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Embedding Dynamic Field Theory 
in Neurophysiology
SEB A S T I A N SC HNEEGA NS,  JONA S  L INS ,  A ND GR EG OR SC HÖNER

In the previous chapter, we introduced the 
dynamic field (DF) as a mathematical con-

cept and as a behavioral model. In particular, 
we described how peaks of activation constitute 
attractor states of the dynamical system that serve 
as units of representation. We then showed how 
the transitions between different configurations 
of activation peaks can form the building blocks 
for generating behavior by implementing differ-
ent forms of decisions. Moreover, we claimed that 
the DF is a neural model and that the dynamics of 
activation peaks can therefore explain biological 
mechanisms of behavior generation.

At first glance, however, the concept of a con-
tinuous activation distribution may not appear very 
biological. It lacks some of the key components 
of what is understood to be neural processing in 
biological systems:  There are no actual neurons 
described in the model, nor axons or synapses, and 
activity is not expressed through action potentials. 
Moreover, the form of representation in DFs is con-
ceptually very different from what is typically used 
in models of neural processing, such as classical 
neural networks. In neural networks, the represen-
tations at each level are typically complex patterns 
of activation. Learning procedures are often aimed 
at minimizing the correlation between the activa-
tion values of different neurons so as to maximize 
the amount of information retained in the model 
representation. The resulting activation patterns 
are described by high-dimensional vectors and are 
not easily reducible to a simpler, more comprehen-
sible format. In contrast, in the DF, the neural inter-
action functions actively create a high correlation 
of activation values at neighboring positions. And 
what is represented in a DF can be described—at 
least at a qualitative level—through a few discrete 
values that give the positions of the peaks and are 
easily interpretable in terms of behavioral variables.

This may lead to the impression that the rela-
tionship between DFs and biological neural systems 
takes merely the form of an analogy—that the con-
cept of an activation field is in some way inspired by 
neural activity, but that it does not actually imple-
ment a form of biological neural processing. In this 
chapter, we will show that this is not the case. First, 
we will take a closer look at neural representations 
in biological systems. We argue that the level of 
population activation is the most appropriate level 
to elucidate the link between neural processing and 
behavior. We will show how neural populations 
represent behavioral variables through the distri-
bution of activation among them and discuss the 
concept of population coding. We will show some 
well-studied examples of population representa-
tions in sensory and motor areas of the brain and 
describe empirical results that link experimental 
manipulations of activation distributions in these 
areas to behavioral effects.

Next, we will introduce an analysis method of 
electrophysiological neural data called distribu-
tion of population activation (DPA). This method 
takes the firing rates of a group of neurons from a 
population code representation and transforms 
them into a continuous distribution of activation 
over a feature space, using the neurons’ measured 
or estimated tuning curves. We will describe the 
construction of the DPA in detail for two examples, 
namely, the activity patterns in cat visual cortex 
evoked by simple visual stimuli, and preparatory 
activity for reach movements in the motor and 
pre-motor cortex of macaque monkeys. The results 
of DPA analysis show peak-like activation patterns 
in both the sensory and the motor areas that ref lect 
metric properties of visual stimuli and planned 
reach movements, respectively.

Moreover, DPA analysis of the population 
response in visual cortex reveals signatures of 
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interactions effects. In Chapter  2, we described 
how such interactions bring about the activation 
dynamics in DFs that form peaks and create deci-
sions. Here we will show that lateral interactions 
in DFs are consistent with empirical data and can 
account for the observed activation patterns in 
the visual cortex. In this context, we will present 
an extension of the basic DF model, the two-layer 
field. The two-layer field ref lects more closely the 
biological connectivity within neural populations 
and is particularly aimed at capturing the tempo-
ral details of population dynamics. With this tool, 
we can also demonstrate how to fit activation pat-
terns for the preparation of reach movements in the 
motor cortex with a DF model.

The analysis method of DPA plays a key role in 
all of this by bringing empirically measured popu-
lation responses into the same format used in DF 
models. This makes it possible to directly compare 
activation patterns in DF models with neural data. 
In particular, this method allows us to make test-
able predictions from DF models about activation 
patterns in biological neural populations. The DPA 
method thereby provides the neural grounding for 
the dynamic field theory (DFT), establishing a 
direct link between the level of neural activity and 
DF models of behavior and cognition.

L I N K I NG  N E U R A L  AC T I VAT ION 
T O   P E RC E P T ION,  C O G N I T ION, 
A N D  BE H AV IOR
This section concerns the link between neuro-
physiology and things that actually matter to liv-
ing, behaving biological agents like you and me. Is 
this apple green or red? Where do I  have to move 
my hand to grab it? Some aspect of neural activation 
must ref lect the state of affairs on this macroscopic 
level—the level of perceptual decisions, cogni-
tive states, and overt behavior. As presented in the 
introduction, we believe that this role is played by 
patterns of activation in neural populations. To sub-
stantiate this claim, we need to take a brief detour to 
the realm of single neurons, and then work our way 
up to population-based representations.

To determine the link between the activity of 
a single neuron and external conditions, neuro-
physiologists record the spiking of the neuron via 
a microelectrode placed near (or within) the cell 
while varying sensory or motor conditions in a 
systematic fashion. This could mean, for instance, 
varying the color or position of a visual stimulus or, 
in the motor case, varying the direction of a limb 

movement that an animal has to perform. Not all 
neurons are sensitive to all parameters, so the first 
step is to determine which parameters cause the 
neuron to change its activity level. When we find a 
parameter that reliably affects the spike rate of the 
recorded neuron, we can proceed to assessing the 
exact nature of the relationship. In order to do this, 
the parameter value is varied along the underlying 
dimension and the spike rate for each sample value 
is recorded. The results of this procedure can be 
visualized by plotting spike rate against the param-
eter dimension. An idealized function may be fitted 
to the data points, interpolating spike rate between 
sample values. The resulting curve is called the tun-
ing curve of the neuron.

This technique has revealed that, throughout 
the brain, many neurons share a roughly similar 
type of mapping between parameter dimension and 
spike rate, which is characterized by Gaussian-like 
tuning curves (Figure 3.1). That is, they fire most 
vigorously for a specific “preferred” parameter 
value, while spike rate declines with rising distance 
from that value, reaching the neuron’s activity base-
line for very distant values.

A classic example for these characteristics 
can be found in the visual cortex, where many 
cells respond strongly to bars of light of a par-
ticular orientation and reduce their firing as the 
angle of orientation deviates from that preferred 
value (Hubel & Wiesel, 1959, 1968). Visual cells 
show tuning along other feature dimensions as 
well, such as color (Conway & Tsao, 2009), shape 
(Pasupathy & Connor, 2001)  or the direction of 
motion (Britten & Newsome, 1998). Neurons in 
nonvisual areas exhibit similar properties, such 
as cells in auditory cortex that are tuned to pitch 
(Bendor & Wang, 2005), or cells in somatosensory 
cortex that are tuned to the orientation of tactile 
objects (Fitzgerald, 2006). The most common 
scheme, however, is tuning to locations in physical 
space. In sensory areas, most cells are tuned to the 
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FIGURE  3.1: Schematic illustration of an idealized 
tuning curve.
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position of stimuli on the sensory surfaces, such as 
the retina or skin. For such spatially tuned sensory 
neurons, the range where the tuning curve differs 
from the activity baseline is often referred to as 
the receptive field of the cell, emphasizing that the 
cell’s sensitivity is restricted to a specific region of 
physical space. In turn, the structure of the tuning 
curve in that range is called the receptive field profile 
(Jones & Palmer, 1987; Sherrington, 1906). Spatial 
tuning is found in motor areas as well, where neu-
rons are tuned to locations in motor space, such as 
hand movement targets (Georgopoulos, Kalaska, 
Caminiti, & Massey, 1982)  or saccade endpoints 
(Lee, Rohrer, & Sparks, 1988). Generally, neurons 
tend to be tuned along more than one dimension at 
the same time (e.g., two dimensions of retinal space 
and orientation).

Knowing about the typical response schemes 
of single neurons, only one additional ingredient 
is missing to make the step to population activa-
tion. This ingredient is the scatter of tuning curves 
across the underlying parameter dimensions. 
Typically, there are many neurons with disparate 
preferred values for each of these dimensions, so 
that the tuning curves collectively cover the entire 
dimension. Together with the broad extent and 
large overlap seen in cortical tuning curves, this 
entails that a single input value to the population, 
say, a single color in the visual field, activates a large 
number of neurons. Thus, rather than activating 
only one neuron, even a single color input evokes 
a distribution of activation over the population of 
color-sensitive neurons.

The question, then, is how is this distribution 
“used” by downstream neural areas? Intuitively, the 
representation of our color could still be a matter 
of a single neuron, as it seems possible to discern 
the value from the identity of the most active cell, 
simply discarding the rest of the distribution as 
epiphenomenal activation. This winner-take-all 
scheme faces some problems, however. One is its 
low robustness against noise. An estimate based 
on only one or a few neurons would be highly sus-
ceptible to the variability of neural firing. Which 
neuron is most active would change rapidly due to 
noise, and so would the estimate of the color. The 
mechanism lacks what seems to be a critical feature 
of perception, cognition, and behavior—stability. 
The other major problem is that of ambiguity. With 
bell-shaped tuning curves, spike rate is ambiguous 
in that a particular rate may refer to either one of two 
values (see Figure 3.1). Even worse, most neurons 

are sensitive to more than one parameter dimen-
sion, making their tuning curves multidimensional 
and their spike rate even more ambiguous. With a 
two-dimensional Gaussian tuning curve, for exam-
ple, a particular spike rate may refer to any position 
on a circle surrounding the cell’s preferred value.

So, in sum, single cells do carry some infor-
mation about the kind of events that interest us, 
but each neuron provides only a fraction of the 
full picture. This view receives additional support 
from explicit measures of the predictive power 
of single-cell responses for actual psychophysi-
cal decisions (Cohen & Newsome, 2009). The 
single-neuron level is thus not the level we want to 
consider when trying to find a reliable link between 
neural activation and the macroscopic neural 
decisions that bring about concrete, observable 
behavior.

The alternative is to widen the scope to a 
multi-neuron or population level. This seems a rea-
sonable thing to do, given that both of the above 
problems stem from basing an estimate on too 
few neurons. Unsurprisingly, then, the idea has 
been long-standing that perceptual and behavioral 
events are captured by patterns of activation within 
populations of neurons rather than by single neu-
rons. The basic rationale behind population coding 
is that the properties of perceptual, behavioral, and 
cognitive events are ref lected by the distribution 
of activation over populations of tuned neurons 
(Erickson, 1974). Figure 3.2 provides a simple out-
line of this idea.

Figure  3.2a shows the tuning curves of three 
hypothetical neurons A, B, and C—let’s say they 
are tuned to color. Values 1, 2, and 3 then cor-
respond to different hues that elicit different 
responses in the three neurons. When hue value 1 
is presented, for example, neuron A responds only 
weakly, but still stronger than the other two neu-
rons. Value 2 is close to neuron A’s preferred hue 
and therefore drives the neuron strongly, while B 
responds weaker and C is nearly silent. Note that 
each hue drives multiple neurons. Figure 3.2b illus-
trates the problem of ambiguity by showing each 
neuron’s spike rate in response to the different hue 
values. In this example, the response of neuron B 
is identical for hue value 2 and hue value 3, mak-
ing it impossible to discern from its activity which 
of the two colors is present (even in the absence of 
noise). Figure 3.2c contrasts this by reordering the 
responses by hue value, that is, by showing the dis-
tribution of activation over our toy population for 
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each input value. In contrast to the individual neu-
rons’ activation, the distribution is unique for each 
of the three values, thus specifying the respective 
value unambiguously. So by using the aggregated 
activation of many neurons it is possible to over-
come the problem of ambiguity. In our example, 
the actual hue can be derived from the activity of 
multiple differently tuned neurons—just as a target 
location on a street map can be inferred from its dis-
tance to multiple other locations.

Conveniently, the solution to the noise problem 
comes easily with this scheme, because the random 
variability of individual neurons tends to be aver-
aged out when activation is integrated across many 
neurons. Thus, population coding solves both prob-
lems at once. However, to see if the principle actu-
ally applies in the nervous system, we need to assess 
whether population activation is really linked to 
behavior as closely as we claim (where behavior may 
also indicate the outcome of perceptual decisions 
or other cognitive processes). The crucial ques-
tions are: Does population activation really predict 

behavior more reliably than single neurons? Do all 
active neurons impact behavior? A large body of evi-
dence suggests that the answer to both questions is 
yes (e.g., Cohen & Newsome, 2009; Georgopoulos, 
Kettner, & Schwartz, 1988; Groh, Born, & Newsome, 
1997; Lee et al., 1988; Nichols & Newsome, 2002). 
We will consider two exemplary experiments.

Lee and colleagues (1988) demonstrated 
population coding in the superior colliculus, a 
subcortical structure that plays a decisive role in 
the preparation and initiation of saccades (rapid 
gaze shifts that serve to bring a location from the 
retinal periphery to the fovea). The superior col-
liculus is organized topographically; that is, visual 
space is mapped orderly onto its surface. Tuning 
to the angular direction of saccades varies along 
its lateral–medial axis, and with respect to sac-
cade amplitude, in an anterior–caudal direction. 
Unfolding and f lattening the superior colliculus 
thus yields a roughly rectangular map of saccadic 
motor space, with amplitude on one axis and direc-
tion on the other (Figure 3.3).
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FIGURE  3.2: Neural representations of metric values. (a) Tuning curves of three hypothetical neurons A, B, and 
C. Values 1, 2, and 3 are different values of a sensory or motor parameter that the neurons respond to, according to the 
tuning curves. (b) Responses to the different values, ordered by neurons. On the single-neuron level, different param-
eter values can evoke identical responses (e.g., value 2 and 3 in neuron B). (c) Same schema as in b, but ordered by input 
values, thus showing activation distributions in the population evoked by each of the three values. The distributions are 
unique for each value.
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Following the typical scheme, the tuning of 
neurons in the superior colliculus is broad, so that 
a large number of neurons fire for each saccade. 
Given the topographical layout we can expect that 
when the metrics of a saccade are specified, the 
active neurons are clustered together in one spatial 
region of the superior colliculus. This was exactly 
what Lee and colleagues found when recording the 
activity of cells in the superior colliculi of monkeys. 
Prior to each saccade a circular blob of activation 
forms in the topographical map. Neurons located 
in the region of the map that corresponds to the 
saccade target are most strongly activated, while 
the level of activation decreases toward the blob’s 
periphery. The red circle in Figure  3.3a outlines 
the approximate extent of an activation blob that 
results in the saccade illustrated by vector A (black 
arrow on the right). B and C mark the centers of 

activation blobs that result in the saccade vectors 
labeled accordingly.

