
6.22. The algorithm was implemented in Microsoft Quick
basic V4.5 (the only compiler that could be installed on the 4
Mb of FLASH memory).

The two lateral wheels are each driven by a DC brushless
servomotor, each separately controlled by electronic circuitry
that guarantees accurate control of rotation speed without the
use of external shaft encoders. The relationship between input
voltage and rotation speed is approximately linear, so that
generating desired robot speeds and turning rates is easy.

In the implementation, the neural field dynamics as well
as the dynamics of heading direction and of path velocity are
integrated numerically using the Euler method.

The field is sampled spatially with a sampling distance
of 8 deg. It is important that the discretized form of the
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Fig. 11. The robotic platform.

interaction kernel, w(Ay), is, like the exact kernel, sym-
metrical around zero. Deviations from symmetry generate a
tendency for localized memory peaks to drift in one direction.
Sensory information is acquired once per computation cycle.
The cycle time is measured and is approximately 110 ms. As
the time step must be smaller than the fastest relaxation time
on the system, this imposes minimal time scales on the entire
dynamical architecture. Thus, the computational cycle time
is the limiting factor for determining the relaxation times of
the dynamics in real time units and thus for the overall speed
at which the robot’s behavior evolves.

The rate of change of heading direction obtained from the
dynamics of heading direction (eq. 1) directly specifies the
angular velocity of the robot for rotation around its center.
This can be translated into the difference between left and
right wheel rotation speed. The path velocity, v, specifies the
average rotation speed of both wheels. Together, the rotation
speeds of both wheels can be computed and are sent as set
points to the velocity servos of the two motors.

7. Experimental Results
In this section, we first present results that document the prop-

erties of the dynamical field for target representation. These
were obtained when the field evolved in response to actual
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physical stimulation by sound sources but the robot did not
move. Next we show how the robot behaves in a number
of experimental scenarios that challenge particular aspects of
the architecture. In all cases, all behavioral modules are inte-
grated and work together.

7.1. Cognitive Properties of the Dynamic Field Representing
Targets

A set of experiments with fixed robot used a sound source
that emitted a pulse-modulated wave with a fundamental fre-
quency of 440 Hz. Pulse modulation makes sure that this
sound had high-frequency harmonics that fell into the most
sensitive range of the microphones. In experiments involving
multiple targets, a sound generator emitting a 2.5 KHz har-
monic wave was used as a second sound source. The loud
speakers were placed 100 cm from the robot. The robot was
pointing in the 180-deg direction relative to the external ref-
erence frame in which we provide information about the real
direction to the sound source.

7.1.1. Detection

Figure 12 shows how the field evolves when the intensity of
the test sound was increased gradually. Initially, the entire
field is “oft” (u(y) = —h < 0 everywhere). While sensory
input is weak, positive activation cannot arise and the field
continues to code for absence of a sound source. At time
t = 55 sec, the strength of sensory input becomes sufficiently
strong to trigger generation of a peak of positive activation
centered over the location that receives maximal input. From
this point on, a target is detected and the peak of activation
maintains its shape almost invariant due to the strong coopera-
tivity within the field. This result shows that the dynamic field
behaves nonlinearly in response to ambient sound of different
intensities.

7.1.2. Interpolation

In the presence of a single sufficiently strong sound source, in-
put is monomodal, although broad, and a single, localized pos-
itive peak of activation is stable in the dynamic field (Fig. 13).
The peak is positioned over the maximum of the broad in-
put distribution and thus unaffected by input that is further
removed from the peak than the kernel width. The estimated
sound orientation, Yy, is 115 deg, very close to the actual
target orientation, which was 112.5 deg. Repeating this ex-
periment for a number of different orientations of the sound
source, we evaluated the quality of the interpolation of sound
input by the dynamic field. Figure 14 summarizes the result.
The estimated values of target direction are very close to the
real values across a wide range from 110 to 250 deg. The
two extremal configurations have a small bias (still less than
10 deg), which is caused by the unsymmetric sampling of
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Fig. 12. Here, the target detection behavior of the field is shown. Direction is in degrees (deg) and time in seconds (sec). The
sound source was placed in the forward direction of the robot (indicated by the arrow), and sound intensity was increased from
0 to 2.5. Robot position and orientation (180 deg with respect to the world axis) in space was kept fix. Top: the input to the
field, S(y), is monomodal and its strength increases in time. Bottom: while the input is weak, the field is in the state in which
it is all off and thus no target is detected. At time ¢ & 55 sec, the input strength is sufficiently strong to trigger the detection
of the sound source. From this point on, the stable state of the field is a localized peak of positive activation centered over the

location of maximal input.

these values due to the limited angular range of our micro-
phone array.

