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Sequences

all actions in real life consist of sequences of 
movements, perceptual acts, inferences

often fixed by the logic of action 

often highly automated: routines

but also flexible: 

serial order: arbitrary sequences



Challenge in DFT

behaviors/representations are stable states

in sequence: need to switch out of one 
behavior to the next. How to do that?

answer: induce an instability 



search for objects 
of a given color in 
order

1 blue

2 red

green

vehicle

target 1

target 2

obstacles

target 13

Illustration



each step in the 
sequence is a visual 
search, which takes a 
variable (here: 
unpredictable) amount 
of time

so stabilize the goal of 
the visual search until 
the search is successful 

only then switch to 
the next element of 
the sequence vehicle

target 1

target 2

obstacles

target 13

The problem of sequential processing



yellow-red-green-blue-red

learn a serially ordered 
sequence from a single 
demonstration

yellow-red-green-blue-red

perform a serially ordered 
sequence with new timing

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]

Implementation as an imitation task



represent the target 
color by a stable peak 
that resists attractors 

vehicle

target 1

target 2

obstacles

target 13

Neural dynamics 
of sequence generation 



red a distractor red a target

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]



when the sought color 
is found, switch to the 
next color by releasing 
the previous state from 
stability…through an 
instability 

vehicle

target 1

target 2

obstacles

target 13

Neural dynamics 
of sequential processing



“Condition of 
Satisfaction”

(CoS)

[Sandamirskaya, Schöner, 2010]

excites the corresponding memory node, which, in its turn,
provides an excitatory input to the ordinal node which is to
be activated next. The active ordinal node also projects onto
a single intention field defined over the dimension of color.
Which color each node activates is learned, or memorized,
in the training phase through a fast Hebbian learning
mechanism. The intention field is reciprocally coupled with
a two-dimensional space-color field, in which the spatial
dimension samples the horizontal axis of the camera
image. The space-color field receives ridge-input localized
along the color dimension, but not along space, from the
intention field. It also receives a two-dimensional space-
color input from the visual array. Where visual input
overlaps with the ridge, a peak is formed, the spatial pro-
jection of which specifies the visual angle under which an
object of the color being sought is located.

The space-color field projects along the spatial dimen-
sion onto the dynamics of heading direction, creating an
attractor that steers the robot to the detected object. As that

object is approached, its image grows in the robot’s visual
array. The condition-of-satisfaction field (top-right on
Fig. 8) is pre-activated by input from the intention field and
is pushed through the detection instability when the object
of the color being sought looms sufficiently large. This
brings about the transition to the next step in the sequence
as described in Section 3.3.

Before an object that matches the current intention has
been found, no peak exists in the space-color field. The
heading direction does not receive input at that time from
the space-color field and the vehicle’s navigation dynamics
is dominated by obstacle avoidance, which is implemented
using a standard dynamic method (Bicho, Mallet, &
Schöner, 2000). This results in the roaming behavior that
helps the robot search for objects of the appropriate color.

During teaching, the visual input from the object shown
to the robot is boosted enough to induce a peak in the space-
color field. This peak projects activation backwards onto the
intention field, where a peak is induced at the location that

Fig. 8. The architecture for a sequential color-search task on a Khepera robot. An active node of the ordinal dynamics projects its activation onto an intention field,
defined over color dimension. The intention field is coupled to the space-color field, which also receives visual input from the robot’s camera. An activation peak
in the space-color field drives the navigation dynamics of the robot, setting an attractor for its heading direction. The condition-of-satisfaction field is also defined
over color dimension and is activated when the object of the currently active color takes up a large portion of the camera image.
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Generalization

movement to be executed, and d = xtarget − xreal is the
remaining distance.

To summarize, a single timed movement consists of
three separate behaviors: the postural, movement, and
update behavior. In order to function properly, these be-
haviors must be activated and deactivated in the correct
sequence: the initial position must be memorized before
starting to move and the movement has to suppress the
postural behavior. The necessity of organizing behaviors
in time becomes even more apparent when building entire
architectures based on discrete behaviors.

The framework for behavioral organization is based on
DFT, which we now briefly review.