It seems intuitively clear that these local-
ized peaks indicate the metrics of saccades, but to 
test the population coding hypothesis we need to 
determine whether the actual saccade target really 
depends on all active neurons, including the weakly 
activated ones at the periphery of the blob. To 
examine this, Lee and colleagues induced saccades 
by presenting visual targets to their monkeys while 
inactivating either peripheral or central portions 
of the activation blob with a local anesthetic. They 
then assessed how this deactivation impacted the 
resulting saccades.

Figure 3.3b shows the result of deactivating the 
center of the blob (blue dot), that is, the most active 
neurons. The resulting saccade (red arrow) is iden-
tical to the one without deactivation. Apparently, 
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FIGURE 3.3: Results of experiments of Lee et al. (1988). Each subfigure shows a f lattened version of the topographical 
motor map of the left superior colliculus. Red letters mark the centers of activation blobs observed for different saccades, 
which are depicted by the correspondingly labeled vectors on the right. Red circles mark the approximate extent of acti-
vation blobs centered on the middle of the circle. Blue dots mark regions that were deactivated in the experiments. (a) 
Activation centers observed for the saccades on the right, without deactivation. (b) A visually evoked saccade to the tar-
get described by vector A is not altered by deactivating the blob center. The weighted average of B and C provides a suf-
ficient estimate of A. (c) A visually evoked saccade to the target described by vector B is altered when the peripheral blob 
region that corresponds to A is deactivated. The resulting saccade is now guided by a weighted spatial average of B and 
D. Adapted by permission from Macmillan Publishers Ltd: Nature, Lee, C., Rohrer, W. H., & Sparks, D. L., Population 
coding of saccadic eye movements by neurons in the superior colliculus, 332(6162), 357–360, copyright 1988.
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the average of the remaining ring of activation pro-
vides a sufficient, unbiased estimate of the saccade 
parameters (suggested by the fact that the actual 
saccade vector is the average of B and C). This is a 
first hint that weakly activated neurons inf luence 
motor outcomes. However, of greater interest is the 
outcome of deactivating peripheral blob regions, 
illustrated in Figure 3.3c. Again, the region around 
A is deactivated, but this time the visual target is at 
another location, B. Because the neurons at the cen-
ter of the blob are active as usual, a winner-take-all 
scheme would predict that the saccade is unaf-
fected and lands at B.  Instead, the saccadic end-
point is shifted away from the visual target toward 
the preferred values of the still active population 
(red arrow). Thus, the decisive variable seems to 
be not greatest activation but the overall location 
of the activation blob, with more active neurons 
being weighted more strongly when determining 
it. Taken together, this suggests that a spatial aver-
aging scheme is at work in the superior colliculus, 
with all active neurons contributing.

Another line of evidence shows that popu-
lation coding is also employed in areas that are 
non-topographically organized. Neurons in the arm 
area of the motor cortex are tuned to a continuous 
metric dimension, namely, to the direction of arm 
movement, but their spatial arrangement in the cor-
tex does not follow any obvious spatial scheme. The 
tuning characteristics were examined by Schwartz, 
Kettner, and Georgopoulos (1988). They recorded 
the activity of motor cortical units while monkeys 
executed an arm movement task. In each trial, the 
monkey had to move its hand from a central start-
ing button to one of eight target buttons. The tar-
get buttons were distributed in three-dimensional 
space, equidistant from the starting button, sam-
pling the continuum of possible movement direc-
tions. Schwartz and colleagues found that each cell 
responds maximally to a specific preferred direc-
tion. As the angle between this preferred direction 
and the actual movement direction increases, spike 
rate declines, following a cosine tuning curve. Here, 
as in the superior colliculus, neurons are tuned very 
broadly, so that any particular movement direction 
activates many neurons, including neurons that 
have preferred directions very different from the 
current one.

In the next step, Georgopoulos, Kettner, 
and Schwartz (1988) examined whether move-
ment direction really depends on the entire active 
population. As the motor cortex is not organized 

topographically, however, it is not possible to inacti-
vate specific regions of the motor map—anesthesia 
administered to a patch of cortex would deactivate 
neurons with very different preferred directions. To 
overcome this issue, a vector was derived for each 
neuron from the directional tuning data obtained 
in the first experiment describing the respective 
neuron’s preferred movement direction. This made 
it possible to construct a population vector (Box 3.1, 
Figure 3.4) for each observed movement direction.

The population vector is obtained by summing 
the preferred direction vectors of all neurons that 
were active for a movement in the considered direc-
tion. Importantly, before summing the vectors, each 
neuron’s preferred direction vector is weighted by 
the neuron’s spike rate. Thus, more active neurons 
contribute more strongly to the population vector. 
Finally, the population vector for each movement 
was compared to the actual arm movement that the 
monkey performed.

If all active neurons are relevant for specifica-
tion of the movement, then a prediction of that 
movement should become more accurate the more 
neurons are included in the population vector. 
Georgopoulos and colleagues found that this is 
indeed the case, strongly suggesting that the motor 
cortex does use population coding.

Although it is not possible to observe a spa-
tially circumscribed blob of activation in the motor 
cortex, due to its non-topographical layout, a peak 
can be derived by taking as a basis the dimensions 
along which the neurons are tuned. Viewed as a 
distribution over the space of possible movement 
directions, activation takes the form of a perfectly 
localized peak that specifies the current value by 
its position in that space. Thus, although the peak 
is distributed over physical space in the cortex, it is 
functionally equivalent to the localized peaks in the 
superior colliculus.

These examples are prototypical for many areas 
in the nervous system. The groundbreaking find-
ings have sparked interest in the concept of popula-
tion representations, and subsequent research has 
shown that, in addition to increasing robustness 
and reducing ambiguity, the properties of popula-
tion representations satisfy basic requirements of 
perception, behavior, and cognition. For example, 
neural populations can support multiple activa-
tion peaks, indicating several values simultane-
ously (Harris & Jenkin, 1997; Nichols & Newsome, 
2002; Pasupathy & Connor, 2002; Treue, Hol, & 
Rauber, 2000). This may set the stage for things like 



BOX 3.1 COMPUTING THE POPULATION VECTOR

To calculate population vectors for a set of motor cortical neurons, it is first necessary to deter-
mine the preferred direction vector of each neuron in the set. Second, one needs to measure the 
response of each neuron to movement in the direction for which the population vector is to be 
computed. The population vector can then be obtained by weighting each preferred direction 
vector with the respective neuron’s activity and summing the weighted vectors (Georgopoulos 
et al., 1986).

More precisely, the weight for the ith neuron in the set, w Mi ( ), is calculated by

w M d M bi i i( ) = ( ) −

where d Mi ( )  is the spike rate of the ith neuron in response to movement direction M, and bi  
is the neuron’s baseline spike rate (a constant). Thus, only activity above or below the baseline 
is taken into account.

Next, the vectorial contribution of each neuron, N Mi ( ), is obtained by multiplying the neu-
ron’s preferred direction vector Ci  by the corresponding weight:

N M w M Ci i i( ) = ( )

If a neuron’s response to movement direction M was above its baseline rate, this vector 
points in the preferred direction of the neuron, whereas it points in the opposite direction if the 
response was below baseline. The length of the vector (i.e., how strongly a neuron contributes 
to the population vector) is scaled depending on the absolute strength of the response.

Finally, to obtain the population vector for a movement direction M, P(M), the vectorial con-
tributions of all neurons are summed:

P M N M
i

i( ) = ( )∑ .
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FIGURE 3.4: Schematic illustration of the population vector method. (a) Idealized tuning curves over movement direc-
tion (reduced to two-dimensional reaching space for simplicity) of eight motor cortex neurons. (b) Vector representation 
of the preferred directions of the eight neurons (arrow color corresponds to curve color in panel a). Note that the pre-
ferred direction vectors are normalized to equal length. (c) The same vectors, but individually weighted by the respective 
neuron’s spike rate during a reaching movement into the angular direction of about 70°. Each weighted vector represents 
the respective neuron’s contribution to the population vector (large red arrow).
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visual stimuli competing for attention, motor acts 
competing for execution, or multiple items being 
retained in working memory. Moreover, neural 
populations are highly sensitive to weak input and 
respond faster to weak inputs than single neurons 
(Tchumatchenko, Malyshev, Wolf, & Volgushev, 
2011). This again is a property related to noise: The 
membrane potential of neurons tends to f luctuate 
randomly, so that a given input might sometimes 
drive the neuron to threshold (when it happens to 
be close to threshold), but sometimes might fail to 
do so (when it happens to be far from threshold). 
Recalling that in tuned populations a given input 
potentially impacts many neurons, it is clear that at 
least some of these neurons will quite probably be in 
the right state when the input arrives. This is analo-
gous to an array of low-light sensors where each 
one individually has a low probability of detecting 
a burglar, whereas with the whole array in place, the 
burglar will be detected almost certainly.

Taken together, the findings illustrated here 
argue for the importance of population-based rep-
resentations in the nervous system. The peak-like 
structure of the activation distributions hints at 
parallels with DFs. The next sections elaborate 
further on this link and complete the grounding of 
DFT in neurophysiology, by looking more closely 
at the structure of population activation and how it 
maps to DFs.

DE R I V I NG  C ON T I N UOUS 
AC T I VAT ION  DI ST R I BU T IONS 
F RO M   N E U R A L  R E SP ONSE S
Motivation for the DPA Approach
The population code representations in the brain 
form the biological basis for DFs. We contend 
that this level of analysis—neural population 
representations—is also the most appropriate level 
at which to establish formal links between brain and 
behavior. Dynamic field theory provides a frame-
work that makes this link functional. However, as 
it stands, there is still a significant gap between bio-
logical neural populations and DFs. The formats of 
representation are fundamentally different. On the 
one hand, we have a collection of spiking neurons, 
while on the other hand, there is a distribution of 
activation, continuous over space and with con-
tinuous activation values. This discrepancy makes 
it difficult to directly compare the DF model with 
neural data obtained from experiments, or to make 
any concrete predictions about neural activity pat-
terns from the model.

The first steps to bridge this gap have already 
been described for the computation of the popula-
tion vector. The discrete spiking events of biologi-
cal neurons can be converted into a firing rate to 
obtain a continuous activation variable. And by 
interpreting the activity of individual neurons as 
standing for certain metric feature values, a step is 
taken toward a representation over feature space. 
What is still missing here is the transition from a 
set of discrete values to the continuous activation 
distributions that form the basis for dynamic field 
theory. Intuitively, this step from the distributed 
representations in population codes to actual acti-
vation distributions may appear straightforward. 
However, a mathematically consistent formula-
tion of this transition is not trivial. In the follow-
ing sections, we will describe a formal method that 
constructs continuous distributions of population 
activation (DPA) from experimentally measured 
neural response properties.

To explore this approach and contrast it with 
other methods, let us look again at the popula-
tion vector calculation of Georgopoulos and col-
leagues (Georgopoulos, Schwartz, & Kettner, 
1986), which constitutes one standard approach 
to analyzing what is encoded in a neural popula-
tion. In the initial study, the aim of this approach 
was to estimate the direction of a planned reach 
movement from the recordings of many motor 
neurons with different tuning curves which collec-
tively form a population representation of a reach 
plan. In the population vector calculation, each 
neuron “stands” for its preferred movement direc-
tion. To estimate the movement vector encoded 
at a certain time by the whole population, these 
preferred movement directions are weighted with 
the firing rate of the corresponding neurons, and 
the average of these weighted direction values is 
determined. The population vector is a powerful 
tool for analyzing population activity and has been 
used successfully under many different experi-
mental conditions to estimate what is encoded by 
an ensemble of neurons. However, as we shall see, a 
lot of relevant information is lost when the full dis-
tribution of activity over the population is reduced 
to a single mean value in the computation of the 
population vector.

The first aspect lost in the reduction to a pop-
ulation vector is the width and shape of the dis-
tribution of activation. A  movement plan with a 
particular reach direction, for instance, may be 
encoded either by a small group of neurons that 
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have strongly overlapping tuning curves and are 
all strongly activated or, alternatively, by a larger 
ensemble of neurons that are only moderately acti-
vated and whose tuning curves are distributed over 
a larger range of movement directions. These dif-
ferent distributions may yield the exact same popu-
lation vector. However, one of the studies discussed 
later here (Bastian, Schöner, & Riehle, 2003) found 
significant correlations between the concentra-
tion of activation for a certain movement direction 
and the time of movement initiation. This strongly 
indicates that the shape of activation distributions 
matters for the generation of behavior, and not just 
where the population vector points. To understand 
how overt behavior arises from neural processes, we 
must also capture these details of activation distri-
butions in our models.

The second aspect that is lost when calculating 
the population vector is multimodal distributions 
of activity:  A  neural population can, in general, 
represent multiple values—such as different move-
ment directions—at the same time. An instance 
of this has been described by Cisek and Kalaska 
(2005). Monkeys were presented with two poten-
tial reach targets, located in opposite directions 
from their initial hand positions—for instance, at 
directions of 90° and 270°. A color signal shown at 
the end of a delay period indicated which of them 
would yield a reward when reached toward. During 
this delay period, a bimodal distribution of activity 
was found in the investigated neural population in 
the pre-motor cortex. There was one group of active 
neurons whose tuning curves overlapped with the 
90° direction, so their activity ref lected the loca-
tion of one possible target. A second group of active 
neurons within the population, with tuning curves 
covering the reach direction of 270°, ref lected the 
location of the second potential target. When a 
single population vector is calculated for such a 
representation, it averages over the prepared move-
ment directions and yields a misleading estimate of 
the encoded value. If two opposite directions are 
encoded in the neural population, such as in this 
example, they may cancel each other out in calcula-
tion of the average. The resulting direction of the 
vector will then be determined by small asymme-
tries in the activity distribution and be largely ran-
dom. Alternatively, if two different, non-opposite 
directions are encoded, the population vector will 
indicate a direction in the middle between these 
two, which is not actually supported by the popula-
tion activity.