7.1.3. Tracking

Figure 15 shows how a moving sound target is tracked. The
loud speaker was moved more or less continuously from an
initial orientation at 90 deg all the way to 270 deg. Asa conse-
quence, sensory input has a moving peak. The dynamic field
responds to such moving input by evolving a peak of activation
that tracks and follows the moving input peak. The maximum
of'the field activation moves continuously with the angular lo-
cation of the target. The estimated target location thus varies
monotonically from approximately 102 deg to 261 deg.

7.1.4. Target Selection

To test the capacity of the field to select one of multiple tar-
gets, two loud speakers were placed as illustrated in Figure 16.
The loud speaker on the left of the robot emitted the pulse-
modulated test sound while the loud speaker on the right emit-
ted the harmonic wave of 2.5 KHz. Both signals were played
at similar intensity. Input is bimodal under these conditions.
The interaction enables the field to make a decision, in this

case, of selecting the site receiving stronger input. The field
evolves a single localized peak of positive activation centered
near the input peak located near 270 deg. This input informa-
tion pertaining to the alternate site is discarded and does not
bias the estimation of the target position.

7.1.5. Memory and Forgetting

Memory and forgetting is demonstrated in Figure 17. A loud
speaker was placed in front of the robot (it could have been
any other orientation). After a brief moment of silence, the
sound source was turned on, emitting the pulse-modulated test
sound. As expected, the field evolved a stable peak of positive
activation centered over the input peak (the estimated target
orientation is 183 deg). About 10 sec later, the sound source
was turned off. Although sensory input is thus removed, the
localized peak persists, if somewhat weakened, for a certain
time interval. During this time interval, the adaptive dynam-
ics of the resting level, h, drives the resting level down, and
thus progressively destabilizes the memorized information.
Since no renewed sensory information is provided again, the
memorized peak eventually dies out. The target orientation is
“forgotten.”” At this point, the adaptive dynamics of 4 changes
and its value is quickly restored to the value at which the
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Fig. 13. A sound source was placed at an angular position of 112.5 deg (the location indicated by the arrow) with respect to
the world axis. Robot orientation was 180 deg; the five microphones where thus pointing in the directions 90, 135, 180, 225,
and 270 deg. Top: sensory information leads to a broad monomodal input distribution. Bottom: the field activation relaxes to
a stable localized peak centered over the maximum of the input. The estimated sound orientation is 115 deg.

270¢ \.Utar (deg)

2475

225} , - S .

202.5

T
)

180 ' ‘ C

157.5

135

112.5

\Ifreal(de g)

