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Abstract— Over the last years, pixel-wise analysis of semantic
segmentation was established as a powerful method in scene
understanding for autonomous driving, providing classification
and 2D shape estimation even with monocular camera systems.
Despite this positive resonance, a way to take advantage of this
representation for the extraction of 3D information solely from
a single-shot RGB image has never been presented.
In this paper we present a full-fledged six degree-of-freedom
vehicle pose estimation algorithm, demonstrating that a seg-
mentation representation can be utilized to extract precise 3D
information for non-ego vehicles. We train a neural network to
predict a multi-class mask from segmentation, defining classes
based on mechanical parts and relative part positions, treating
different entities of a part as separate classes. The multi-class
mask is transformed to a variable set of key points, serving as a
set of 2D-3D correspondences for a Point-n-Perspective-solver.
Our paper shows not only promising results for 3D vehicle pose
estimation on a publicly available dataset but also exemplifies
the high potential of the representation for vehicle state analysis.
We present detailed insight on network configuration as well
as correspondence calculation and their effect on the quality of
the estimated vehicle pose.

I. INTRODUCTION

To act in a permanently changing environment, an au-
tonomous vehicle requires an extensive understanding of
the surrounding scene and a precise perception of other
traffic participants, mainly non-ego vehicles. Over the last
years semantic segmentation was established as a powerful
method to extract large amounts of information in a holistic
manner by pixel-wise image analysis, applicable even on
monocular camera systems. Despite this positive resonance,
the obtained representation was rarely used for 3D object de-
tection: Applications either remained in the two-dimensional
domain or were related to point cloud algorithms requiring
stereo or LIDAR setups. In contrast to this, we want to
show that semantic segmentation is capable of more than
2D analysis, even in the challenging circumstances of a
monocular setup: By describing a vehicle in a dense, spatially
precise manner, it provides an information-rich baseline that
can be utilized by pose estimation algorithms. Therefore our
research focuses on a proof-of-concept of how 3D object
information can be extracted from the semantic segmentation
of a single image, i.e., the estimation of the size and six
degree-of-freedom (6DoF) pose of non-ego vehicles. This is
motivated by the following facts: Firstly, future use cases in
autonomous driving will require a deeper understanding of
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Fig. 1: Exemplary result from the presented 6DoF pose estimation
pipeline. Top: Prediction of the multi-class Mask-RCNN on the
Virtual KITTI dataset [1]. Our vehicle detector outputs part-level
segmentation masks. Middle: For each detection, part correspon-
dences (colored points) are generated from the segmentation mask
and passed to a PnP-solver. Bottom: Resulting 3D Visualization of
the 6DoF vehicle poses, black boxes represent the ground truth.

vehicles, their dynamic structure and state, e.g., the analysis
of dynamic parts, wheels and indicators. Semantic segmen-
tation, as a spatially precise analysis will help providing
the required information. Secondly, the structure of semantic
segmentation implies a strict limitation to visible features,
providing an interpretable input for subsequent algorithms.
Lastly, establishing such a pipeline creates a path redundant
to current bounding box algorithm designs, which is required
for certain automotive security verification standards.

Relying on monocular single-shot object detection, simul-
taneously estimating the size and pose of an object solely
based on geometrical considerations is not possible. To
overcome this limitation, model-based approaches provide
an efficient solution by limiting the problem to the pose
estimation by adding knowledge about the size of the object.
Research showed that this assumption is valid for rigid
objects like cars, providing good results using Perspective-
n-Point (PnP) fitting [2], in which the vehicle’s pose is es-
timated using 2D-3D correspondences to solve a projection-
based optimization problem.

Unfortunately, the current semantic segmentation output
does not directly provide usable correspondences, delineating
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vehicles as filled silhouettes which lack detailed information:
Not only do silhouettes underlie a high variance w.r.t. occlu-
sions and truncations, even under good conditions the axial
symmetry of cars remains a problem. Therefore, to apply
model-based pose estimation approaches, better representa-
tions need to be found.

In our earlier work [3] we investigated this problem
and found a solution by defining a fine-grained vehicle
representation, which defines sub-classes for mechanical
parts of a vehicle, embedding strong pose information into
a segmentation by treating multiple entities of the same
mechanical part as different classes, e.g., different doors or
wheels.