In the next sections we present a method for 
analysis of neural population representations that 
aims to preserve the full activity distribution. In 
this approach, a DPA over a feature space is con-
structed from the tuning curves of neurons. The 
method can be applied to investigate the shape of 
unimodal activity distributions and their evolution 
over time, and likewise deal with multimodal distri-
butions that appear if multiple values are encoded 
in a population. Beyond its use in analyzing and 
interpreting neural data, the DPA provides a direct 
link to DF models. We will describe the derivation 
of the DPA and its application in the analysis of neu-
ral activity patterns for two exemplary cases:  the 
representation of visual stimuli in the primary 
visual cortex (Jancke et al., 1999) and planning of 
reach movements with incomplete prior informa-
tion (Bastian, Riehle, Erlhagen, & Schöner, 1998; 
Bastian et al., 2003). For both cases, we will show 
DF models that can reproduce the experimentally 
observed activation patterns and explain how their 
shapes come about.

Construction of DPAs from Gaussian 
Tuning Curves
Jancke and colleagues (1999) recorded activity 
from neurons in the primary visual cortex of cats 
and used the DPA method to investigate the effects 
of neural interactions on early visual representa-
tions. To this end, activity distributions in response 
to single visual stimuli at different retinal locations 
were compared to the activity evoked by two stim-
uli presented simultaneously. First we will describe 
the application of the DPA method for single visual 
stimuli and then, in a later section, return to this 
study to discuss further results.

The first step in the construction of the DPA 
is to estimate the tuning curves of the neurons 
under investigation. Jancke and colleagues only 
considered the spatial tuning of the neurons, 
ignoring other visual features like orientation and 
spatial frequency that are also ref lected in the 
activity of visual cortex neurons. Thus, the tuning 
curves measured experimentally corresponded to 
the spatial receptive fields of visually responsive 
neurons. Neural recordings were performed extra-
cellularly in the foveal part of area 17 of anesthe-
tized cats while visual stimuli were presented on 
a screen to the contralateral eye. Receptive fields 
were determined for a total of 178 cells and data 
were recorded for different stimulus conditions. 
Note that these 178 cells represent only a small 

 



70 Fou n dat ions  of Dy na m ic  Fi e l d T h eory

sample from the complete neural population in 
that cortical area, but they were sufficient to pro-
vide an estimate of the population activity as a 
whole. The receptive field center of every neuron 
was first estimated manually by stimulation with 
a light point and simultaneous observation of the 
neuron’s firing rate. The resulting rough estimate 
of the neurons’ receptive field center was then 
used as the basis for a more precise assessment, 
illustrated in Figure 3.5. A  6×6 grid of stimulus 
positions was placed over the estimated recep-
tive field center, and the neuron’s response was 
recorded while a small disk of light was brief ly 
f lashed at each grid location. The response profile 
obtained in this way was smoothed by a convolu-
tion with a Gaussian function, and a more precise 
estimate of the receptive field center was deter-
mined by calculating the center of mass of the 
smoothed profile.

The tuning curve of each neuron was then 
approximated by a Gaussian function of fixed width 
(ref lecting the approximate average receptive field 
width), centered over the cell’s receptive field cen-
ter. A comparable procedure was also used by Cisek 
and Kalaska (2005), in their work on movement 

preparation mentioned earlier. We would note, 
however, that information on the exact shape of the 
neuron’s receptive field is lost in this step. This is 
a compromise taken due to signal noise and a lim-
ited number of measurements on each cell: While 
it would be desirable to take into account the exact 
shape of each neuron’s receptive field, the approxi-
mation by a Gaussian function of uniform shape 
provides greater robustness of the estimation. 
A slightly different approach that uses the full mea-
sured tuning curves for each neuron is presented 
in the second exemplary study later in this chap-
ter, and an alternative method for constructing the 
DPA that avoids this problem is described later in 
Box 3.4.

A DPA can now be constructed from the 
tuning curves for any stimulus condition and 
any time period of the stimulus presentation for 
which the neural responses have been recorded. 
To this end, the average firing rate of each neu-
ron for the selected condition is determined and 
normalized to a fixed range. The tuning curve for 
each neuron is then weighted with the neuron’s 
normalized firing rate, and the weighted tuning 
curves are summed. A  schematic illustration of 
this process for one-dimensional tuning curves 
is shown in Figure  3.6. The unweighted tuning 
curves of four neurons are shown in different 
shades of green. These are then scaled with the 
neurons’ firing rates (indicated by the length of 
the vertical black bar centered on each curve) to 
obtain the weighted tuning curves (blue). Finally, 
all of these weighted curves are summed to obtain 
the DPA, shown in red. Box  3.2 provides a for-
mal mathematical description of the complete 
method.

Since each of the estimated tuning curves for 
the visual cortex neurons is a Gaussian function 
defined over the two-dimensional visual space, 
the obtained sum is likewise a distribution over 
visual space. This distribution yields an activation 
value for each position, even if no specific neu-
ron has its receptive field center at that position. 
The activation value ref lects how many tuning 
curves overlap at this point and how strongly the 
corresponding neurons are activated. It thereby 
provides a measure of how strongly the popula-
tion activity supports the notion that a stimulus is 
present at that location. The sum of the Gaussian 
curves generally yields a smooth activation distri-
bution in which regions of high activation result 
from the combined contributions of multiple 

3.84°
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FIGURE  3.5: Determining visual tuning curves of neu-
rons. A  grid of 6×6 stimulus locations (a) was used to 
measure the receptive field of each neuron. It was centered 
on a coarse estimate of the receptive field obtained with 
the response plane technique. The profile constructed 
from responses to the grid stimuli (b) was smoothed with 
a Gaussian filter (c). The center of mass of this smoothed 
profile is then used as location of the neuron’s tuning 
curve, modeled by a Gaussian function of fixed width. The 
firing rate of each neuron (indicated in the figure by bars 
of different lengths, located at the tuning curve center) is 
associated with this tuning curve for the construction of 
the DPA. Adapted from Jancke et al., 1999.
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FIGURE 3.6: Schematic illustration of construction of a DPA from neural tuning curves. The normalized tuning curves 
of individual neurons (different shades of green) are plotted over the feature space under consideration (retinal position 
or reach direction in the examples treated here). These tuning curves are weighted with the neural firing rate from one 
experimental condition (black bars centered on the curves, with blue curves showing result of the weighting). The DPA 
is then computed as the sum of the weighted tuning curves (red). Additional normalization steps are often applied to the 
DPA to compensate for uneven distribution of tuning curves over the feature space (in this example, tuning curves lying 
more densely in the center of the depicted space).

BOX 3.2  CONSTRUCTION OF A DPA FROM GAUSSIAN 
TUNING CURVES

In the work of Jancke et al. (1999), the distribution of population activation (DPA) for visual rep-
resentations is constructed from idealized Gaussian tuning curves. For each neuron i, the cen-
ter of its receptive field, mi x i y im m= ⎡⎣ ⎤⎦,, , , in the two-dimensional visual space is estimated. The 
neuron’s tuning curve fi  over the two-dimensional visual space is approximated by a Gaussian 
function with fixed width σ:
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To construct the DPA for a certain stimulus condition a and time interval t, the tuning curve 
of each neuron is weighted with the neuron’s firing rate for that condition and time period. The 
raw firing rate, !r a ti ,( ), is first normalized by subtracting the baseline activity bi  and scaling it 
depending on the maximum firing rate mi,
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This yields a normalized firing rate, r a ti ,( ), that is always in the range [0,1]. A non-normalized 
activation distribution ũ is obtained as the sum of the weighted tuning curves:

!u x y r a t f x y
i

i i, , ,( ) = ( ) ( )∑

To obtain the DPA u, the distribution ũ is again normalized by dividing it by the unweighted 
sum of all tuning curves (to account for non-uniform sampling of the visual space by the 
selected neurons):
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activated neurons with overlapping tuning curves, 
instead of forming only at the receptive field cen-
ters of individual neurons. This is shown in Figure 
3.7. Figure  3.7b depicts the overlapping recep-
tive field outlines for a small sample of neurons, 
overlaid over the stimulus display. The resulting 
smooth DPA (computed from all measured neu-
rons) during the presentation of a single stimulus 
can be seen in Figures 3.7c and d.

To obtain the final DPA, an additional nor-
malization step is necessary. The neural data 
stem from a random (and quite limited) sample of 
neurons from a large population, and one cannot 
generally assume that the tuning curves of these 
neurons are distributed equally over the visual 
space. We may, for instance, have one cluster 
of neurons in the sample with strongly overlap-
ping spatial tunings, such that the correspond-
ing region in visual space is overrepresented. 
Other regions, by contrast, may be covered only 
sparsely by recorded neurons. An example of 
this is also visible in the schematic in Figure 3.6, 
where the space in the central part of the plot is 
sampled more densely by neurons’ tuning curves. 
Such uneven sampling can create strong biases 
in the computed DPA. If we sum the weighted 

tuning curves of all neurons, those regions in 
feature space that are covered by a large number 
of tuning curves will always tend to produce a 
high activation value, even if the activity of each 
individual neuron is relatively low. In contrast, 
more sparsely sampled regions can never reach 
very high activation values, even if the individual 
neurons show strong activity, because very few 
tuning curves contribute to these activation val-
ues. If we assume that the population as a whole 
represents visual space uniformly, we should 
compensate for such biases. This is achieved 
in the study of Jancke and colleagues by divid-
ing the weighted sum of tuning curves by the 
unweighted sum of all tuning curves. This nor-
malizes the DPA by scaling the activation up or 
down according to the density of the sampling at 
each point in visual space.

We would note that even with this normaliza-
tion, the results will not be meaningful if the num-
ber of recorded neurons used in the construction 
of the DPA is too small. In this case, some regions 
may not be sampled at all by the neurons’ tuning 
curves. Even though the DPA construction will 
always yield some activation value for every point 
in the feature space, these values will not be infor-
mative for regions not sufficiently sampled by the 
recorded neurons. A  very small sample size also 
increases the effects that random noise in the fir-
ing rates of individual neurons as well as single 
neurons with an uncharacteristic response behav-
ior have on the resulting activation distribution. 
Whether the sample of neurons is sufficient cannot 
be seen directly from an individual DPA—which 
will always be a smooth distribution of activation 
over the feature space—but we may judge it by 
comparing the DPAs produced for different stimu-
lus conditions.

Let us now look at the results of the DPA con-
struction that Jancke and colleagues obtained 
for their recordings from cat visual cortex. The 
elementary stimuli used in the experiment were 
small squares of light with an edge length of 0.4° 
of visual angle that were f lashed for 25 ms at one 
of seven horizontally aligned, equidistant loca-
tions at intervals of 0.4° (Figure  3.7a). The DPA 
analysis was applied to the neural response evoked 
by these stimuli, using the neurons’ average firing 
rates over the whole period that a stimulus was 
presented at each of the seven locations. For all 
stimuli, the constructed two-dimensional DPAs 
over visual space show a single, roughly circular 
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(b)Elementary stimuli

FIGURE  3.7: Stimulus conditions and DPA construc-
tion in Jancke et  al. (1999). (a) Elementary stimuli  
(0.4º × 0.4º squares of light) were presented at seven hori-
zontally shifted positions in the foveal part of the visual 
field. (b) Receptive field profiles of neurons (gray circles) 
overlapping and covering the analyzed portion of visual 
space (black box; gray square illustrates one elementary 
stimulus). (c) DPA constructed as weighted sum of tuning 
curves. (d) DPA derived for one elementary stimulus loca-
tion overlaid with the stimulus position (small square). 
Adapted from Jancke et al., 1999.
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peak of activation (Figure 3.8). Moreover, the 
location of the peak center in all cases closely 
matches the retinal location of the stimulus. This 
confirms that the neural activity in the cortical 
area that was recorded from does indeed ref lect 
stimulus location in a population code representa-
tion. It also confirms that the DPA method applied 
on the given sample of neurons is effective in read-
ing out what is being represented by the neural 
population. Moreover, it supports the assumption 
in the DF model that properties of sensory stimuli 
are ref lected through activation peaks in neural 
populations.

In a subsequent analysis, the authors con-
structed a time series of DPAs for each stimulus 
presentation. To this end, they determined aver-
age neural firing rates for brief time segments and 
computed a DPA for each of these. The authors 
found that the peak location remains largely con-
stant as activity rises and falls in response to the 
f lashed stimuli, although representation of stimu-
lus position is less reliable in the latest phases of the 
response. Interestingly, the width of the activation 
peaks in the DPA (measured as standard deviation 
from the center in the normalized distribution) 
consistently increases over the duration of the neu-
ral response. This contradicts earlier findings (e.g., 
Orban, 1984), which posited that the initial broad 
representations formed by feed-forward inputs 
are sharpened over time as a result of recurrent 
interactions.

These initial results demonstrate the validity 
of the DPA method and its use in analyzing neu-
ral data. However, the main scientific question in 
this study was whether the activation distributions 
showed signatures of lateral interactions within 
neural populations in the visual cortex. The role 
of lateral interactions in shaping activation pat-
terns is also a central issue in DFs. We will return 
to this question later in this chapter, where we 
will present additional empirical results from this 

study and show how they can be explained in a DF 
model. Before doing so, however, we will present 
the DPA construction for a second example from 
motor and premotor cortex, in order to show how 
this approach generalizes to cortical populations 
that do not have a topographical organization on 
the cortical surface.

Constructing DPAs for Movement 
Preparation
In the work of Bastian and colleagues (1998, 
2003), the DPA method—with slight varia-
tions compared to the work of Jancke and 
colleagues—was used to investigate the forma-
tion of movement plans in the motor and premo-
tor cortex of macaque monkeys. This example 
from a different domain shows the general 
nature of the DPA approach. For the experi-
ment, monkeys were trained to perform an arm 
movement from a central location to one of six 
target locations arranged equidistantly around 
the center (Figure 3.9). The required reach 
direction on each trial was indicated by illumi-
nating a red LED at the target location. A  pre-
paratory signal, which provided complete or 
partial information about the upcoming reach 
direction, was given 1 second before this defi-
nite reach cue. It consisted of green LEDs being 
illuminated at one, two, or three of the potential 
target locations. These pre-cued locations were 
always contiguous to each other and included 
the ultimate reach target. The goal of the exper-
iment was to investigate how the preparatory 
activity for the reach movement changed with 
different levels of certainty in the provided pre-
paratory signal.