B. Dynamic Field Theory
Dynamic Field Theory (DFT) [16] is a neural variant

of the attractor dynamics approach. We use it here as
an integrating framework between the low level sensory-
motor streams of the robot and the higher level cognitive
functions of the model, for instance its perceptual repre-
sentations and its organization of behaviors.

Within DFT, dynamic neural fields (DNFs) are used to
represent neural activity patterns over continuous, metric
feature dimensions (e.g., color or space). The activation
pattern evolves in continuous time t, as described by the
following dynamic equation, which can be traced back to
Grossberg [17] and was analyzed by Amari [18]

τ u̇(x, t) = −u(x, t) + h + S(x, t)

+
∫

ω(x − x′)f(u(x, t))dx′. (5)

In Eq. 5, u(x, t) describes the activation of a DNF
at feature location x and time t. Without external
input S(x, t), the activation will relax to the resting
level h < 0 and the output of the DNF, given by
the sigmoidal function f(u(x, t)), will be zero. With
sufficient external input, the DNF will produce output as
well as lateral interaction within the feature dimension.
The type of interaction is governed by the interaction
kernel ω(∆x) and comprises local excitation and global
or mid-range inhibition, promoting the formation of
localized peaks of activation. Within DFT, such peaks
are the units of representation for motor parameters,
perceptual items, and memory items.

A zero-dimensional DNF is a dynamical node that
represents a discrete instance of a percept or behavior.

C. Behavioral organization
A framework for behavioral organization based on

DFT, previously introduced and implemented on a hu-
manoid robot in a grasping task [19], is extended to
flexibly organize timed behaviors.

1) Elementary behaviors: Within DFT, the behaviors
that are organized are elementary behaviors (EB). EBs
consist of two parts, an intention and a condition of
satisfaction (CoS), each of which is represented by a
dynamical node and a dynamic neural field (DNF) (see

Fig. 2. Elementary behavior (EB) in Dynamic Field Theory.
Each EB consists of two parts: the intention represents the desired
change of the EB in the world, while the condition of satisfaction
(CoS) represents the sensory signal expected for the successful
completion of the EB.

Fig. 2). While the intention node simply determines
whether the EB is active or inactive, the intention field
describes the EB’s connection to the world. For instance,
the intention field of an EB ‘move arm’ would represent
desired movement parameters of the arm (e.g., the target
position) and would be connected to its motors.

The CoS field of an EB receives input from the in-
tention field, describing the desired outcome of the EB
(e.g., the end-effector of the arm at the target posi-
tion). Additionally, the CoS field receives input from the
sensory system, describing the current state of the EB
(e.g., the current position of the end-effector). If the two
inputs overlap, a peak forms in the CoS field, signaling
the successful completion of the EB. This peak activates
the CoS node, which in turn inhibits the intention node,
switching off the EB. Explicitly modeling the beginning
and end of an EB in this way allows us to close the
gap between discrete actions and the continuous sensory-
motor streams they are connected to.

2) Generating sequences: By default, all EBs relevant
for a task are activated at the same time. The sequential
organization of EBs derives from constraints that are
represented by dynamic coupling terms and are defined
within pairs of EBs. A precondition constraint prevents
a first EB (e.g., here, the update EB) from becoming
active until a second EB (e.g., here, the movement
EB) is completed. The constraint is represented by a
precondition node, a dynamical node that is activated by
task input and inhibits the intention node of the second
EB. As soon as the first EB is finished, its CoS node
will activate and inhibit the precondition node, releasing
the intention node of the second EB from inhibition and
thereby allowing its execution.

A suppression constraint between two other EBs pre-
vents one of them (e.g., here, the postural EB) from
becoming active while the other (e.g., here, the move-
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every action is 
represented by an 
“intentional” node

an an “intentional field” 
that represents the 
specific action 
(parameter value) that is 
to be enacted

A DFT cognitive architecture for 
sequence generation

movement to be executed, and d = xtarget − xreal is the
remaining distance.

To summarize, a single timed movement consists of
three separate behaviors: the postural, movement, and
update behavior. In order to function properly, these be-
haviors must be activated and deactivated in the correct
sequence: the initial position must be memorized before
starting to move and the movement has to suppress the
postural behavior. The necessity of organizing behaviors
in time becomes even more apparent when building entire
architectures based on discrete behaviors.

