

RUHR-UNIVERSITÄT BOCHUM | 44780 Bochum | Germany Prof. Dr. Gregor Schöner, Institut für Neuroinformatik

Institut für Neuroinformatik Zentrale Wissenschaftliche Einrichtung der RUB Institut für Neuroinformatik Chair Theory of Cognitive Systems Gebäude NB 3/31 Universitätsstraße 150, 44801 Bochum

Prof. Dr. Gregor Schöner Director and Chair Fon +49 (0)234 32-27965 Fax +49 (0)234 32-14210 gregor.schoener@ini.rub.de http://www.ini.rub.de/

21 April 2020

Autonomous Robotics: Action, Perception, and Cognition

1 Introduction

organization of the lectures introduction to autonomous robotics

- the variety of autonomous robotic systems being studied
- what is autonomous robotics, concept of autonomy
- why is autonomous robotics being studied
- where does autonomous robotics stand as a field
- the key problems of autonomous robotics
- neurally/human inspired autonomous robotics exercise session: dynamical systems tutorial
- 2 Attractor dynamics approach to vehicle motion planning attractor dynamics approach
 - behavioral variables
 - behavioral dynamics
 - attractors
 - repellors
 - instabilities

human walking paths

- using the model to account for human walking paths
- 3 Attractor dynamics approach to vehicle motion planning: sub-symbolic approaches attractor dynamics approach: sub-symbolic
 - how sensors erect attractors/repellors
 - why it works
 - implementations

second order attractor dynamics

- method
- performance

- 4 Approaches to vehicle path planning
 - classes of path planning approaches
 - global planning
 - potential field approach
 - virtual force field approach
- 5 Robotic manipulators and the degree of freedom problem
 - the basic notions of robotic/human arm kinematics
 - attractor dynamics of motion planning in robot arms
 - human analogy: redundancy and synergies
- 6 Movement primitive, constraint satisfaction
 - the notion of movement primitive
 - discrete vs. rhythmic movement
 - integrating constraints
 - obstacle avoidance in humans
- 7 Movement timing and coordination
 - timing and coordination in human movement
 - theoretical accounts for coordination
 - robotic demonstrations of timing and coordination
- 8 Motor control in robots and human movement
 - the dynamics of robot/human arms
 - control of arm dynamics
 - basic notions of control
 - basic notion of optimal control
 - operational space
- 9 Motor control in human movement
 - muscles as visco-elastic systems
 - reflex control of muscles
 - implications for control
 - implications of motor planning
- 10 Summary and outlook
 - preparing for exam

Literature

Schöner, G., Dose, M., & Engels, C. (1995). Dynamics of behavior: Theory and applications for autonomous robot architectures. Robotics and Autonomous Systems, 16, 213–245.

Bicho, E., & Schöner, G. (1997). The dynamic approach to autonomous robotics demonstrated on a low-level vehicle platform. Robotics and Autonomous Systems, 21, 23–35.

Schöner, G. (2002). Timing, Clocks, and Dynamical Systems. Brain and Cognition, 48, 31–51.

Franklin, D. W., Milner, T. E., & Burdet, E. (2013). Human robotics: Neuromechanisms and Motor Control. The MIT Press.

Latash, M. L., Scholz, J. P., & Schöner, G. (2007). Toward a New Theory of Motor Synergies. Motor Control, 11, 276–308.