The feature space over which the DPA was 
calculated was the direction of the arm move-
ment. The firing rates of neurons in the motor 
and premotor cortex, described previously to rep-
resent movement direction in a population code 

0.4°

FIGURE  3.8: Two-dimensional DPAs constructed for the neural response to individual visual stimuli, presented at 
seven horizontally shifted locations. DPAs were computed from neural firing rates averaged over the period from 45 to 
60 ms after stimulus onset. The activation level is shown on a color scale normalized to maximal activation separately for 
each stimulus (calibration bar at bottom right). Adapted from Jancke et al., 1999.
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(Georgopoulos, 1995), were measured by extra-
cellular recording. Unlike in the first example, 
the tuning curves of the neurons were not esti-
mated in a separate procedure but were instead 
determined directly from the neural responses 
in the main task. To this end, the reaction time 
period of the experiment was used as a refer-
ence condition. This was done on the basis of the 
assumption that during this time period—after 
the definite movement goal has been presented, 
until the start of the actual arm movement—an 
arm movement to the uniquely indicated target 
is prepared. By averaging over all trials (with dif-
ferent preparatory signals) and over the whole 
duration of this reaction time period, a single 
average firing rate is obtained for each of the six 
target directions.

These f iring rates are assembled into a tun-
ing curve (see Box 3.3 for a formal description). 
Each of the six reach directions in the experi-
ment serves as a node or sampling point for 
the tuning curve over the space of movement 
directions, and the measured average f iring 
rate for that direction yields the tuning curve 
value. These raw tuning curves are then nor-
malized so that they range from 0 to 1.  Note 
that in using this approach, the tuning curves 
do not all have a uniform shape, and individual 

properties like the width of a neuron’s tuning 
are preserved.

Using these tuning curves, we can now again 
construct the DPA for any time period and any 
condition of the experiment from the measured fir-
ing rates of the neurons. The tuning curve of each 
neuron is weighted with the neuron’s firing rate in 
the condition under consideration, and all tuning 
curves are summed. Again, another normalization 
step is necessary to account for the non-uniform 
sampling of the feature space by the neurons’ tun-
ing curves. If there is a higher density of tuning 
curves for one reach direction than for others, this 
will introduce a bias in the resulting DPA, even if 
each tuning curve itself is normalized. In a situation 
where each contributing tuning curve is assigned 
the same weight, the activation would still be higher 
for the more densely sampled region. Bastian and 
colleagues employed a subtractive normalization 
(or baselining) in which they determined a DPA 
for a baseline condition (before the presentation of 
any stimuli) and subtracted it from the DPAs in all 
other conditions.

Examples of DPAs constructed in this way are 
shown in Figure  3.10a–c. Note that these DPAs 
appear less smooth than those constructed from 
idealized Gaussian tuning curves for visual cor-
tex neurons (e.g., Figure 3.8). This is because 
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FIGURE 3.9: Reach task with pre-cues. Macaque monkeys were trained to make reach movements from a central man-
ual fixation position to six possible target positions arranged on a circle around the fixation point. After the monkey 
held its hand on the central point (light gray circle, left), pre-cues were presented at one (a), two (b), or three (c) con-
tiguous target locations (darker gray circles, middle). After an additional delay, a definite reach cue was shown at one of 
the pre-cued locations and the monkey had to execute a reach movement (dark gray circle, right). PS: preparatory sig-
nal, RS: response signal, MVT: movement onset, PP: preparatory period, RT: reaction time. From Bastian, Schöner, &  
Riehle, 2003.
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the neural tuning curves used here only specify 
the firing rates for six movement directions, cor-
responding to the six reference conditions in the 
experiment. No interpolation or function fitting 
was employed to estimate firing rates for inter-
mediate movement directions. The resulting 
DPA then yields activation values only for these 
six directions, rather than providing a continuous 
distribution over the space of movement direc-
tions. In order to increase the spatial resolution of 
the DPA, we would have to increase the number 
of reference conditions. Adding more neurons, by 
contrast, would produce a more reliable estimate 
of the actual activity distribution in the whole 
population but would have no effect on the spatial 
resolution of the DPA.

While a DPA constructed directly from mea-
sured neural firing rates appears less smooth 
than one that is based on idealized Gaussian 

tuning curves, it can nonetheless provide a rep-
resentation of the neural population activity. As 
in the previous example, it can form f lat distribu-
tions in the absence of strong activity, localized 
peaks, or multimodal distributions. It is in fact 
a more accurate representation of population 
activity, since the individual shape of each neu-
ron’s tuning curve is preserved in the computa-
tion of the DPA.

It is informative to first look at the DPAs for the 
reference conditions themselves, that is, the reac-
tion time periods for reaches to the six target loca-
tions. If the neural population sampled from does 
indeed provide a population code representation 
of movement direction, then the resulting DPAs 
should ref lect the actual reach direction in those 
conditions. This was indeed the case:  The con-
structed DPAs showed a single peak at or close to 
the reach direction for all target locations (averaged 

BOX 3.3  CONSTRUCTION OF A DPA FROM FIRING RATES 
IN REFERENCE CONDITIONS

In the work of Bastian et al. (2003), the tuning curves over the space of reach directions are 
obtained directly from the neural firing rates in the reference conditions (reaction time phase 
of each trial). For each neuron i, the raw tuning curve !fi is defined at the six possible reach 
directions x kk, , ,∈ …{ }1 6  as

!f x r x ti k i k( ) = ( ), rtp

Here, r x ti k, rtp( ) is the mean firing rate of neuron i during the reaction time period in a single 

trial with reach direction xk, and .  denotes the average over all trials. The tuning curves fi  for 
the construction of the distribution of population activation (DPA) are derived from these raw 
tuning curves by normalization to the interval [0,1].

The non-normalized DPA ũ is then determined for any condition a and time interval t as 
weighted sum of the tuning curves:

!u x r a t f x
i

i i( ) = ( ) ( )∑ ,

Here, r a ti ,( ) is the mean firing rate of neuron i for the given condition and time interval, 
averaged over trials. Note that the activation distribution is only defined at the original reach 
directions xk used in the reference conditions; for other points along the space of possible reach 
directions an estimate can only be obtained by interpolation.

As a form of normalization (or, more precisely, baselining), another DPA is subtracted from 
this distribution, one that is computed from the neural firing rates in the same condition dur-
ing a 200 ms time window tpre before any stimuli are presented:

u x r a t f x r a t f x
i

i i
i

i i( ) = ( ) ( ) − ( ) ( )∑ ∑, , pre
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over trials of all conditions). The same was true for 
the early and late preparatory period in the condi-
tion with a definite preparatory signal (only a single 
potential target illuminated). This indicates that 
the same neurons are also involved in the earlier 
planning stage of the movement and consistently 
ref lect the planned reach direction throughout 
the trial.

Following this confirmation of the analysis 
method, Bastian and colleagues (2003) used DPAs 
to describe the differences in activation patterns 
under the different trial conditions. The evolution 
of the activation distribution for different pre-cue 
conditions is shown in Figure 3.10a–c. When two 
(Figure  3.10b) or three locations (Figure  3.10c) 
were indicated in the preparatory signal as potential 

reach targets, the peak in the DPA was located 
approximately at the center of these locations dur-
ing the preparatory period. It then shifted toward 
the actual reach direction once the definite target 
cue was given. Furthermore, the width of the acti-
vation peak in the DPA during the preparatory 
period increased with the number of pre-cued 
locations:  It was narrowest in the condition with 
complete target information (Figure  3.10a), 
wider in the condition with two potential targets 
(Figure  3.10b), and widest for three pre-cued tar-
get locations (Figure  3.10c). This indicates that 
the activity pattern in this neural population does 
not simply encode a single direction value. Instead, 
the full activity distribution contains information 
about additional aspects of the movement plan, 
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FIGURE 3.10: Temporal evolution of neural activity in monkey motor cortex during movement preparation analyzed 
with a DPA, and DF model fit. The plots on the left show the preparatory activation distribution over time for a reach 
movement given one (a), two (b), or three (c) pre-cued locations. On the right, the activation patterns in the excitatory 
layer of a two-layer DF model performing the same task are shown for one (d) and two (e) pre-cued locations. PS: prepa-
ratory signal onset, RS: response signal onset. Adapted from Bastian, Riehle, Erlhagen, and Schöner (1998), and Bastian, 
Schöner, and Riehle (2003).
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such as the certainty of an upcoming movement in 
a specific direction.

The DPA analysis can in particular be used 
to describe the detailed time course of the evolu-
tion of activity patterns, which can also be seen in 
Figure  3.10. To this end, the duration of the trial 
is divided into short time segments. The neurons’ 
firing rates are then determined for each segment 
individually, and a series of DPAs is constructed 
from these values. For the reaching experiment, 
this analysis showed an initial rise of activity in 
response to the preparatory signal, reaching a first 
maximum brief ly after the cue onset. Activity 
then transiently decreased, but subsequently grew 
again over the course of the preparatory period 
and more quickly following the presentation of the 
definite reach cue. The concentration of the activ-
ity likewise increased after the reach cue, and both 
reached a maximum approximately 100 ms before 
movement initiation.

To assess the functional significance of the 
DPA time courses, Bastian and colleagues tested 
whether there was a correlation with reaction times. 
Trials were separated into two groups—reaction 
times higher than the median value and lower than 
the median value—and separate DPAs were con-
structed for the two groups. The total activity was 
found to be larger and rise earlier in the fast trials 
than in the slow trials. In addition, the concentra-
tion of activity was higher in the fast trials, espe-
cially toward the end of the preparatory period. 
These results establish a direct link between the 
shape of the DPAs and a behavioral variable—in 
this case, reaction times.

These results highlight, once again, that the 
distribution of activation is important, not just 
a mean value as used in the population vector 
approach. The shape of activation distribution 
for the preparatory activity in the motor cortex 
ref lects the certainty of a movement plan and is 
functionally relevant for movement initiation. 
Moreover, this example shows that the DPA 
method can reliably create meaningful activa-
tion distributions even if the neurons recorded 
do not form a topographical map. In the visual 
cortex example discussed previously, the physi-
cal arrangement of the neurons in the cortex pre-
serves the neighborhood relations of their spatial 
receptive fields, such that simply plotting their 
activity over the cortical surface often yields acti-
vation patterns that are comparable to the DPA 
results (Markounikau, Igel, Grinvald, & Jancke, 
2010). In motor cortex, however, there is no 

such topographical map. Since the DPA method 
describes activation over the space of a percep-
tual or behavioral variable (i.e., movement direc-
tion), the results are independent of the physical 
arrangement of neurons on the cortical surface.

The DPA examples from visual and motor 
cortex demonstrate the utility of this approach for 
understanding neural population representations. 
In the next section, we ask how the DPA approach 
relates to DFT. In particular, we describe how DF 
models can be used to simulate results from the 
DPA approach in detail and how this sheds light on 
the neural dynamics that underlie activity of neural 
populations.

DY NA M IC S  OF   AC T I VAT ION 
DI ST R I BU T IONS  I N   N E U R A L 
P OP U L AT IONS  A N D 
DY NA M IC   F I E L D S
Signatures of Lateral Interactions 
in Primary Visual Cortex
The DPA study of movement preparation showed 
how different stimulus patterns shape the activa-
tion distribution in a neural population. A single 
pre-cue induces a relatively sharp activation peak, 
while multiple adjacent cues create a broader 
distribution of activation over the space of pos-
sible movement directions. But the stimuli alone 
cannot fully explain the activation time courses 
found during movement preparation. While there 
was an initial activation maximum during the 
presentation of pre-cues, activation did not fall 
back to its resting state after the visual cues were 
turned off. Instead, the general pattern of activa-
tion over the feature space was retained, and acti-
vation rose again over the period of movement 
preparation.

These observations indicate the presence of 
interactions within the neural populations. These 
interactions create, retain, and modulate activation 
patterns beyond what is directly induced by exter-
nal stimulation. These interactions were discussed 
in the previous chapter as the source of cognitive 
processes in DF models. Interactions can produce 
detection decisions, selection decisions, and work-
ing memory, and thereby move the DF models 
beyond passive representations of the input. In this 
section, we discuss these neural interaction effects 
in the context of the DPA examples introduced ear-
lier in the chapter.

We begin with the study of Jancke and colleagues 
(1999), which was designed to find empirical evi-
dence of such interactions in neural populations of 
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cat primary visual cortex. The effects of interac-
tions in this sensory cortical area can be expected to 
be merely modulatory in nature (since these areas 
are not assumed to be directly involved in selection 
decisions or working memory). Nonetheless, clear 
signatures of the types of interactions employed in 
DF models have been identified.

To identify interaction effects, Jancke and 
colleagues compared the responses to elemen-
tary stimuli to the activation patterns evoked by 

composite stimuli (Figure  3.11a). The elementary 
stimuli—which formed the reference conditions 
for the comparison—are the small squares of light 
described previously (Figure  3.7a). For the com-
posite stimuli—the test conditions—two of these 
squares were presented simultaneously. One stimu-
lus was always presented at the most nasally located 
position, while the other occupied one of the six 
remaining locations, yielding six different distances 
between the two stimuli. DPAs were constructed as 
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FIGURE  3.11: One-dimensional DPAs constructed from neural activity in cat visual cortex using the optimal linear 
estimator (OLE) method. (a) Composite stimulus patterns, with fixed location of one (nasally located) stimulus and six 
different stimulus distances. (b) DPAs constructed for the composite stimuli (solid lines) compared to the linear super-
position of DPAs constructed for the elementary stimuli when presented separately (dashed lines). DPAs for the compos-
ite stimuli show consistently lower activation levels than the superposition. In addition, for larger stimulus distances, a 
repulsion of the two activation peaks from each other can be observed (highlighted by arrows for one peak). This effect is 
more pronounced in the later phase of the response (not shown). (c) Time course of total DPA activation in the region of 
the fixed nasally located stimulus for composite stimuli presentation (solid line) and presentation of this stimulus alone 
(dashed line). Total activation for each time was computed by integrating over the DPA in a 0.8° wide band around the 
stimulus position. For low-stimulus distance, the rise of activation starts earlier and higher activation values are reached 
for the composite stimulus presentation than for the elementary stimulus alone. This effect disappears for larger stimu-
lus separations, and only a decrease of activation in the later phase of the response remains. (d) Activation time course 
in a DF model for the same stimulus conditions, scaled to maximal activation in each condition analogous to the DPA 
results. Adapted from Jancke et al., 1999.
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described earlier, and additional analyses were per-
formed with an alternative method for DPA con-
struction, described in Box 3.4.