The framework for behavioral organization is based on
DFT, which we now briefly review.

B. Dynamic Field Theory
Dynamic Field Theory (DFT) [16] is a neural variant

of the attractor dynamics approach. We use it here as
an integrating framework between the low level sensory-
motor streams of the robot and the higher level cognitive
functions of the model, for instance its perceptual repre-
sentations and its organization of behaviors.

Within DFT, dynamic neural fields (DNFs) are used to
represent neural activity patterns over continuous, metric
feature dimensions (e.g., color or space). The activation
pattern evolves in continuous time t, as described by the
following dynamic equation, which can be traced back to
Grossberg [17] and was analyzed by Amari [18]

τ u̇(x, t) = −u(x, t) + h + S(x, t)

+
∫

ω(x − x′)f(u(x, t))dx′. (5)

In Eq. 5, u(x, t) describes the activation of a DNF
at feature location x and time t. Without external
input S(x, t), the activation will relax to the resting
level h < 0 and the output of the DNF, given by
the sigmoidal function f(u(x, t)), will be zero. With
sufficient external input, the DNF will produce output as
well as lateral interaction within the feature dimension.
The type of interaction is governed by the interaction
kernel ω(∆x) and comprises local excitation and global
or mid-range inhibition, promoting the formation of
localized peaks of activation. Within DFT, such peaks
are the units of representation for motor parameters,
perceptual items, and memory items.

A zero-dimensional DNF is a dynamical node that
represents a discrete instance of a percept or behavior.

C. Behavioral organization
A framework for behavioral organization based on

DFT, previously introduced and implemented on a hu-
manoid robot in a grasping task [19], is extended to
flexibly organize timed behaviors.

1) Elementary behaviors: Within DFT, the behaviors
that are organized are elementary behaviors (EB). EBs
consist of two parts, an intention and a condition of
satisfaction (CoS), each of which is represented by a
dynamical node and a dynamic neural field (DNF) (see

Fig. 2. Elementary behavior (EB) in Dynamic Field Theory.
Each EB consists of two parts: the intention represents the desired
change of the EB in the world, while the condition of satisfaction
(CoS) represents the sensory signal expected for the successful
completion of the EB.

Fig. 2). While the intention node simply determines
whether the EB is active or inactive, the intention field
describes the EB’s connection to the world. For instance,
the intention field of an EB ‘move arm’ would represent
desired movement parameters of the arm (e.g., the target
position) and would be connected to its motors.

The CoS field of an EB receives input from the in-
tention field, describing the desired outcome of the EB
(e.g., the end-effector of the arm at the target posi-
tion). Additionally, the CoS field receives input from the
sensory system, describing the current state of the EB
(e.g., the current position of the end-effector). If the two
inputs overlap, a peak forms in the CoS field, signaling
the successful completion of the EB. This peak activates
the CoS node, which in turn inhibits the intention node,
switching off the EB. Explicitly modeling the beginning
and end of an EB in this way allows us to close the
gap between discrete actions and the continuous sensory-
motor streams they are connected to.

2) Generating sequences: By default, all EBs relevant
for a task are activated at the same time. The sequential
organization of EBs derives from constraints that are
represented by dynamic coupling terms and are defined
within pairs of EBs. A precondition constraint prevents
a first EB (e.g., here, the update EB) from becoming
active until a second EB (e.g., here, the movement
EB) is completed. The constraint is represented by a
precondition node, a dynamical node that is activated by
task input and inhibits the intention node of the second
EB. As soon as the first EB is finished, its CoS node
will activate and inhibit the precondition node, releasing
the intention node of the second EB from inhibition and
thereby allowing its execution.

A suppression constraint between two other EBs pre-
vents one of them (e.g., here, the postural EB) from
becoming active while the other (e.g., here, the move-
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the intention pre-
activates a “condition of 
satisfaction” field with 
the predicted sensory 
information

the CoS field goes 
through a detection 
instability as sensory 
input matches the 
prediction

A DFT cognitive architecture for 
sequence generation

movement to be executed, and d = xtarget − xreal is the
remaining distance.

