Embodied Neural
Dynamics

Gregor Schoner, INI, RUB



Core of DFT
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Core of DFT

Wattractor states
Minput driven solution (sub-threshold)

M self-stabilized solution (peak, supra-threshold)

Minstabilities

Mdetection instability (from localize input or boost)
B reverse detection instability
M selection instability

BMmemory instability



Linking fields to sensors

microphones

\

Robot ™ Microphones

[from Bicho, Mallet, Schoner, Int J Rob Res,2000]
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Sensory surface

® each microphone samples heading direction

A

 sensitivity cone of each microphone

heading
direction




® each microphone provides input to the field

T activation
field heading
direction

>

A .
input from sensory surface

heading
direction

two sound sources



Detection instability induced by increasing
intensity of sound source
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[from Bicho, Mallet, Schéner: Int. J. Rob. Res., 2000]
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Target selection in the presence
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Robust estimation in the presence of outliers
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Tracking when sound source moves




Memory (and forgetting) when sound source is turned
off
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[from Bicho, Mallet, Schoner: Int | Rob Res 19:424(2000)]



lllustration of instabilities




Motor behavior

®so far, the neural field was in open loop: received
input from sensors, but didn’t drive around and
thus did not influence its own sensor input



Braitenberg

W

Min terms of the Braitenberg L\

vehicle, we only looked at
the “inner” neural dynamics




A\ intensity

Braitenberg
Aturning rate SOUIEE heading
of vehicle
B we did not yet look at the
emergence of (motor) | —>
behavior given a representation attractor
of sensory information 2
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A\ intensity

Braitenberg
B overt movement behavior is wrning rate | 9T heading
generated by a behavioral of vehicle
dynamics
®how may the neural heading)

attractor

representations of DFT couple

into behavioral dynamics S
“standing in for” sensory )»
inputs?

U



A\ intensity

Braitenberg
Aturning rate POHIEE heading
B two problems of vehicle
B how do we go from a field to an
attractor dynamics? => space to rate )
code issue heading
attractor
M how does the field emulate “closed
loop” behavior! => coordinate ﬁ

transforms }’

Ay



Basic ideas: behavioral dynamics

B behavioral variables

B time courses from dynamical system:
attractors

B tracking attractors

B bifurcations for flexibility



Behavioral variables: example

heading
B vehicle moving in direction
2D: heading
direction @ £ & ... L
fixed (but
irrelevant)

robot world axis



Behavioral variables: example

B constraints as
values of the
behavioral variable:
direction to target

vehicle



Behavioral variables

B describe desired motor behavior
B “enactable”
B express constraints as values/value ranges

M appropriate level of invariance



Behavioral dynamics

B generate behavior by generating time
courses of behavioral variables

B generate time course of behavioral variables
from attractor solutions of a (designed)
dynamical system

B that dynamical system is constructed from
contributions expressing behavioral
constraints



Behavioral dynamics: example

B behavioral constraint: target acquisition

A do/dt

attractor

vehicle



Behavioral dynamics

B multiple constraints: superpose “force-lets”

B fusion do/dt
N ¢

target 2

target | fused attractor

“
s ®

individual
attractors

vehicle



Behavioral dynamics

B decision making

Jordt

repellor=
attractor
boundary

target 2

target |

...... A2
individual
attractors=
resultant
vehicle attractors
=> bistable




Braitenberg

M bistable dynamics for
bimodal intensity
distribution

B => nonlinear dynamics
makes selection decision

A intensity

heading
direction

sourcel

Aturning rate
of vehicle

>

source
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heading
direction

sourceI ﬁ ﬁ source2




Behavioral dynamics

o1 bifurcation

M Bifurcations

switch between attractor
fusion and attractor /7 repellor=

decision making + attractor
\ boundary

attractor

>
increasing distance

between targets



Steering the behavioral dynamics

B so far, we took for granted that there is perceptual
information about the constraints: targets, obstacles

®these constraints emerge from a neural dynamics:
couple a peak in the neural field of target bearing into
the dynamics of heading direction as an attractor

f\é threshold
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Problem number |:
“Reading out” from the neural field?

specified value

® peak specifies value of the * jctivation
field dimension over field

which it is located... dimension

>

® but how to “read out”
that value?

peak position



“reading out” from the neural field?

M standard idea: treat supra-
threshold field as a probability
density

o specified value
activation

® but: need to normalize the field

activation pattern dimension

® => problem when there is no

peak: divide by zero! peak position
Ao no value specified
activation
[dx z o(u(x,t)) field
X = : :
peak [ da O(U(LE, t)) dlmensLon




“reading out” from the neural field?

specified value I no value specified
activation

field

dimension dimension

3 3
> >

1 activation
field

L dx/dt L dx/dt

\ 4
A 4




from DFT to DST

® solution: peak sets attractor

M location of attractor: peak location

M strength of attractor: summed supra-threshold activation

f dx x g(u(x, 1))

X=— J dx’ g(u(x', 1)) (X = Xpeak)  Xpeak = | dx’ g(u(x', 1)

J dx" x"g(u(x", t))
I dx" g(M(Xm, t))

X =— | dx' g(u(x',1)) x + J dx" g(u(x’, 1))

X =— | dx" g(u(x’,1)) (x —x)



Problem numb

er 2:

closed loop

B the target representation is
invariant in space, defined

threshold

over heading direction 2=

St

M and so is the motor By
dynamics...

B how does the “heading
direction” then capture the

il
— dr

/Q

¢

physical state of the body in
the world ~ behavioral

dynamics!?

behavioral dyna

\w



Answer

®the target representation must be invariant
under a change in heading because it is in that
frame that working memory about the target
and neural state about target selection is
meaningful... this is a property of the world

®and the same argument applies to the motor
dynamics: only when the dynamics is invariant
under change of heading is it a meaningful
dynamics



Answer

B to makes this consistent
with coupling to sensory
information, we must
perform a a coordinate
transform from the -+ | e
sensory surface (“retina”)
to the invariant world
frame!

visual input
S(9)

Ump("p)
2
l
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motor planning field

Drar world
®and that requires knowing

the heading direction in

the world...



Answer

is
£ 0
Hthis is a steerable neural e | etinal
map... and we’ll cover 23 . 9 ¥+ oo
that in the next lecture £
% /I\ /I\
S

Ytar world






Embodied A not B

® implementing the A not B model on a autonomous
robot with continuous link to sensory and motor
surfaces...

vehicle colored cues
ego-position ¢@

() \@-@ “®)-

start specific cue delay turns to target




Visual input

® color-based segmentation

® summing color pixels within color slot along the
vertical

| spatially filter at two resolutions

1 B
i

visual input S(19)

retinal J
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probability

probability

correct responces on trial B1

First Spontaneous Errors
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“young” robot

“old” robot




“young” robot

“young” robot with
memory trace




result: reproduce fundamental
age-delay trade-off in A not B
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Conclusion

B neural dynamics
directly driven by

sensory input

. behavioral dynamics  neural dynamics
M attractor dynamics

all the way down to
behavioral variables

A turning rate of vehicle A activation field

heading heading
direction direction
T

NNV L

M fields couple into
behavioral dynamics <3 I3 9 9
by setting
attractors == no
more “read-out” of
neural dynamics