The rationale for comparing DPAs for elemen-
tary and composite stimuli in this study is the 
following: If there are no interactions between indi-
vidual stimuli in the population code representa-
tion, it should be possible to fully predict the neural 
response to a pair of stimuli from the neural response 
that each of the stimuli evokes by itself. In the sim-
plest case of a linear neural response behavior, the 
activity pattern evoked by two simultaneously pre-
sented stimuli should be the linear superposition 
(i.e., the point-wise sum) of the activity patterns 
evoked by the two stimuli individually. Deviations 
from the linear superposition indicate the presence 

of interactions, and their timing and dependence on 
stimulus locations can reveal temporal and spatial 
properties of the interactions. Note that this reason-
ing does not imply that the interactions only appear 
in the case of composite stimuli. They likewise 
affect neural activity patterns for the elementary 
stimuli, but only the comparison between the two 
conditions allows us to distinguish between pure 
feed-forward activation and interaction effects.

The authors first compared DPAs constructed 
from average firing rates over the whole time course 
of the stimulus presentation. They consistently 
found that activation in response to the composite 
stimulus was significantly weaker than what linear 
superposition of the two elementary stimuli would 
predict (see 3.11b and 3.12). This effect is especially 

BOX 3.4  OLE METHOD FOR CONSTRUCTING DPAS

An alternative approach exists for the construction of DPAs, in which the tuning curves are not 
determined directly from measured neural firing rates but are derived through optimal linear 
estimation (OLE) from expected, idealized activation distributions for the reference conditions. 
This approach was adapted from an analogous method for the computation of population vec-
tors (Salinas & Abbott, 1994). It has been applied to analyze both the visual representations in 
cat primary visual cortex (Jancke et al., 1999) and the movement preparation in macaque motor 
cortex (Erlhagen, Bastian, Jancke, Riehle, & Schöner, 1999), and the results have been consistent 
with those of the direct method. We will describe it here for the latter application.

The central assumption for the OLE approach is that in the reference conditions the DPA 
should represent a certain feature value (like reach direction) in a fixed functional form, called 
the target DPA. We use an exponential of the cosine function, centered on the target direction 
xk  of the reach movement, as target DPA:

ˆ exp cosu x A x x Bk k( ) = ⋅ −( ) −⎡⎣ ⎤⎦ −σ 1

Here, σ is a width parameter for the activation peak in the target distributions (approx-
imately 45º), and the parameters A and B are chosen such that the activation values range 
approximately from 0 to 1.

Now, we effectively ask: What does each tuning curve have to look like such that the sum of 
all tuning curves, weighted with the neural firing rates for each reference condition, yields the 
desired target DPA in every reference condition? To do this, we first choose a discrete sampling 
of the feature space for the DPA (which is independent of the number of neurons or reference 
conditions). The goal is then to find a tuning curve fi  for each neuron i such that for each refer-
ence condition and at every sampling point xl, the weighted sum of all tuning curves approxi-
mates the target DPA û:

ˆ ,u x r x t f xk l
i

i k i l( ) ≈ ( ) ( )∑ rtp

As before, the reaction time periods trtp of all trials are used as reference conditions, and 
accordingly, the average firing rate of each neuron for the reach direction xk during this time 

period, r x ti k, rtp( ), is used as weight for the tuning curve.
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pronounced for small stimulus separations, but it 
is still apparent in the largest stimulus distance of 
2.4°. At this distance, there is little overlap between 
activity distributions for the two elementary stim-
uli, and the DPA for the composite stimulus shows 
a pronounced bimodal pattern. The levels of acti-
vation at the two stimulus locations in the compos-
ite DPA are even lower than the activation levels 
observed for each elementary stimulus alone, which 
rules out the possibility that the observed reduction 
is an effect of saturation. This indicates that there 
are pronounced inhibitory interactions that shape 
the activity distribution in the visual cortex.

To estimate the temporal properties of the inter-
actions, the authors constructed DPAs for smaller 
time windows and analyzed changes over the time 
course of the stimulus presentation (Figure 3.11c). 
The analysis focused on the emergence of activa-
tion at the location of the most nasally presented 
stimulus, which was shared between all composite 

stimuli. Despite the overall pattern of reduced acti-
vation described previously, they found that during 
the early part of the response there was evidence 
for excitatory interactions in the composite stimuli. 
When two stimuli were simultaneously presented 
in close proximity, the activation level for the 
nasally positioned stimulus was not only increased 
compared to the single elementary stimulus but 
was even higher than that predicted from the super-
position of the two elementary stimuli. Compared 
to the single-stimulus presentation, the activation 
increased and reached its maximum earlier, but 
then also decreased faster and was lower during 
the late phase of the response. For larger distances 
between stimuli, the signs of early excitatory inter-
actions disappeared, and there was only an overall 
suppression of the activation.

Finally, Jancke and colleagues found a spatial 
signature of interactions in the representation of 
visual stimuli. For larger stimulus distances (1.6° 

With this goal, we can formulate a concrete optimization problem. We want to find a set of 
tuning curves fi that minimizes the mean quadratic error E, which measures the deviation of 
the weighted sum of tuning curves from the target DPA:

E
n n

u x r x t f x
k l k l

k l
i

i k i l= ( ) − ( ) ( )⎛
⎝⎜

⎞
⎠⎟∑∑ ∑1

2

ˆ , rtp

Here, nk  is the number of conditions (the six reach directions), and nl  is the number of sam-
pling points xl  (36 for this example). This optimization problem can be solved with standard 
mathematical methods and yields tuning curves for each neuron without requiring any previ-
ous knowledge about their properties. The DPA for any other condition a and time period t can 
then be computed from the tuning curves in the same way as in the direct method:

u x r a t f x
i

i i( ) = ( ) ( )∑ ,

An interesting property of this method is that the derived tuning curves for neurons are 
not normalized and may vary in shape. That means that some neurons may contribute more 
strongly to the DPAs, while others may be nearly ignored. This is often appropriate, since neu-
rons even from the same cortical area do not necessarily contribute equally to represent a cer-
tain feature value in a population code. Furthermore, the final normalization of the DPA used 
in the direct method can be omitted, since the optimization implicitly adjusts the strengths of 
the tuning curves to compensate for sampling effects.

Although the OLE method will find a set of tuning curves of any desired resolution and for 
any target distributions, the quality of the fit and the significance of the result will depend on 
the available data. If only a small number of neurons was recorded, or the response properties 
of the neurons show little variance between each other, the resulting fit of the target DPAs will 
likely be poor. On the other hand, if only few reference conditions are used, it becomes easier 
to achieve a satisfactory fit, but the DPAs obtained from these tuning curves may not reliably 
reflect neural activation patterns under test conditions.
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and greater), the DPA for the composite stimuli 
showed a bimodal pattern, with two activation 
peaks located approximately over the stimulus 
locations (3.11b and 3.12). However, when the 
exact positions of these peaks were compared to 
those that appear in the superposition of DPAs for 
the elementary stimuli, a systematic deviation was 
observed:  Especially during the late phase of the 
response, the activation peaks shift outward and 
away from each other, with an increase in the dis-
tance between them of up to 0.3° (highlighted by 
arrows for one peak in Figure  3.11b, although the 
effect is less pronounced in the this plot since it 
averages over the whole response time period).

Modeling Interaction Effects 
with Dynamic Fields
The experimentally observed differences between 
the activation distributions for elementary and 
composite stimuli in the study by Jancke and col-
leagues can be explained by patterns of lateral inter-
action that act on the activation distribution. From 
neurophysiological research we know that neurons 
that form a population do not just passively ref lect 
the input they receive and convey it to the next area 
in the cortical processing hierarchy; these neurons 
also act on each other by means of synaptic con-
nections. These connections are called lateral con-
nections because they target the same population 
from which they originate and thus do not link dif-
ferent levels in the cortical processing hierarchy. 
In primary visual cortex, excitatory lateral inter-
actions have been identified between orientation 
selective cells. These connections link primarily 
neurons with similar preferred orientations (that 

are close to each other in feature space), and inter-
action strength declines with increasing disparity 
between preferred orientations (Ts’o, Gilbert, & 
Wiesel, 1986). Both excitatory and inhibitory lat-
eral interactions have been described in the motor 
cortex. Interactions between cells encoding reach 
movements with similar directions are excitatory, 
whereas cells that code for dissimilar directions 
are coupled inhibitorily (Georgopoulos, Taira, & 
Lukashin, 1993).

This pattern of lateral interactions—mutual 
excitation over short distances in feature space, 
and mutual inhibition over longer distances—is 
the same that is typically used in DFs to promote 
the formation of stabilized local activation peaks. 
Jancke and colleagues set up a DF model to dem-
onstrate that interaction effects of this type can 
indeed account for their experimental observa-
tions, and to estimate the quantitative properties 
of the interactions necessary for this. The model 
was fit to match the activation time course in the 
DPA (Figure 3.11d). The overall suppression in the 
case of composite stimuli can be reproduced and 
explained in the model by the presence of inhibi-
tory interactions through which strong activation 
at one location in a field can decrease activation lev-
els elsewhere along feature space. The observation 
that suppression effects occur even for the largest 
stimulus distances in the experiment is consistent 
with the assumption that these inhibitory interac-
tions act over long ranges. The early increase of 
activation for the composite stimuli relative to the 
superposition case is reproduced through the lat-
eral excitatory interactions in the DF. This increase 
of activation was only observed for small stimulus 

0.4°

FIGURE 3.12: Two-dimensional DPAs computed from neural firing rates for the composite stimuli in the test conditions 
(top), compared to the linear superposition of DPAs derived for the two elementary stimuli of each condition (bottom). 
Neural firing rates were averaged over the time interval from 30 to 80 ms after stimulus onset for these DPAs, and activa-
tion values were normalized to the maximum activation in the superposition for the plots (calibration bar at the bottom 
right). For all composite stimuli, a significant reduction of neural activation in response to the composite stimuli as 
compared to the superposition of the elementary stimuli was observed. Adapted from Jancke et al., 1999.
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distances, which fits the assumption in the model 
that lateral excitation is limited to a smaller range 
with respect to feature space.

The experiment also showed differences in time 
course between these interaction effects. The sig-
natures of excitatory interactions appeared earlier 
but were no longer apparent later during stimulus 
presentation, indicating a pattern of early excitation 
and later inhibition in the population response. The 
DF model as discussed so far cannot account for 
this, but Jancke and colleagues employed an exten-
sion of the basic model that is described in detail in 
the next section. This extension separates the field 
into an excitatory and an inhibitory layer to ref lect 
that inhibitory interactions in biological neural pop-
ulations are conveyed by inhibitory interneurons. 
This modification creates a behavior of the model 
in which inhibition appears with a delayed onset but 
then cancels out the effects of lateral excitation, thus 
reproducing the experimental observations.

Finally, through the combination of excitatory 
and inhibitory interactions, the model can also 
account for the observed repulsion effect between 
activation peaks in the DPA. One further assump-
tion is required here, namely, that the strength of 
lateral inhibition decreases at longer distances. In 
the DF model, this is typically realized by using a 
broad Gaussian function as the inhibitory interac-
tion kernel. If now two activation peaks exist within 
moderate distance from each other, the inhibition 
is particularly strong in the region between them. 
This region is relatively close to both peaks and 
therefore receives strong inhibition from both of 
them. The region on the opposite side of each peak 
only receives strong inhibition from one active 
region. As a result, since each peak receives more 
inhibition on one side than on the other, the two 
peaks drift slightly apart. The repulsion can be 
especially pronounced if the inhibition is combined 
with short-range excitation, which acts to keep the 
size of each peak stable while still allowing shifts in 
position. We will return to this effect and explicate 
it in greater detail in Chapter 6, where we discuss 
behavioral results from humans in a visual working 
memory task.

The results discussed in this section demon-
strate how DF models can be employed to explain 
experimental observations at the level of popula-
tion activity. Moreover, they provide empirical 
support for the biological plausibility of the typical 
interaction patterns used in behavioral and robotic 
DF models. In continuation of this work, a more 

quantitative investigation of interactions in the pri-
mary visual cortex using a DF model was presented 
by Markounikau and colleagues (2010), based on 
neural data obtained through voltage-sensitive dye 
imaging.

Two-Layer Dynamic Fields
The extension of the basic DF model used to cap-
ture interaction patterns in the work of Jancke and 
colleagues is the two-layer field. In this form of DF 
model, separate layers are used to describe activa-
tion of excitatory and inhibitory subpopulations. 
This extension ref lects more closely the proper-
ties of biological neurons and is often useful to 
capture detailed activation time courses of real 
neural data.

The neurophysiological motivation for 
two-layer fields is a basic property of biological 
neurons, described by Dale’s law. Dale’s law, in a 
modern formulation (Eccles, 1976), states that neu-
rons emit the same set of neurotransmitters at all 
their synapses. This has been found to be true with 
very few exceptions. Dale’s law in particular implies 
that the effect that the firing of one neuron has on 
postsynaptic neurons can be either excitatory or 
inhibitory, but not both. In neural populations in 
the cortex, excitatory neurons, like pyramidal cells, 
can have long-ranging axons and are responsible 
for conveying information between cortical areas. 
Excitatory interactions can be conveyed by direct 
synaptic connections between these excitatory 
neurons. Inhibitory neurons typically project more 
locally and convey indirect inhibitory interactions 
between the excitatory neurons. For instance, a 
pyramidal cell may have synaptic projections to a 
group of inhibitory interneurons and excite them. 
The activated interneurons then project to other 
pyramidal cells and inhibit their activity.

This connectivity has some consequences for 
the activation time course in neural populations. 
In particular, it introduces a delay for inhibitory 
interactions. When an external stimulus arrives, it 
can directly activate the excitatory neurons. The 
inhibition that limits the growth of activation and 
mediates competition within the population only 
appears after the inhibitory neurons have been 
sufficiently activated to start firing. They may be 
excited either directly by the external stimulus or 
by the excitatory neurons within the population 
itself. In the latter case—which we assume in the 
DF model—an additional delay is created, since 
the inhibitory neurons only receive input after the 
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excitatory ones have started firing. The delayed 
onset of inhibition means that an external stimu-
lus may produce an initial overshoot of excitation, 
which then decreases as it is balanced by rising inhi-
bition. This gives rise to a phasic-tonic response 
behavior in the excitatory neurons (although it is 
not the only cause of this pattern).