To summarize, a single timed movement consists of
three separate behaviors: the postural, movement, and
update behavior. In order to function properly, these be-
haviors must be activated and deactivated in the correct
sequence: the initial position must be memorized before
starting to move and the movement has to suppress the
postural behavior. The necessity of organizing behaviors
in time becomes even more apparent when building entire
architectures based on discrete behaviors.

The framework for behavioral organization is based on
DFT, which we now briefly review.

B. Dynamic Field Theory
Dynamic Field Theory (DFT) [16] is a neural variant

of the attractor dynamics approach. We use it here as
an integrating framework between the low level sensory-
motor streams of the robot and the higher level cognitive
functions of the model, for instance its perceptual repre-
sentations and its organization of behaviors.

Within DFT, dynamic neural fields (DNFs) are used to
represent neural activity patterns over continuous, metric
feature dimensions (e.g., color or space). The activation
pattern evolves in continuous time t, as described by the
following dynamic equation, which can be traced back to
Grossberg [17] and was analyzed by Amari [18]

τ u̇(x, t) = −u(x, t) + h + S(x, t)

+
∫

ω(x − x′)f(u(x, t))dx′. (5)

In Eq. 5, u(x, t) describes the activation of a DNF
at feature location x and time t. Without external
input S(x, t), the activation will relax to the resting
level h < 0 and the output of the DNF, given by
the sigmoidal function f(u(x, t)), will be zero. With
sufficient external input, the DNF will produce output as
well as lateral interaction within the feature dimension.
The type of interaction is governed by the interaction
kernel ω(∆x) and comprises local excitation and global
or mid-range inhibition, promoting the formation of
localized peaks of activation. Within DFT, such peaks
are the units of representation for motor parameters,
perceptual items, and memory items.

A zero-dimensional DNF is a dynamical node that
represents a discrete instance of a percept or behavior.

C. Behavioral organization
A framework for behavioral organization based on

DFT, previously introduced and implemented on a hu-
manoid robot in a grasping task [19], is extended to
flexibly organize timed behaviors.

1) Elementary behaviors: Within DFT, the behaviors
that are organized are elementary behaviors (EB). EBs
consist of two parts, an intention and a condition of
satisfaction (CoS), each of which is represented by a
dynamical node and a dynamic neural field (DNF) (see

Fig. 2. Elementary behavior (EB) in Dynamic Field Theory.
Each EB consists of two parts: the intention represents the desired
change of the EB in the world, while the condition of satisfaction
(CoS) represents the sensory signal expected for the successful
completion of the EB.

Fig. 2). While the intention node simply determines
whether the EB is active or inactive, the intention field
describes the EB’s connection to the world. For instance,
the intention field of an EB ‘move arm’ would represent
desired movement parameters of the arm (e.g., the target
position) and would be connected to its motors.

The CoS field of an EB receives input from the in-
tention field, describing the desired outcome of the EB
(e.g., the end-effector of the arm at the target posi-
tion). Additionally, the CoS field receives input from the
sensory system, describing the current state of the EB
(e.g., the current position of the end-effector). If the two
inputs overlap, a peak forms in the CoS field, signaling
the successful completion of the EB. This peak activates
the CoS node, which in turn inhibits the intention node,
switching off the EB. Explicitly modeling the beginning
and end of an EB in this way allows us to close the
gap between discrete actions and the continuous sensory-
motor streams they are connected to.

2) Generating sequences: By default, all EBs relevant
for a task are activated at the same time. The sequential
organization of EBs derives from constraints that are
represented by dynamic coupling terms and are defined
within pairs of EBs. A precondition constraint prevents
a first EB (e.g., here, the update EB) from becoming
active until a second EB (e.g., here, the movement
EB) is completed. The constraint is represented by a
precondition node, a dynamical node that is activated by
task input and inhibits the intention node of the second
EB. As soon as the first EB is finished, its CoS node
will activate and inhibit the precondition node, releasing
the intention node of the second EB from inhibition and
thereby allowing its execution.