I L

90 . : , . >
90 1125 135 1575 180 2025 225 2475 270

Fig. 14. The experiment illustrated in Figure 13 was repeated for a number of different directions of the sound source. These
directions can be read on the abscissas. On ordinates, one can read the corresponding estimated target directions.
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Fig. 15. The robot was positioned with an orientation of 180 deg with respect to the external axis. The sound source was
moved continuously from an initial direction of 90 deg (indicated by the left arrow) all the way to 270 deg (indicated by the
right arrow). Top: sensory information is monomodal and its maximal location varies continuously. Bottom: the field evolves
a peak of positive activation that tracks and follows the moving input peak.
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Fig. 16. The robot was placed with a heading direction of 180 deg with respect to the external axis. Two sound sources, the
pulse modulated wave and the harmonic wave, were placed at angular positions 112.5 deg and 270 deg (as indicated by the
arrows), respectively. Top: under such experimental setup, the sensory input to the field is bimodal. Bottom: competition
takes place and as a result the field makes a decision. The field evolves a single peak of positive activation centered near the
input peak located at 270 deg. Thus, the left target is selected.
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Fig. 17. A loud speaker was placed in front of the robot heading direction (indicated by the arrow). Top: 3 seconds later, the
sound source was turned on. The sensory input to the field is monomodal. About 10 seconds later, the sound source was turned
off. The sensory input becomes zero everywhere. Center: while the sound source is on, the state of the field is a localized
peak of positive activation centered over the location of maximal input. This peak solution persists (even though somewhat
reduced in amplitude) even when the input to the field is turned off (+ & 13 sec). The field is thus in the memory regime. At
time ¢ & 29 seconds, this peak solution becomes unstable due to the adaptation of the resting level, 4. Target orientation is
thus “forgotten.” From this point on, the field remains in the state in which it is off (negative activation everywhere). Bottom:
the resting level is in its maximum value until the input is turned off, which occurs at time ¢ =~ 13 seconds. After this instant
and while there exists positive activation in the field, the adaptive dynamics of 4 reduces its value. Attime ¢ ~ 29 seconds, the
resting level reaches the value for which the peak solution in the field corresponding to the memorized information becomes
unstable. Thus, the memorized peak is tumed off. At this point, the adaptive dynamics of h changes again and its value is
restored to the value at which the field dynamics operates in the memory regime again.
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target representation dynamics operates in the memory mode
again. The field is once again sensitive to new (or the same)
sound targets, which can be detected, selected, and memo-
rized. Memory together with the adaptation of the resting
level thus endows the robot with temporary knowledge about
the target location.

7.2. Phonotaxis and Obstacle Avoidance on Moving Robot

In all the experiments reported here, the sound source con-
sisted of a loudspeaker emitting CD music. The particular
piece we used (Vivaldi, Printemps, Allegro) not only provides
sound at the higher frequencies to which our microphones are
sensitive but also has moments of silence that give occasion
to test the memory capability of the target representation. To
demonstrate target selection, the music was played through
two loudspeakers.

7.2.1. Scenario with a Single Sound Source

Figure 18 illustrates the robot’s behavior in the simplest sce-
nario testing obstacle avoidance in conflict with the phono-
taxis behavior. The target was a single loudspeaker placed
behind a barrier (from the point of view of the initial posi-
tion of the robot). The robot moves along a smooth, curved
path around the obstacle to reach the target. It is the tempo-
rary knowledge about target direction retained in the dynamic
field that enables the robot to continue moving in the correct
direction during the periods of silence of the music. Two runs
in the same scenario are shown. On one occasion, the robot
goes around the obstacle to the left, on the other to the right.
The heading direction dynamics is bistable in this case, and
small fluctuations in sensory information can bring about ei-
ther of the two paths. Once heading direction is in one of the
two attractors, however, this decision is stabilized. In both
cases, the target is reached and the robot comes almost to rest
near the loudspeaker.

7.2.2. Scenario with Two Sound Sources

Figure 19 shows target selection based on different input
strength. Two speakers were fed with the same input sig-
nal. The robot is placed initially at position A (see first frame)
with the sound sources switched off. The robot moves straight
ahead driven by pure obstacle avoidance. At point B (third
frame), the sound sources are turned on. When the sound
sources are at different distances from the robot, the closer
one is always selected. Figure 20 shows that when both sound
sources are at quite exactly the same distance, the decision
may depend on random fluctuations of the input stream.
Target selection based on prior activation patterns (hys-
teresis) is demonstrated in Figure 21. Two sound sources
are both behind obstacles (as seen from the initial position of
the vehicle). In one run, the robot is initially closer to the

sound source on the left. The field therefore establishes a
peak at the leftmost target direction. The obstacle configura-
tion forces the robot to pass through a position in which the
robot receives symmetric input from the two sound sources.
The preexisting peak on the left makes the robot retain the left-
most target. Analogously, when the robot starts out closer to
the right target, that target is represented in the dynamic field.
The robot persists in the selection while it passes through the
same position as in the first run with approximately symmetric
mput.