In the DF model, this connectivity and the 
resulting effects on the activation time course 
can be replicated by introducing separate layers 
for the excitatory and inhibitory subpopulations 
(Figure  3.13; see Box 3.5 for the formal descrip-
tion). The basic structure for the two-layer field is 
as follows:  The two layers, excitatory and inhibi-
tory, are defined over the same feature space and are 
both governed by differential equations similar to 
those used in one-layer DFs. In the version consid-
ered here, only the excitatory layer receives direct 
external input. Excitatory interactions are imple-
mented through connections of the excitatory layer 
onto itself, described by an interaction kernel (e.g., 
a Gaussian function). In addition, the excitatory 
layer also projects to and excites the inhibitory 
layer. These projections are topological; that is, a 
projection from any point along the feature space 
on the excitatory layer acts most strongly onto the 
same point in feature space on the inhibitory layer. 
The inhibitory layer, in turn, projects back to the 
excitatory layer in an inhibitory fashion (that is, it 
creates a negative input in that layer’s field equa-
tion). Within the inhibitory layer, there are typi-
cally no lateral interactions.

The projections between the two layers can be 
described by interaction kernels, just like the lateral 

interactions. Note that the effective spread of inhi-
bition is determined by properties of both the pro-
jection from the excitatory to the inhibitory layer 
and of the reverse projection. Let us assume, for 
instance, that all three projections in the two-layer 
field (from excitatory to excitatory, excitatory 
to inhibitory, and inhibitory to excitatory) are 
described by Gaussian kernels of the same width. 
Then the effective range of inhibition in the excit-
atory layer will be wider than the range of lateral 
excitation, because the inhibition is spread by two 
kernels instead of just one. In practice, the two-layer 
field is sometimes set up in such a way that the pro-
jection from the excitatory to the inhibitory field is 
purely local (point-to-point, without an interaction 
kernel). The kernel for the reverse projection is then 
made wider to produce the overall pattern of local 
excitation and surround inhibition. This is a simpli-
fication done to reduce the computational load and 
the number of parameters. It is not meant to ref lect 
any neurophysiological property of the inhibitory 
neurons or the neural connectivity pattern.

The two-layer field shows a delayed onset 
of inhibition according to the same mechanism 
described earlier for the biological neural system. 
In particular, if an external input is applied to the 
system, it drives the activation in the excitatory 
layer, while the inhibitory layer initially remains 
unchanged. When the activation of the excitatory 
layer reaches the threshold of the output function, 
the interactions start to come into effect. The lat-
eral interactions within the excitatory layer drive 
activation further up locally, and at the same time 
the activation of the inhibitory layer is increased. 
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FIGURE  3.13: Architecture of two-layer field. The excitatory layer (top) projects onto itself and onto the inhibitory 
layer (bottom; green arrows). The inhibitory layer projects back onto the excitatory layer (red arrow). All projections are 
spread out and smoothed by Gaussian interaction kernels.



BOX 3.5  TWO-LAYER DYNAMIC FIELD

A two-layer field consists of an excitatory and an inhibitory activation distribution over the 
same feature space x, each governed by a differential equation. We designate the activation 
variable for the excitatory layer with the letter u, the one for the inhibitory layer with v. The 
basic structure for the two-layer field contains three projections: an excitatory projection from 
layer u to itself, a second excitatory projection from layer u  to layer v, and an inhibitory pro-
jection back from layer v to layer u. Each of them is specified by an interaction kernel k that 
describes the connection weight as a function of distance in feature space. The three kernel 
functions are kuu, kvu, and kuv. Here, the first letter in the index always designates the target of 
the projection; the second, its origin. The field equations are then:

τu u uu uvu x t u x t h s x t k x x g u x t dx k x" , , , ,( ) = − ( ) + + ( ) + −( ) ( )( ) − −′ ′ ′∫ ∫ ′′ ′ ′( ) ( )( )x g v x t dx,

τv v vuv x t v x t h k x x g u x t dx" , , ,( ) = − ( ) + + −( ) ( )( )′ ′ ′∫
The output function g is again a sigmoid (logistic) function as in the one-layer system. The 

interaction kernels are typically Gaussian functions of the form:
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The parameter cuu specifies the strength of the projection, the parameter σuu the width of 
the Gaussian kernel. The inhibitory kernel may include an additional constant term to produce 
global inhibition.

In this formulation, the effective width of inhibition is determined by both the kernels kuv 
and kvu. It is sometimes desirable to simplify this by omitting one of the kernels and using a 
simpler point-to-point connection for the projection from the layer u to layer v. This yields the 
dynamical system

τu u uu uvu x t u x t h s x t k x x g u x t dx k x" , , , ,( ) = − ( ) + + ( ) + −( ) ( )( ) − −′ ′ ′∫ ∫ ′′ ′ ′( ) ( )( )x g v x t dx,

τv v vuv x t v x t h c g u x t" , , ,( ) = − ( ) + + ( )( )

If only global inhibition is required in a model, this architecture can be further simplified by 
replacing the continuous inhibitory layer by a single inhibitory node. This node receives input 
from the whole excitatory layer and projects homogeneous inhibition back to it:

τu u uu uvu x t u x t h s x t k x x g u x t dx c g v t" , , , ,( ) = − ( ) + + ( ) + −( ) ( )( ) −′ ′ ′∫ (( )( )

τv v vuv t v t h c g u x t" ( ) = − ( ) + + ( )( )∫ ,

Note that this formulation with a single inhibitory node shows a somewhat different behav-
ior than the form with a continuous layer and purely global inhibition: In a continuous layer, 
the total output can increase very gradually as an activation peak becomes wider. When only 
a single node is used, the total output is always the sigmoid of the single activation variable. 
It can be useful to choose a sigmoid function with a very shallow slope here to allow a more 
gradual increase of the inhibition.
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However, at this point there are still no inhibitory 
interactions active; activation in the inhibitory 
layer is only beginning to rise and is still near the 
resting level. Only after some time, when the input 
from the excitatory layer has driven the activation 
in the inhibitory layer beyond the output threshold 
as well, does the inhibitory projection take effect. 
Until this happens, activation in the excitatory layer 
can rise under the inf luence of external input and 
self-excitation, without being controlled by inhibi-
tion. This can often result in an overshoot of excita-
tion, with activation levels significantly higher than 
would be reached with instantaneous inhibition. 
This property of two-layer fields will be explored in 
the exercises for this chapter.

For moderate interaction strengths, the sys-
tem will generally settle into a stable state after the 
initial overshoot, with balanced activation in the 
excitatory and inhibitory layers. However, the sys-
tem is prone to some level of oscillation: Whenever 
the activation in one layer changes in a way that 
affects its output, it takes some time for the other 
layer to reach the new attractor state determined by 
the changed input. During this delay, the output of 
this other field still ref lects its old state, not the new 
attractor it is moving to. For instance, when activa-
tion in the inhibitory layer is quickly rising after the 
initial overshoot of excitation, the inhibitory input 
this produces sets a new attractor for the excitatory 
layer—likely one that is much lower than the cur-
rent activation level. But the excitatory layer doesn’t 
move to this attractor instantaneously; instead, it 
keeps producing a strong output for some time, that 
keeps driving activation in the inhibitory layer. The 
result is now an overshoot of inhibition.

For certain configurations, the two-layer field 
can act as a stable oscillator that maintains the 
pattern of alternating excitatory and inhibitory 
overshooting indefinitely. Under most conditions, 
prolonged oscillations are undesirable. One way to 
reduce them, even in the presence of strong inter-
actions between the two layers, is to use different 
time constants τ for the two layers’ dynamics. For 
instance, if the time constant of the inhibitory layer 
is much lower (and its dynamics therefore faster) 
than that of the excitatory layer, its activation 
will quickly reach the new attractor state after its 
input changes. This gives the excitatory layer little 
time to overshoot and therefore strongly reduces 
oscillations.

Besides the stable oscillatory states, the two-layer 
dynamic field supports the same instabilities and 

stable states as those of the single-layer field. It can 
form stabilized peaks of activation (with associated 
peaks in both layers) in response to localized input 
by going through a detection instability. Peaks can 
become self-sustained in the absence of input if the 
interactions within the field are sufficiently strong. 
If the inhibitory projection is sufficiently broad, it 
can mediate competition between distant peaks 
and, together with the excitatory interactions, pro-
duce selection decisions if two or more localized 
inputs are applied. For these reasons, one-layer and 
two-layer fields may often be used interchangeably 
when the focus is on more macroscopic proper-
ties of DFs. The advantage of the two-layer model 
is that it can produce more realistic results with 
respect to detailed activation time courses. This is 
demonstrated with concrete examples in the next 
section.

Fitting Neural Data for Movement 
Preparation with Dynamic 
Field Models
To model the activation time course for move-
ment preparation, Bastian and colleagues (1998) 
employed a simplified form of the general two-layer 
architecture. Since the model requires no local-
ized inhibitory projections but only global inhibi-
tion, the continuous inhibitory layer was replaced 
by a single dynamic node (see Box 3.5). This node 
receives positive input from the whole excitatory 
field and projects homogeneous inhibition back 
to it. This corresponds to a population of inhibi-
tory neurons that have homogeneous connectivity 
to all excitatory neurons involved in the forma-
tion of the movement plan, independent of their 
preferred direction. The model then consists of 
an excitatory layer that spans the space of possible 
reach directions (from 0º to 360º) and the single 
inhibitory node. External input is then applied to 
the excitatory layer to ref lect the stimulus settings 
in the experimental study. The first input ref lects 
the pre-cues, consisting of either one, two, or three 
Gaussians, each centered on one of the six possible 
reach directions (always contiguous to each other 
in the case of multiple pre-cues). Then, the stimu-
lus indicating the definite reach goal is modeled as 
a single, stronger Gaussian input appearing after a 
fixed delay.

The activation time course in the model pre-
sented by Bastian et  al. reproduces the key obser-
vations in the DPA analysis of experimental data 
(Figure  3.10d–e). There is an initial steep rise 
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of activation following the presentation of the 
pre-cue, then a transient decrease during the delay 
period. Activation then rises again more strongly in 
response to the definite reach stimulus and falls to 
resting level at the end of the trial. The activation 
induced by the pre-cue is always centered on the 
midpoint of the pre-cued locations and retains its 
shape over the delay period. The activation profile 
becomes broader as the number of pre-cued loca-
tions is increased, but also f latter due to the nor-
malizing effects of inhibitory interactions. If the 
definite reach direction indicated by the second 
stimulus is not at the center of the pre-cue profile, 
the peak of activation is shifted to the correct loca-
tion by the second stimulus input.

Some comments on the process of fitting the 
DF model are warranted here. While some of the 
qualitative effects observed in the experiment can 
be reproduced directly through the field mechan-
ics without any specific tuning, obtaining a rea-
sonable fit of the activation time course requires 
a careful choice of parameters in the DF model. 
Unlike in more neurophysiological models, the 
parameters here are generally not constrained by 
anatomical or physiological properties of biologi-
cal neurons, such as actual membrane potentials 
or ranges and patterns of synaptic connectivity. 
The DPA provides a functional description of the 
population representation that captures activa-
tion with respect to behaviorally or perceptually 
relevant feature spaces. Accordingly, the parame-
ters of the DF model have to ref lect the functional 
properties of the population activity and not the 
characteristics of single neurons or connections. 
The model fitting involves determining properties 
of the external input for the field model, interac-
tion patterns, and timing parameters. The width 
of the interactions should ref lect the width of typi-
cal activation patterns for simple stimuli as well as 
ranges of any explicitly tested interaction effects. 
The required parameters for the interaction 
strengths can to some degree be estimated from 
the stability of the population activation under 
changing inputs and the strength of normalization 
effects. To obtain quantitative fits of experimen-
tal data, extensive tuning of model parameters 
is often necessary. This is performed through 
repeated adjustments of model parameters and 
comparisons of simulation results and experi-
mental data (either manually or using some form 
of optimization algorithm). Analytical solutions 
for these optimization problems are generally not 

available, except for the very simplest DF systems 
(Amari, 1977).

Relationship Between DPAs, Dynamic 
Fields, and Neural Populations
Before we conclude this chapter, we would like to 
contrast the different concepts addressed here. 
We introduced the method of DPA as an analysis 
method for neural data. The DPA performs a trans-
formation from firing rates of individual neurons 
into a continuous activation distribution. This 
allows a specific view onto neural activity, focus-
ing in particular on what is represented in a neural 
population with respect to perceptual or behavioral 
variables. The DPA method does not generate any 
novel data, and it does not by itself explain how 
certain activation patterns come about or how they 
change over time. While we can generate activation 
time courses with the DPA method, as shown in the 
previous examples, these only describe what was 
measured by electrophysiological recordings and 
do not make any statement about what drives the 
changes in activation. What the DPA method can 
do, however, is give us some understanding of how 
neural processing relates to behavior and by what 
mechanisms it might be governed.

In contrast, DF models are actually generative 
models. Through a set of differential equations, 
they specify concrete rules according to which acti-
vation patterns change over time. With a DF model, 
one can try out arbitrary stimulus settings and time 
courses and see what activation patterns they pro-
duce. And for every point along feature space and 
at every moment in time, one can pinpoint what 
factors inf luence the activation level. The link 
between DPAs and DF models is that both employ 
the same form of representation, namely a continu-
ous activation distribution over a metric feature 
space. Through this shared format, the DPA also 
links DF models with biological neural data. While 
DF models inherently make predictions about acti-
vation patterns, the DPA method makes it possible 
to interpret these predictions in terms of biologi-
cal neural response patterns and to test them with 
empirical data.

There are some caveats to keep in mind when 
considering this link between DF models and 
biological neural populations. First, many DF 
models—especially when formulated at a behav-
ioral level—do not specify the region of the brain 
in which the neural activation patterns should be 
observable. In particular, a single DF in a model can 
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generally not be assumed to correspond directly to 
a specific cortical or subcortical region. Since DFs 
are typically defined based on functional consider-
ations, they may describe activation patterns that 
are in fact distributed over several areas in the brain 
(for an example of this using a DF-based approach 
to fMRI, see Buss, Magnotta, Schöner, Huppert, & 
Spencer, 2014). Conversely, the activation patterns 
described in two different DFs may be intermixed 
in the biological system in a single area.