A suppression constraint between two other EBs pre-
vents one of them (e.g., here, the postural EB) from
becoming active while the other (e.g., here, the move-



[Sandamirskaya, Zibner, Schneegans, Schöner: New Ideas in Psychology (2013)]

this detection instability 
in CoS triggers the 
sequential transition by 
inhibiting the intention
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movement to be executed, and d = xtarget − xreal is the
remaining distance.

To summarize, a single timed movement consists of
three separate behaviors: the postural, movement, and
update behavior. In order to function properly, these be-
haviors must be activated and deactivated in the correct
sequence: the initial position must be memorized before
starting to move and the movement has to suppress the
postural behavior. The necessity of organizing behaviors
in time becomes even more apparent when building entire
architectures based on discrete behaviors.

The framework for behavioral organization is based on
DFT, which we now briefly review.

B. Dynamic Field Theory
Dynamic Field Theory (DFT) [16] is a neural variant

of the attractor dynamics approach. We use it here as
an integrating framework between the low level sensory-
motor streams of the robot and the higher level cognitive
functions of the model, for instance its perceptual repre-
sentations and its organization of behaviors.

Within DFT, dynamic neural fields (DNFs) are used to
represent neural activity patterns over continuous, metric
feature dimensions (e.g., color or space). The activation
pattern evolves in continuous time t, as described by the
following dynamic equation, which can be traced back to
Grossberg [17] and was analyzed by Amari [18]

τ u̇(x, t) = −u(x, t) + h + S(x, t)

+
∫

ω(x − x′)f(u(x, t))dx′. (5)

In Eq. 5, u(x, t) describes the activation of a DNF
at feature location x and time t. Without external
input S(x, t), the activation will relax to the resting
level h < 0 and the output of the DNF, given by
the sigmoidal function f(u(x, t)), will be zero. With
sufficient external input, the DNF will produce output as
well as lateral interaction within the feature dimension.
The type of interaction is governed by the interaction
kernel ω(∆x) and comprises local excitation and global
or mid-range inhibition, promoting the formation of
localized peaks of activation. Within DFT, such peaks
are the units of representation for motor parameters,
perceptual items, and memory items.

A zero-dimensional DNF is a dynamical node that
represents a discrete instance of a percept or behavior.

C. Behavioral organization
A framework for behavioral organization based on

DFT, previously introduced and implemented on a hu-
manoid robot in a grasping task [19], is extended to
flexibly organize timed behaviors.

1) Elementary behaviors: Within DFT, the behaviors
that are organized are elementary behaviors (EB). EBs
consist of two parts, an intention and a condition of
satisfaction (CoS), each of which is represented by a
dynamical node and a dynamic neural field (DNF) (see

Fig. 2. Elementary behavior (EB) in Dynamic Field Theory.
Each EB consists of two parts: the intention represents the desired
change of the EB in the world, while the condition of satisfaction
(CoS) represents the sensory signal expected for the successful
completion of the EB.

Fig. 2). While the intention node simply determines
whether the EB is active or inactive, the intention field
describes the EB’s connection to the world. For instance,
the intention field of an EB ‘move arm’ would represent
desired movement parameters of the arm (e.g., the target
position) and would be connected to its motors.

The CoS field of an EB receives input from the in-
tention field, describing the desired outcome of the EB
(e.g., the end-effector of the arm at the target posi-
tion). Additionally, the CoS field receives input from the
sensory system, describing the current state of the EB
(e.g., the current position of the end-effector). If the two
inputs overlap, a peak forms in the CoS field, signaling
the successful completion of the EB. This peak activates
the CoS node, which in turn inhibits the intention node,
switching off the EB. Explicitly modeling the beginning
and end of an EB in this way allows us to close the
gap between discrete actions and the continuous sensory-
motor streams they are connected to.

2) Generating sequences: By default, all EBs relevant
for a task are activated at the same time. The sequential
organization of EBs derives from constraints that are
represented by dynamic coupling terms and are defined
within pairs of EBs. A precondition constraint prevents
a first EB (e.g., here, the update EB) from becoming
active until a second EB (e.g., here, the movement
EB) is completed. The constraint is represented by a
precondition node, a dynamical node that is activated by
task input and inhibits the intention node of the second
EB. As soon as the first EB is finished, its CoS node
will activate and inhibit the precondition node, releasing
the intention node of the second EB from inhibition and
thereby allowing its execution.