7.2.3. Global Behavior

In Figure 22, we illustrate behavior in a more complex envi-
ronment. Initially, the robot is positioned in the corridor of
our lab. The target is a loudspeaker placed inside one of the
offices. Even while the robot moves along the corridor, its
target representation already engages an approximate repre-
sentation of the sound source. Based on that representation
and helped by obstacle avoidance, the robot moves through the
office door. It circumnavigates a number of additional obsta-
cles and eventually finds the sound source, which is “hidden”
inside a box with only a single entrance. It stops in front of
the sound source (controlled by the velocity dynamics). Thus,
although the architecture does not have global plans and find-
ing a path is not theoretically guaranteed, the robot finds a
remote target by moving along surfaces with the help of ob-
stacle avoidance, until an “entry” is found. In our practical
experience, we have found it difficult to create scenarios in
which the robot does not find its way even to quite intricately
hidden sound sources.

8. Discussion

We have demonstrated how dynamic fields can provide
robotic systems with subsymbolic representations that rely
on low-level sensory information. These representations en-
able the robot to show the simplest forms of cognitive ca-
pabilities, such as detecting targets, estimating direction to a
target through interpolation, stabilizing a decision as to which
of multiple targets to track, maintaining targets in short-term
memory during momentary removal of pertinent sensory in-
formation, and deleting memory items after a characteristic
delay to clear the memory of obsolete information. In the im-
plementation, the dynamic field enabled a small autonomous
vehicle to find sound sources while avoiding obstacles. Mem-
ory helped with intermittent sound, decision making enabled
tracking of a sound source even if obstacle avoidance in-
creased momentarily the distance from the sound source. De-
tection led to stable behavior near the sensor threshold.

The demonstrated robotic system has a number of obvious
applications. We played, for instance, with the human voice as
a sound source and demonstrated that the robat can follow or
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.- sound source

- - robot
- - --sun spot

" -- obstacle

Fig. 18. A sequence of video images illustrates the motion of the robot. Time increases from top to bottom, first along the
first raw, then along the second raw, and so on. The robot is the cylindrical object, located in the first frame in the lower left
corner. A loudspeaker is visible in the top right corner. A long obstacle makes a barrier in between the robot initial position
and the loud speaker. The sound source is on all the time but exhibits some moments of silence. The top shows that the robot
moves smoothly around the obstacle, to the left, toward the sound source, coming to rest in the final frame in front of the loud
speaker. The bottom shows a new run. This time the robot turns around the obstacle to the right, steering toward the sound
source, and it comes to rest near the loudspeaker.
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Fig. 19. Two sequences of video images show the robot behavior in the presence of two loud speakers emitting the same sound
and in an asymmetric configuration. Time increases as announced in Figure 18. The robot is first located as depicted on the
first frame. Two loud speakers, 51 and Sy, are located near the left and right top corners, respectively. Initially, the sound
sources are turned off, thus the robot moves straightforward. When it has traveled a distance of 1 meter, both sound sources
are switched on. In part(a), the loud speaker on the left, Sy, is closer to the robot. This sound source is thus selected (it is
visible in the fourth frame), and the robot moves smoothly toward it, coming almost to a stop near the loud speaker S;. In
part (b), another run is shown. Here the loud speaker on the right, S, is closer to the robot. Analogously, the robot selects the
closest sound (the decision can be seen in frame 4) and moves toward it.
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Fig. 20. The two loudspeakers are now placed at exactly the same distance to the robot. In the run illustrated in part (a), the
random fluctuations favor the selection of the leftmost target, S;. The decision starts being visible on the third frame. The
robot moves toward S| and finally stops in front of the loud speaker (final frame). Part (b) shows a new run. This time the
random fluctuations favor the selection of the right target, S;. This decision becomes visible on the third frame. Again the
robot moves toward the selected sound source and comes to rest in front of it.
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Fig. 21. This figure shows that hysteresis enables to maintain a decision stable. Two sequences of video images are presented.
The two equal sound sources, S and S5, are now placed behind obstacles as can be seen on the first frame. In part (a), the
robot initial position is the left bottom corner in the first frame, i.e., in this run the robot is initially closer to the sound source
on the left, S|. Thus, the field evolves a peak of activation at the leftmost target direction. While moving toward Sy, due to
the obstacle configuration, the robot is forced to pass through the opening in between the two barriers. At this time (frame
6), the sensory information received from the two sound sources is symmetric and the input to the field is bimodal with two
input peaks of equal amplitude. The preexisting peak on the field corresponding to the selection of the left target bias the
competition toward retaining the leftmost target. Thus, the decision of moving toward S| is maintained stable. Part (b) shows
a similar run. The robot is now closer to the rightmost target (see first frame). The robot starts moving toward the location of
this sound source (but constrained of course by the obstacles). This decision is maintained stable when the robot is confronted
with symmetric bimodal sensory input (frame 6). The robot comes to rest in front of the loud speaker S, (frame 9).
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sound source qutacIes