As a continuation of our work, in this paper we want
to analyze how well this representation can be utilized to
estimate a full 6DoF pose of a vehicle using a model-based
PnP-fitting approach. To this end, we perform the following
three steps: Firstly, we define and train a convolutional neural
network1 to predict our multi-class vehicle segmentation
(Fig. 1, top). The annotation of said multi-class vehicle
segmentation is extensive, leading us to a semi-automated
labeling pipeline to easily generate segmentation masks for
training. Secondly, we present two schemes to generate
2D-3D correspondences from the multi-class segmentation
(Fig. 1, middle) respectively from annotated CAD models.
Thirdly, a PnP-fitting pipeline is established which takes the
correspondences as an input and calculates a 6DoF pose
by optimizing the correspondence reprojection error (Fig. 1,
bottom). The extent of the vehicle is obtained by choosing a
suited model from the model database.

The evaluation of our newly approach must overcome
several issues: There is no public object detection benchmark
that provides both 3D object bounding boxes and seman-
tic segmentation ground truth. Additionally, the multi-class
segmentation has high requirements w.r.t. labeling quality,
which is also not satisfied by object detection benchmarks. To
still provide reasonable and reproducible results we perform
experiments on the synthetic dataset Virtual KITTI [1]. The
synthetic character enables us to perform this very early
proof-of-concept experiments in a controlled environment.
Our future work will focus on evaluating the approach on
real-world data.

In summary, our contributions are:

• A new segmentation-based 6DoF vehicle pose estima-
tion approach, which generates 2D-3D correspondences
for a model-based PnP-solver

• Utilizing mask object detectors for detailed multi-class
segmentation

• Evaluation of the approach on a publicly available
dataset

1Although our goal is a pipeline for full image segmentation, we utilize a
Mask-RCNN approach in this paper, which does not bring full redundancy
from bounding box based methods. However, full image instance segmenta-
tion remains a challenging task which led us to too many problems, mostly
caused by fractured object predictions. We see this paper as an intermediate
step to focus on the pose estimation component of the pipeline by decoupling
the pose estimation from the quality of an instance segmentation.

II. RELATED WORK

In this paper we follow a highly experimental approach,
estimating a 6DoF vehicle pose with correspondences solely
from segmentation inputs. To the best of our knowledge,
there is no published research in this direction. Thus,
we provide a review of segmentation background and
other vehicle pose estimation approaches, highlighting and
discussing the underlying data representations. For pose
estimation approaches we focus on monocular camera
systems, which constitute only a small part among the
methods for other sensor types in autonomous driving,
mainly LIDAR and RADAR.

Pixel-wise segmentation as a bottom-up approach has
a long history in computer vision. The core idea is to
build an understanding of the whole scene from the
smallest unit, a pixel. By classifying every pixel into
a set of classes, different types of information like the
surrounding, infrastructure or dynamic objects can be
extracted from the image plane. In automotive context,
semantic segmentation had a breakthrough by a combination
of the function approximation power of deep learning [4]
and the availability of large scale datasets [5], [6], [7].
Research interest focused either on a better generalization
of feature extraction [8], [9], network design [10], [11] or
exploitation of temporal data [12]. A major downside of
the segmentation representation is that the silhouettes of
different objects of the same class merge when spatially
close to each other. A separation of objects needs to
be done in an additional means, commonly done by the
utilization of point clouds [13]. To predict instances of
a class by network design is a challenging task, because
the number of objects within the image is arbitrary and
the successful neural network structures are designed
with static in- and outputs. Solutions to this problem are
recurrent networks [14], [15], [16] or network architectures
which transform the input into a representation that can be
clustered [17], [18]. These techniques provide promising
visual results, but the structural downsides of the received
segmentation representation remain: Firstly, the received
amount of data is high and hard to compress hindering
further processing. Secondly, the spatial arrangement is not
robust against adding or removing data points. Finally, the
current interpretation solely allows us to extract silhouettes,
which conflict with the lateral and longitudinal symmetries
of vehicles. These are the main causes for the current
stagnation toward the extraction of 3D information. In this
paper we provide solutions to the first and third problem:
The amount of data cannot be reduced, but we increase the
amount of information that is captured by adding classes
and do not only identify components but also describe the
structure of the vehicle.