A suppression constraint between two other EBs pre-
vents one of them (e.g., here, the postural EB) from
becoming active while the other (e.g., here, the move-
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back to the DFT model 

the DFT model we have so far clearly is an 
instance of the positional model

in which a positional context (ordinal node) is 
associated with the contents of an item

the generic mechanism makes this link more 
explicitly as a neural (synaptic) association
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Autonomous sequence generation

discrete events in 
time are 
autonomously 
generated

when the world 
matches the 
intention: condition 
of satisfaction

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]
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Figure 11: One run of the robotic demonstrations. A: Time-courses of activation of five ordinal nodes during
sequence learning and production. B: Time-course of activation in the action field. Positive activation in the
field encodes the color currently searched for. C: Time-course of activation in the condition of satisfaction
field. Arrows mark the times when condition of satisfaction signals were emitted (detection instabilities in
the field). D: The projection of the perceptual color-space field onto the spatial dimension (horizontal axis of
the image plane). The arrows mark times when the object of interest in each ordinal position first appeared
in the visual array of the robot. The “random search” behavior changed to “approach target” behavior at
these points.
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The multi-dimensional DFT model
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Generation of a grasping sequence
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[Duran, Sandamirskaya, 2014]



Neural Dynamic Architectures

that we reviewed earlier… all use the CoS 
mechanism



A neural dynamics resolves spatial language about visual scenes 3

Fig. 2. Overview of the architecture, showing the activation state when answering the
question “What is to the right of the green object?” on the scene in Fig. 1. On the right,
dynamic fields are shown as color-coded activation patterns (blue for lowest, red for
highest activation). On the left, dynamic nodes are denoted as circles with activation
levels indicated by fill color opacity. The three-dimensional perceptual field is shown
as slices through the activation pattern for the colors orange and green. Excitatory
synaptic connections are denoted by arrows, inhibitory connections by lines ending in
circles. Arrows marked with stars are patterned connections that encode concepts.

2 Methods

The DFT architecture shown in Fig. 2 can be viewed as one integrated dynami-
cal system, that combines coupled dynamics fields (DFs) supporting perception
with coupled dynamic nodes that instantiate concepts and organize sequential
processing.

2.1 Dynamic fields and dynamic nodes

DFs can be thought of as a temporally and spatially continuous form of neural
networks. Activation fields, u(x, t), over a continuous feature dimension x (e.g.,
hue or spatial position) evolve over time t according to

τ u̇(x, t) = −u(x, t) + h+ S(x, t) +

∫
f(u(x′, t))w(x− x′) dx′,

where τ is a time constant, h < 0 is a resting level, and S(x, t) is external input.
Lateral interactions in the field are homogeneous and can be described as a

[Richter, Lins et al. ICANN 2014]



into the reference and target field and enable these fields to track moving objects even if
spatial attention is currently focused elsewhere.

3.2. Attention

The core of the attentional system consists of two three-dimensional attention fields.
They are defined over the same dimensions as the two perception fields, but their activa-
tion remains below threshold unless additional input arrives from a feature attention field
or a spatial attention field.

Fig. 2. Architecture with activation snapshots while it is generating a phrase about a video. Fields are shown
as color-coded activation patterns; for three-dimensional fields, two-dimensional slices are shown. Node acti-
vation is denoted in opacity-coded circles. Spatial templates are illustrated as color-coded weight patterns
(bottom left). Excitatory synaptic connections are denoted by lines with arrowheads, inhibitory connections
by lines ending in circles. Transformations to and from polar coordinates are marked with a “T.” Steerable
neural mappings are denoted as diamonds.
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[Richter, 
Lins, 

Schöner, 
ToPiC 
(2017)]



Conclusions

I reviewed the mechanism of transitions between 
stable (intentional) state by the condition of 
satisfaction and its underlying dynamical mechanism 
of active transient generation

This is a critical element that enables DFT to account 
for complex sequential behaviors and autonomous 
cognitive processes

This key mechanism sets apart DFT architectures 
from almost all other neural processing accounts