This last point touches on another important 
aspect of the relationship between DFs and biologi-
cal neural representations: DF models do not gener-
ally attempt to describe full activation patterns of a 
specific neural population, but only the activation 
with respect to a certain feature or parameter space 
as is relevant for a task. For instance, one may define 
a field over the space of edge orientation that models 
a certain aspect of processing in the early visual cor-
tex, ignoring the sensitivity of these cortical regions 
for other features, such as color, spatial frequency, 
and stimulus position. We have encountered an anal-
ogous limitation for the DPA method when applied 
to the visual cortex:  Since activation distributions 
are computed from experimentally observed tuning 
curves of neurons, they can only be determined with 
respect to those parameter spaces for which tuning 
curves are measured (through systematic variation 
of the stimulus parameters). In that example, only the 
spatial tuning curves were determined, while depen-
dence of the firing rates on other visual features was 
not tested. Consequently, the resulting activation 
distributions are defined only over visual space and 
do not yield any information about the sensitivity of 
this cortical region to other features.

It is important to keep this limitation to cer-
tain feature spaces in mind when interpreting the 
results of a DPA or when matching DF models to 
cortical regions. Choosing an inappropriate fea-
ture space in a DPA analysis, for instance, can lead 
to misleading results if the sensitivity of a neural 
population for that feature is only incidental and 
not functionally significant. On the other hand, 
abstraction from complex neural responses ref lect-
ing different features and behavioral parameters to 
only a few selected feature spaces can be helpful for 
forming concise models.

C ONC LUSION
In this chapter, we have shown that models based 
on DFT can account for neural population data 
in quantitative detail. This firmly establishes that 

DFT is grounded in neurophysiology and supports 
the hypothesis—central to DFT—that popula-
tion activation is the privileged level of description 
at which neural process accounts of perception, 
action, and cognition can be achieved. This hypoth-
esis is aligned with a growing consensus in neuro-
science that population activity provides the best 
prediction of behavior (Cohen & Newsome, 2009).

In DFT, peaks of activation in dynamics fields 
are units of representation; their locations in the 
field are estimates of the sensory, cognitive, or 
motor parameters that a DF represents. The peak 
location corresponds to the population vector 
of neurophysiology. Peaks localized in DFs are 
not necessarily localized within a cortical area. 
Whether that happens or not is a question of the 
topographical organization of the parametric map 
in the area. In the absence of topographical order, 
neurons tuned to similar values along the dimen-
sion of the field may be spatially distributed within 
the area, as happens for motor cortex. The con-
struction of a distribution of population activation, 
or DPA, frees mapping of neural activity in the 
brain onto DFs of the constraints of topography. In 
the end, what is functionally significant is the con-
nectivity of neurons in the brain, not how they are 
physically arranged. The DPA is constructed over a 
behaviorally relevant dimension (e.g., a sensory or 
motor space) in which perceptual or motor states 
are points. Each neuron contributes its entire tun-
ing curve or receptive field profile. Neurons are 
thus “smeared out” across the DPA. A field location 
is not represented by an individual neuron. So when 
a peak of activation contributes to the specification 
of a behavior, it is really an entire subpopulation of 
neurons that makes that contribution.

In DFT, peaks of activation are stabilized by 
neural interaction. Signatures of such interaction 
are observed in neural data, which we reviewed. 
The fact that peaks are attractor states is critical for 
the entire framework of DFT. We will see in the rest 
of the book that the stability property of peak solu-
tions is at the basis of how DFT generates cognitive 
function. Decisions arise as peaks emerge from 
instabilities of non-peak solutions. Decisions are 
stabilized because the peaks that instantiate deci-
sions are stable states. We will see how DFT archi-
tectures work because individual activation fields 
function robustly, even as they are richly coupled 
with other fields. We will see how sustained peaks 
form the basis for working memory. Comparisons, 
selection decisions, coordinate transforms, or any 
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transformation of representational states requires 
stability of the units of representation.

In neural terms, stabilizing peaks of activation 
is costly. Local excitation and global inhibition 
require neural connectivity within the popula-
tion that is sufficiently strong to potentially over-
rule incoming signals (e.g., in a selection decision). 
Using a neural population in an activation field to 
represent a single feature dimension is an expen-
sive solution. This becomes dramatically obvious 
when the spaces to be represented become high 
dimensional, say, have 10, 20, or 50 dimensions. 
Why would the CNS use all this computational 
machinery just to represent points in an admittedly 
high-dimensional space? This will be discussed in 
Chapters 5 and 8, where we will look at the binding 
problem, in which dimensions such as color, tex-
ture, and orientation are represented in individual 
fields, each combining the feature dimension with 
visual space. Binding is achieved by linking activa-
tion peaks across such fields through shared spatial 
dimensions.

The mathematics of the DFT framework builds 
on modeling that was performed in the 1970s at a 
more biophysically detailed level of description to 
capture the dynamics of neural activity in small 
cortical populations (Wilson & Cowan, 1972). 
Recognizing that the cytoarchitectonics of cortical 
layers are relatively homogeneous along the cortical 
surface, with strongly overlapping dendritic trees 
and a reproducible structure of neural networks, 
these authors proposed a neural field dynamics, 
in which the cortical surface was described as an 
excitable continuum (Wilson & Cowan, 1973). In 
one way, this was a precursor to the ongoing quest 
to identify fundamental functional circuits at this 
level of description (e.g., Binzegger, Douglas, & 
Martin, 2004). On the other hand, the authors 
realized that the neural dynamics of their models 
gave rise to activation patterns that were not mere 
transformations of their inputs, but autonomously 
generated patterns of activation. In hindsight, it 
is curious that the self-excited activation patterns 
and neural oscillation observed in these models 
had relatively little impact on the field of cortical 
neurophysiology. This was the decade after Hubel 
and Wiesel’s (1959, 1968) breakthrough discovery 
of the functional architecture of the cortex, which 
shaped the thinking of neurophysiologists through 
the concepts of tuning curves, receptive fields, and 
cortical maps. These concepts are, at first approxi-
mation, ref lections of the forward connectivity 

from the sensory surface to the cortical layer. So 
most empirical questions were then focused on 
that forward connectivity. Intracortical interac-
tion was thought to merely modulate such forward 
maps (Ferster & Miller, 2000). The activation pat-
terns generated by strong interaction in the neural 
dynamic models was associated with phenomena 
outside the regular function of cortex, such as hal-
lucinations or epilepsy (Ermentrout, 1998).

There is a modern literature on the dynamics of 
neural fields which studies, in the spirit of applied 
mathematics, the class of solutions and dynamic 
phenomena that are possible within different types 
of mathematical models formulated on the basis 
of biophysical and neuroanatomical principles 
(Coombes, beim Graben, Potthast, & Wright 2014). 
This literature is useful to modelers working within 
the framework of DFT, as it provides exemplary 
mathematical models that are well understood 
and can serve as concrete mathematical formaliza-
tions of conceptual accounts. Amari’s analysis of 
the dynamics of one- and two-layer neural fields 
(Amari, 1977), on which most of the models in 
this book are based, was a trailblazer of this type 
of approach. By identifying the different attractor 
states and their bifurcations, Amari’s work enabled 
us to map units of representation, peaks, and sub-
threshold activation patterns onto different attrac-
tor regimes of his neural field dynamics.

There is also a literature of modeling popula-
tions of neurons at a more biophysically detailed 
level of description, often the level of spiking neu-
rons. Only recently have these models begun to 
connect to cognitive function or behavior, primar-
ily in the domain of perceptual decision-making and 
working memory. In some cases, modelers working 
at the spiking level simply reproduce the dynamic 
phenomena observed at the population level and 
compare them qualitatively with single-neuron 
tuning curves or firing patterns (Wei, Wang, & 
Wang, 2012; Wong & Wang, 2006). Ultimately, the 
goal is to establish how mechanisms at the level of 
synaptic, membrane, or other single-cell mecha-
nisms relate to cognitive function (Durstewitz, 
Kelc, & Güntürkün, 1999). It is often found that 
population activity modeled at the spiking level 
is congruent with population activity modeled 
as space-time continuous dynamics (Deco, Jirsa, 
Robinson, Breakspear, & Friston, 2008). In fact, 
the neural dynamics of population activation can 
be viewed as a macroscopic approximation of the 
more microscopic description, an approximation 
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that runs under the label “mean-field theory” 
(Trappenberg, 2010). Recently, systematic efforts 
have been made to mathematically derive neural 
dynamics at the population level from the dynam-
ics of populations of spiking neurons (Faugeras, 
Touboul, & Cessac, 2009).

A vast literature exists for neural network mod-
els that are primarily characterized by the forward 
connectivity from sensory systems to cortical rep-
resentations. Most connectionist modeling is in 
this fold, but so is modeling that is closely tied to 
cortical functional architecture (e.g., Riesenhuber 
& Poggio, 2000). Attempts have been made to 
derive the structure of cortical architecture from 
abstract principles (Wiskott & Sejnowski, 2002). 
Such models ultimately project onto a “decision” 
layer, within which the perceptual information 
from the sensory surface is in some sense optimally 
encoded. On that decision layer, additional com-
putations must be made to then actually perform 
the decision. For instance, a classifier may learn to 
associate the output of a feed-forward network with 
particular object classes (Riesenhuber & Poggio, 
2000). A possible ultimate vision of the DFT frame-
work could be that such complex forward neural 
networks would replace the simple input–output 
mappings used in most DFT models to provide 
localized input along the dimensions that activa-
tion fields represent. This presupposes that the 
forward connectivity is organized so that func-
tional neighborhoods emerge in which neighboring 
sites on the decision layer represent neighboring 
choices. Self-organized feature maps (Kohonen, 
1982; Sirosh & Miikkulainen, 1994) are the candi-
date structures for how such a mapping could come 
about. In Part 3 of the book we will look at learning 
forward projections, although this topic needs to be 
explored further than covered in this book. A pri-
mary difficulty is the strong reduction in dimen-
sionality that a mapping onto self-organized feature 
maps implies. Chapter  5 argues that the sensory 
array may typically have 10,000 or more inherent 
dimensions—that is, that the patterns of sensory 
stimulation may change in 10,000 or more differ-
ent ways. Forward neural networks from the sen-
sory surface may strongly compress this number of 
dimensions, because stimuli coming from the real 
world do not vary independently in all these dimen-
sions. Even so, the outcome of such compression 
for a neural representations of visual objects, for 
instance, still leaves hundreds of relevant dimen-
sions (Kurková et al., 2008). As mentioned earlier, 

each field considered in this book represents only 
a handful of dimensions, at best. The theoretical 
reason for this limitation lies in the stabilization 
of peaks by neural interaction. The neural con-
nectivity of local excitation and global inhibition 
becomes increasingly costly with increasing num-
ber of dimensions. This is an as-yet open issue that 
requires more study and deeper understanding.

One radical alternative is to give up the stabil-
ity requirement altogether. Some researchers have 
argued that neural computation can do without sta-
ble states, being instead based on transients (Maass, 
Natschl, & Markram, 2002). This idea has recently 
been linked to the notion of vector symbolic 
architectures (VSAs), first pursued by Smolensky 
(1990) to extend connectionism to higher cogni-
tion, and now implemented in spiking neural net-
work models (Eliasmith, 2013). In VSAs, neural 
patterns are used to encode high-dimensional 
information. For instance, an activation vector 
built from 1000 neurons is thought to encode 1000 
dimensions with the activation level of each neuron 
encoding one dimension. Such high-dimensional 
vectors tend to be uncorrelated just by the geom-
etry of high-dimensional space; there are a lot more 
ways vectors can be orthogonal to each other than 
for them to be parallel to each other. This makes 
it possible to superpose vectors, combine them, 
and to again extract components from them, all 
typical operations of information processing. The 
idea is then that the computations of conventional 
information processing can be realized in VSA 
by passing activation patterns along a processing 
chain in a sequence of transient neural states. One 
open question is how such a system may interface 
with sensory-motor processes, for which stability 
is clearly a necessity. More generally, the interface 
of VSAs to both sensory and motor information 
requires a form of recoding, in which sensory infor-
mation is encoded by creating a high-dimensional 
neural pattern vector and motor commands 
are then generated by decoding them from 
high-dimensional neural pattern vectors. Such 
interfaces make it difficult for cognitive processes 
to remain linked to online sensory information and 
ongoing motor action. They also make it difficult 
to generate sequences of mental operations that are 
aligned with their physical acting-out in the world 
(we will study this in detail in Chapter 14). Finally, 
there is to date no behavioral or neural evidence 
for such a divide between the sensory and motor 
domains and an information-processing domain.
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Can stability be retained as a property 
of neural processing while still representing 
high-dimensional information? One possibility 
is to tailor the neural connectivity to specifically 
stabilize particular, complex patterns of neural 
activity. This is what the Hopfield network does 
(Hopfield, 1982, 1984). The idea is that, to encode 
high-dimensional patterns, the network learns both 
the forward connectivity to induce the pattern and 
the interaction connectivity to stabilize the pattern. 
Exactly how a Hopfield network could perform the 
functions of DFT is not clear at this time. In par-
ticular, it is not easy to conceive of something like 
detection instability in a Hopfield network. Such 
a network is always in some stable pattern of acti-
vation. It isn’t clear that it has an “off ” state, where 
it represents the absence of any particular pattern, 
and can then transition to an “on” state, where 
it may initiate an action or mental operation. In 
Chapter 12 we will explore how far the DFT frame-
work goes toward capturing the learning of object 
representations using only low-dimensional feature 
representations. Moving toward more complex, 
higher-dimensional representational states is one 
of the research frontiers of DFT.

But first we need to return to the tight link of 
the low-dimensional DFs to the sensory and motor 
domains and their coupling to behavioral dynam-
ics, in the next chapter.

R E F E R E NC E S
Amari, S. (1977). Dynamics of pattern formation in 

lateral-inhibition type neural fields. Biological 
Cybernetics, 27(2), 77–87.

Bastian, A., Riehle, A., Erlhagen, W., & Schöner, G. 
(1998). Prior information preshapes the population 
representation of movement direction in motor cor-
tex. Neuroreport, 9(2), 315–319.

Bastian, A., Schöner, G., & Riehle, A. (2003). Preshaping 
and continuous evolution of motor cortical repre-
sentations during movement preparation. European 
Journal of Neuroscience, 18(7), 2047–2058.

Bendor, D., & Wang, X. (2005). The neuronal represen-
tation of pitch in primate auditory cortex. Nature, 
436(7054), 1161–1165.

Binzegger, T., Douglas, R. J., & Martin, K. A. C. (2004). 
A quantitative map of the circuit of cat primary 
visual cortex. Journal of Neuroscience, 24(39), 
8441–8453.

Britten, K.  H., & Newsome, W.  T. (1998). Tuning 
bandwidths for near-threshold stimuli in area MT. 
Journal of Neurophysiology, 80(2), 762–770.