Fig. 22. This figure shows a video sequence of the robot behavior in a more complex environment. The robot is initially
positioned in the corridor. A sound source is inside one of the offices as indicated in the first frame. The robot moves along
the corridor (frame 1 to frame 4). When the robot approaches the office door, the phonotaxis behavior makes it enter into the
room (frame 6). In frame 7, the robot is faced with a barrier of obstacles between it and the sound source. The sound source is
visible on the left top comer of this frame. The robot moves around the obstacles toward the target and finally comes to near
rest in front of the loud speaker (last frame).
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move toward a human operator who every now and then voices
an utterance. The memory capacity of the dynamic field keeps
the direction toward the human operator active during the
intervals of silence. This robot system thus demonstrates an
interesting interface, which could have multiple uses. Toys
are an obvious example. An autonomous platform carrying
tools and being operated by calling out is another example.
Household devices to support handicapped people could be
another domain in which such a simple interface could be of
use. By installing particular filters at the auditory level, this
system could be made sensitive to only particular types of
sound (e.g., human voices rather than ambient sound).

The principle of representing direction information ob-
tained from low-level sensors could also be used to generate
more complex movement behaviors of robotic platforms. For
instance, the vehicle can be made to steer at a particular an-
gle with respect to a sound source. In this way, a group of
robots could drive in formation, if each robot emits a sound.
Maneuvers in front of a docking station could be based on
this mechanism. The representation of direction could also
be used as a means of recalibrating robot orientation without
the need for actual movement of the robot into a particular
position or orientation. Finally, the fact that the sensed angle
is explicitly represented could be used to communicate that
information among robots or to an operator, which makes
it possible to integrate such information into more complex
strategies, for instance, for multirobot environments.

Sound is only one sensory channel on which this ap-
proach can be based. We have tested a similar architecture
that was based on light sensors (three light-dependent resis-
tors). That system was able to orient toward light sources
(Bicho and Schoner 1997b). The fact that there is typically
much more ambient light than ambient sound in work envi-
ronments makes this a useful architecture only for work in
near darkness, however. Chemodetection is another potential
sensor system that could be enhanced through a dynamic field
(Kuwana and Shimoyama 1998).

One limitation of the system as it stands comes from the
computational demands of the dynamic fields. The cycle time
obtained for a computational step on the order of 100 ms leads
to reasonably fast behavior, but one could be much faster. If
more complex architectures were tried with multiple dynamic
fields for different representations, then this could become a
serious limitation. One solution might be to implement the
computationally critical parts in assembler code. Another
approach might be to use more optimal numerical procedures.

There are, of course, limitations that come from the low-
level sensor system. The robot may select, for instance, some-
times an echo rather than the real sound source. This is not
severe, however, as echoes do not persist as the robot changes
position. Once the robot has latched onto the real target,
the stabilization of decision making provided by the dynamic
field makes sure that the robot does not get sidetracked by
new echoes it encounters on the way to the target.

Appendix

Field Parameters

dyr = 8.0 deg
kp=2.0

kp =35

lcoop = 40 deg

T = 5dt (where dt is the cycle time in seconds)
W, =07

houn = —0.77
hmax = —0.0875
Ya,min = 1/(57)
rhmax = 1/(507)
M, =0.25
=04

Target Acquisition

Ay = 1/(57)

Obstacle Avoidance

B = Sl{ar

B2 =20

Riobot = 25 cm
A6 = 30 deg

Velocity Control

¢ =100
Cytar = 15)‘;ar

Cv.obs = 10}‘:)!;5
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