Buss, A. T., Magnotta, V., Schöner, G., Huppert, T. J., & 
Spencer, J. P. (2014). Testing bridge theories of brain 

function using theory-driven fMRI. Manuscript 
submitted for publication.

Cisek, P., & Kalaska, J.  F. (2005). Neural correlates 
of reaching decisions in dorsal premotor cor-
tex: Specification of multiple direction choices and 
final selection of action. Neuron, 45(5), 801–814.

Cohen, M. R., & Newsome, W. T. (2009). Estimates of 
the contribution of single neurons to perception 
depend on timescale and noise correlation. Journal 
of Neuroscience, 29(20), 6635–6648.

Conway, B.  R., & Tsao, D.  Y. (2009). Color-tuned 
neurons are spatially clustered according to 
color preference within alert macaque poste-
rior inferior temporal cortex. Proceedings of the 
National Academy of Sciences U.S.A., 106(42), 
18034–18039.

Coombes, S., beim Graben, P., Potthast, R., & Wright, 
J. (Eds.). (2014). Neural fields: Theory and applica-
tions. New York: Springer-Verlag.

Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M., & 
Friston, K. (2008). The dynamic brain: From spik-
ing neurons to neural masses and cortical fields. 
PLoS Computational Biology, 4(8), e1000092.

Durstewitz, D., Kelc, M., & Güntürkün, O. (1999). A 
neurocomputational theory of the dopaminergic 
modulation of working memory functions. Journal 
of Neuroscience, 19, 2807–2822.

Eccles, J. (1976). From electrical to chemical transmis-
sion in the central nervous system. Notes and Records 
of the Royal Society of London, 30(2), 219–230.

Eliasmith, C. (2013). How to build a brain: A neural archi-
tecture for biological cognition. New  York:  Oxford 
University Press.

Erickson, R. (1974). Parallel “population” neural cod-
ing in feature extraction. In F. Schmitt & F. Worden 
(Eds.), The Neurosciences. Third Study Program (pp. 
155–169). Cambridge, MA: MIT Press.

Erlhagen, W., Bastian, A., Jancke, D., Riehle, A., & 
Schöner, G. (1999). The distribution of neu-
ronal population activation (DPA) as a tool to 
study interaction and integration in cortical rep-
resentations. Journal of Neuroscience Methods, 
94(1), 53–66.

Ermentrout, B. (1998). Neural networks as spatio-  
temporal pattern-forming systems. Reports on 
Progress in Physics, 61, 353–430.

Faugeras, O., Touboul, J., & Cessac, B. (2009). A con-
structive mean-field analysis of multi-population 
neural networks with random synaptic weights 
and stochastic inputs. Frontiers in Computational 
Neuroscience, 3, 1–28.

Ferster, D., & Miller, K.  D. (2000). Neural mecha-
nisms of orientation selectivity in the visual cortex. 
Annual Reviews of Neuroscience, 23, 441–471.

Fitzgerald, P.  J. (2006). Receptive field proper-
ties of the macaque second somatosensory 

 



 Embedding Dynamic Field Theory in Neurophysiology 91

cortex:  Representation of orientation on differ-
ent finger pads. Journal of Neuroscience, 26(24), 
6473–6484.

Georgopoulos, A.  P. (1995). Motor cortex and cog-
nitive processing. In M. S.  Gazzaniga (Ed.), The 
cognitive neurosciences (pp. 507–517). Cambridge, 
MA: MIT Press.

Georgopoulos, A.  P., Kalaska, J.  F., Caminiti, R., & 
Massey, J. T. (1982). On the relations between the 
direction of two-dimensional arm movements and 
cell discharge in primate motor cortex. Journal of 
Neuroscience, 2(11), 1527–1537.

Georgopoulos, A.  P., Kettner, R.  E., & Schwartz, A.  B. 
(1988). Primate motor cortex and free arm move-
ments to visual targets in three-dimensional space. II. 
Coding of the direction of movement by a neuronal 
population. Journal of Neuroscience, 8(8), 2928–2937.

Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. 
(1986). Neuronal population coding of movement 
direction. Science, 233(4771), 1416–1419.

Georgopoulos, A. P., Taira, M., & Lukashin, A. (1993). 
Cognitive neurophysiology of the motor cortex. 
Science, 260(5104), 47–52.

Groh, J. M., Born, R. T., & Newsome, W. T. (1997). How 
is a sensory map read out? Effects of microstimula-
tion in visual area MT on saccades and smooth pur-
suit eye movements. Journal of Neuroscience, 17(11), 
4312–4330.

Harris, L. R., & Jenkin, M. R. M. (1997). Computational 
and psychophysical mechanisms of visual cod-
ing. In M. R.  M. Jenkin & L. R.  Harris (Eds.), 
Computational and psychophysical mecha-
nisms of visual coding (pp. 1–19). Cambridge, 
UK: Cambridge University Press.

Hopfield, J. J. (1982). Neural networks and physical sys-
tems with emergent collective computational abili-
ties. Proceedings of the National Academy of Sciences 
U.S.A., 79, 2554–2558.

Hopfield, J.  J. (1984). Neurons with graded response 
have collective computational properties like those 
of two-state neurons. Proceedings of the National 
Academy of Sciences U.S.A., 81, 3088–3092.

Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of 
single neurones in the cat’s striate cortex. Journal of 
Physiology, 148, 574–591.

Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields 
and functional architecture of monkey striate cor-
tex. Journal of Physiology, 195(1), 215–243.

Jancke, D., Erlhagen, W., Dinse, H. R., Akhavan, A. C., 
Giese, M., Steinhage, A., & Schöner, G. (1999). 
Parametric population representation of retinal 
location: Neuronal interaction dynamics in cat pri-
mary visual cortex. Journal of Neuroscience, 19(20), 
9016–9028.

Jones, J. P., & Palmer, L. A. (1987). The two-dimensional 
spatial structure of simple receptive fields in cat 

striate cortex. Journal of Neurophysiology, 58(6), 
1187–1211.

Kohonen, T. (1982). Self-organized formation of 
topologically correct feature maps. Biological 
Cybernetics, 43, 59–69.

Kurková, V., Neruda, R., Koutník, J., Franzius, M., 
Wilbert, N., & Wiskott, L. (2008). Invariant object 
recognition with slow feature analysis. In Artificial 
Neural Networks—ICANN 2008 (Vol. 5163, pp. 
961–970). Berlin: Springer-Verlag.

Lee, C., Rohrer, W.  H., & Sparks, D.  L. (1988). 
Population coding of saccadic eye movements 
by neurons in the superior colliculus. Nature, 
332(6162), 357–360.

Maass, W., Natschläger, T., & Markram, H. (2002). 
Real-time computing without stable states: A new 
framework for neural computation based on pertur-
bations. Neural Computation, 14(11), 2531–2560.

Markounikau, V., Igel, C., Grinvald, A., & Jancke, D. 
(2010). A dynamic neural field model of mesoscopic 
cortical activity captured with voltage-sensitive 
dye imaging. PLoS Computational Biology, 6(9), 
e1000919.

Nichols, M.  J., & Newsome, W.  T. (2002). Middle 
temporal visual area microstimulation inf luences 
veridical judgments of motion direction. Journal of 
Neuroscience, 22(21), 9530–9540.

Orban, G.  A. (1984). Neuronal operations in the visual 
cortex. Berlin: Springer-Verlag.

Pasupathy, A., & Connor, C.  E. (2001). Shape repre-
sentation in area V4:  Position-specific tuning for 
boundary conformation. Journal of Neurophysiology, 
86(5), 2505–2519.

Pasupathy, A., & Connor, C. E. (2002). Population cod-
ing of shape in area V4. Nature Neuroscience, 5(12), 
1332–1338.

Riesenhuber, M., & Poggio, T. (2000). Hierarchical 
models of object recognition in cortex. Nature 
Neuroscience, 2, 1019–1025.

Salinas, E., & Abbott, L. F. (1994). Vector reconstruc-
tion from firing rates. Journal of Computational 
Neuroscience, 1, 89–107.

Schwartz, A. B., Kettner, R. E., & Georgopoulos, A. P. 
(1988). Primate motor cortex and free arm move-
ments to visual targets in three-dimensional space. 
I. Relations between single cell discharge and direc-
tion of movement. Journal of Neuroscience, 8(8), 
2913–2927.

Sherrington, C.  S. (1906). The integrative action 
of the nervous system. New Haven, CT:  Yale 
University Press.

Sirosh, J., & Miikkulainen, R. (1994). Cooperative 
self-organization of afferent and lateral connections 
in cortical maps. Biological Cybernetics, 71, 65–78.

Smolensky, P. (1990). Tensor product variable bind-
ing and the representation of symbolic structures 



92 Fou n dat ions  of Dy na m ic  Fi e l d T h eory

in connectionist systems. Artificial Intelligence, 46, 
159–216.

Tchumatchenko, T., Malyshev, A., Wolf, F., & 
Volgushev, M. (2011). Ultrafast population encod-
ing by cortical neurons. Journal of Neuroscience, 
31(34), 12171–12179.

Trappenberg, T.  P. (2010). Fundamentals of computa-
tional neuroscience (2nd ed.). Oxford, UK:  Oxford 
University Press.

Treue, S., Hol, K., & Rauber, H. J. (2000). Seeing mul-
tiple directions of motion–physiology and psycho-
physics. Nature Neuroscience, 3(3), 270–276.

Ts’o, D.  Y., Gilbert, C.  D., & Wiesel, T.  N. (1986). 
Relationships between horizontal interactions 
and functional architecture in cat striate cortex as 
revealed by cross-correlation analysis. Journal of 
Neuroscience, 6(4), 1160–1170.

Wei, Z., Wang, X.-J., & Wang, D.-H. (2012). From dis-
tributed resources to limited slots in multiple-item 
working memory:  A  spiking network model 
with normalization. Journal of Neuroscience, 32, 
11228–11240.

Wilson, H.  R., & Cowan, J.  D. (1972). Excitatory and 
inhibitory interactions in localized populations of 
model neurons. Biophysical Journal, 12, 1–24.

Wilson, H. R., & Cowan, J. D. (1973). A mathematical 
theory of the functional dynamics of cortical and 
thalamic nervous tissue. Kybernetik, 13, 55–80.

Wiskott, L., & Sejnowski, T. (2002). Slow feature analy-
sis:  Unsupervised learning of invariances. Neural 
Computation, 14(4), 715–770.

Wong, K.-F., & Wang, X.-J. (2006). A recurrent network 
mechanism of time integration in perceptual deci-
sions. Journal of Neuroscience, 26(4), 1314–1328.

E X E RC I SE S  F OR   C H A P T E R   3
The interactive simulator provided in launcher-
TwoLayerField _ preset implements the 
extended field equation with two layers. The graphical 
user interface (GUI) shows the activation of two fields 
(or layers) as blue plots in two separate sets of axes, 
with the excitatory field u at the top and the inhibitory 
field v below. Field input and output are plotted in the 
same way as in the simulator for the one-layer field.

The sliders allow you to control field parameters 
(resting level and noise strength), interaction param-
eters, and input settings. Interactions in the architec-
ture include self-excitation in field u with strength cuu,  
excitation from field u to field v with strength cvu, as 
well as local and global inhibition from field v to field 
u with strengths cuv

loc and cuv
glob, respectively.

Exercise 1: Detection Instability
Starting from the settings no interactions 
(default), try to set up the interactions in the two-layer 

field to produce a detection instability. Increase inter-
action strengths cuu, cvu, and cuv

loc. When the activation 
level in u is driven beyond 0 by external input, a peak 
should form in both u (with activation higher than 
input) and v, and surround inhibition should be pro-
jected from v back to u. Notice how inhibition is only 
produced when there is supra-threshold activation in 
field v. Otherwise, the strength of the inhibitory pro-
jection, cuv

loc, is irrelevant. If you have trouble finding 
appropriate parameters, you can select the predefined 
setting “stabilized” from the dropdown menu.

Test whether there is a bistable regime by apply-
ing an input to form a peak and then decreasing 
the input strength back to a level that initially did 
not induce a peak. The peak should remain stable 
when the input is decreased moderately, and only 
collapse once input is diminished more strongly. 
Once the excitatory peak in u disappears, the peak 
in v collapses as well.

Exercise 2: Self-Sustained 
Activation Peaks
Increase the interaction strengths to produce 
self-sustained peaks that remain stable even when 
the input is removed completely. If you are having 
trouble finding appropriate parameters, select the 
setting “memory” from the dropdown menu. You 
should be able to have multiple memory peaks in 
the field at the same time.

Exercise 3: Selection
Set the strength of the local inhibition, cuv

loc, to zero 
and increase the strength of the global inhibition, 
cuv

glob, so that you get self-stabilized peaks again (or 
choose the predefined setting “selection”). You 
should now be able to create a selection behav-
ior:  Set up two inputs at different locations, both 
of the same amplitude, so that they are just suffi-
cient to drive the field activation beyond the output 
threshold. Press the Reset button to set the field 
activation back to the resting level and let it evolve 
in response to the input. You should get an activa-
tion peak at one input location and none at the 
other. Try varying the stimulus amplitudes to see 
how this inf luences selection behavior.

You can also try to change the parameter to get 
a single-peak memory behavior.

Exercise 4: Oscillations
You may already have seen some oscillatory behav-
ior of the two-layer field during the previous 
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exercises. To explore this in detail, open the param-
eter panel and set the time constants τ of both fields 
to 20. Then set c c cuu vu uv= = =loc 15 and cuv

glob = 0.  
Now apply a single localized input to induce a 
peak. You should be able to observe an overshoot 
of excitation after going through the detection 
instability:  Activation in u rises strongly in the 
beginning, but then decreases again as inhibition 
starts to build up. You can use the Reset button 
to observe the time course of the peak formation 
multiple times.

If you now increase interaction strengths even 
further, you can create perpetual oscillations in the 
two-layer field.

Exercise 5: Repulsion Effect
Try to create the repulsion effect that was observed 
and modeled for the composite stimuli in the work 
on visual representations. Select the setting stabi-
lized and create two self-stabilized peaks through 
local inputs. Keep shifting the peaks closer to 
each other by slowly changing the input positions. 
While the activation peaks are centered on the 
inputs when they are distant from each other, you 
can observe an outward deviation of the peak cen-
ter from the input center when you move the inputs 
closer together (if you move them very close, the 
peaks will merge). You can experiment with the 
same effect for memory peaks.

 