Our approach is contrary to commonly applied object
pose estimation algorithms that utilize bounding boxes as
a core representation of objects. Popular concepts for object
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detectors are one-stage [19], [20] or two-stage detectors [21],
[22] that are deployed in various applications due to their
strong deep learning baselines. We refer the reader to [23] for
an extensive overview of the different architectures and their
performances. The work of Mask-RCNN [24] builds a bridge
between bounding box detectors and instance segmentation
but does not bring this into relations with pose estimation.
Instead a manifold of different techniques evolved to estimate
object poses in a downstream fashion, ranging from coarse
viewpoint sub-classification [25], [26] over geometric priors
[27] to model-based approaches [2]. The work of [28] is
one attempt to include segmentation outputs in an energy
function but only on silhouette level.

Although deep learning affected all of these methods,
a pure learning-based approach never outperformed all of
the specifically tailored methods. The combination of a
model-based approach built on a powerful intermediate rep-
resentation (e.g., key points), which can be learned by a
neural network, established the current state-of-the-art for
monocular camera setups [2]. However, we want to discuss
the fact that the static structure of the neural network leads
to a prediction of all key points in every detection, even if
simultaneous visibility is not possible. To circumvent this,
additional visibility analysis is done by the authors of [2].
Our own experiments with these approaches showed error
cases, in which the arrangement of key points was learned
relatively to each other instead of relying on visual cues. By
design, a segmentation approach bypasses this problem since
it is not bound to a static number of correspondences.

III. METHOD

This section is divided as follows: First, we give an
introduction to our multi-class vehicle segmentation and
how we apply it to CAD models. Then, our neural
network structure is presented along the corresponding
data generation pipeline, which is required to automatically
annonate ground truth in a large scale manner. In the final
subsection we describe our new fitting algorithm as our
core contribution. An overview of the two-stage pipeline is
given in Fig. 3.

Fine-grained vehicle representation. In this paper we
utilize a fine-grained vehicle representation which divides
a car into several sub-classes C (e.g., apron, door) based
on material, function and relative position. By this means,
we achieve multiple goals: Foremost, pose information is
embedded by defining single occurrence parts with fixed
positions and treating different entities of the same part as
different classes (e.g., front left door vs. front right door).
At the same time, we separate movable parts from static
ones and define function-specific parts, e.g., indicators. Full
background on the vehicle representations is given in our
earlier work [3]. In this work we use the fragmentation-level
full, which consists of 27 classes, extended by two classes
for the side mirrors.

A vehicle model is defined as a mesh quadruplet M =
(V, F,E, Z) with the model’s vertices V , the model’s faces

Fig. 2: Visualization of the multi-class vehicle representation
annotated on four CAD models.

F , the physical extent of the model E = (EW , EH , EL)
and an additional class assignment vector Z(f), which holds
a class label from C for each face f ∈ F . Using this
representation, the vehicle models and their respective part
segmentations can easily be projected into camera images
using a given calibration. An exemplary visualization of the
models is given in Fig. 2.

Multi-class mask prediction. The prediction of the multi-
class vehicle representation on image level is done by a mask
prediction network based on the framework Mask R-CNN
introduced in [24].

The architecture of Mask R-CNN consists of the two-
stage bounding box detector Faster R-CNN [22], which
itself is divided into a Region Proposal Network (RPN)
as first stage and the classification network Fast R-CNN
[29] as second stage. The RPN generates promising object
candidates, which are evaluated by the Fast R-CNN stage
with classification and bounding box regression. In Mask R-
CNN, this second stage is extended with an additional output
head for pixel-wise instance mask prediction using the fully
convolutional network architecture (FCN) [11].
To predict vehicles with our multi-class representation we

restructure the outputs of the classification and mask branch
while keeping the structure for bounding box regression:
Firstly, we extend the mask class prediction from a singular
foreground value to the prediction of a probability distri-
bution between all sub-classes from the part segmentation.
Secondly, we reduce the architecture the classification task
to a binary foreground-background problem to only detect
vehicles. Therefore the convolutional output kernel changes
from Km2 (with K number of object classes) as in [24] to
|C|Km2 = |C|m2, with m representing the size of the mask
kernel. Instead of treating all part masks individually with a
sigmoid loss, we apply a softmax cross-entropy loss Lmask
over all sub-class outputs for each position within the kernel.
With added weighting and Lcls and Lbox as defined in [21]
the final loss of the second stage is defined as:

L = αclsLcls + αboxLbox + αmaskLmask

Network training and data generation. To train the de-
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Fig. 3: Overview of the presented 6DoF pose estimation pipeline. In the first stage, an image is passed through the introduced multi-class
mask detector to predict a list of bounding boxes with corresponding part-level vehicle masks. After that, a 2D center point is calculated
for each part class of an upscaled mask. A filtered set of 2D correspondences O2D is passed to a PnP-solver which performs PnP-fitting
with the 3D correspondences O3D, m for each model m of a given model database. The 3D correspondences are scaled to fit the detection.
After fitting, the algorithms returns the estimated 6DoF pose and the physical extent for the model with the lowest reprojection error.

fined neural network in a supervised fashion, a large amount
of annotated data is required as training input. Commonly
segmentation labeling is done manually, which is time con-
suming, especially for the high number of classes included
in our representation. Additionally, the manual annotation
of fine-grained vehicle parts is not viable for vehicles in
far distances due to limited resolution. To overcome both
problems, a semi-automated labeling pipeline [2] is set up.

An existing dataset which provides three dimensional
bounding box ground truth is augmented with new data
using CAD models using projection with calibrated camera:
For each bounding box a model from our model zoo is
assigned w.r.t. vehicle category and size (L1 distance). The
selected model is scaled to fit the dimensions of the labeled
bounding box and placed at the bounding box position in
3D space. With a calibrated camera the dense multi-class
vehicle segmentation can be rendered into the image. To
handle occlusions correctly, we propagate only pixels that
have been labeled as class car in an additionally given image
segmentation. As a result, the dataset that is fed to the
prediction network consists of bounding box coordinates,
a foreground-background classification and the multi-class
mask.

Vehicle pose estimation from part-level segmentation.
The core of our algorithm is the downstream estimation of
the vehicle pose, i.e., the joint search for the translation
vector t and the rotation vector r – either three degrees
of freedom – for each vehicle detection provided by the

multi-class mask detector. Input to the algorithm is the
triplet (B, P , M ) with the detected bounding box B, the
upscaled multi-class part segmentation mask P and the
annotated model zoo M containing the model quadruplets
described above. The multi-class detection mask P is a set
of pixels with positions (px, py), which can be divided into
several sub-masks P c for each class c, holding only pixels
predicted as the respective class. From this set of masks we
generate 2D-3D correspondences for the PnP-solver.

In 2D image space, we use two different methods to
generate a correspondence O2D for a part class. The first one
is a center-of-mass calculation as the average over all pixel
coordinates within the mask predicted as the respective class:

Oc
2D,CM =

 1

|P c|
∑
p∈P c

px,
1

|P c|
∑
p∈P c

py

 .

The second method uses a rectangular approximation of all
pixels belonging to a certain vehicle part class s:

tlc2D =

(
min
p∈P c

px, min
p∈P c

py

)
brc2D =

(
max
p∈P c

px,max
p∈P c

py

)
Oc

2D,RECT =
tlc2D + brc2D

2
.

In 3D model space, corresponding coordinates on each model
can be precomputed for each vehicle instance in the model
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database. There is no depedency w.r.t. the viewpoint in
3D. As in 2D space, we define the key point O as either
calculated center of mass O3D,CM or a cuboid approximation
O3D,CUB. Let V c :=

{
v ∈ V f , f ∈ F | Z(f) = c

}
be the

vertices incident to all faces of a given vehicle part:

Oc
3D,CM =

(
1

|V c|
∑
v∈V c

vx,
1

|V c|
∑
v∈V c

vy,
1

|V c|
∑
v∈V c

vz,

)

tlc3D =

(
min
v∈V c

vx, min
v∈V c

vy, min
v∈V c

vz

)
brc3D =

(
max
v∈V c

vx,max
v∈V c

vy,max
v∈V c

vz

)
Oc

3D,CUB =
brc3D + tlc3D

2

During inference, the 2D center points Oc
2D are generated for

all classes that occur in the mask and then passed as tuples
with their 3D correspondences Oc

3D to a standard PnP-solver,
in our case the fast ePnP-solver from [30]. To avoid outliers,
we integrate an option to use solely parts with a percentage of
pixels larger than a threshold |P

c|
AB ≤ d in the PnP-solver, in

which AB denotes the area of the detected bounding box B.
A lower bound of 4 correspondences is required to estimate
a pose with the PnP-solver.

The PnP-problem is solved with 3D correspondences
O3D,m from each model m and the final detection is returned
with the size and pose estimation from the model with the
lowest reprojection error eproj,m.

IV. EXPERIMENTS

The experiments section starts with a description of the
dataset followed by details of the code framework and the
parameters used in training. The first evaluation is a short
2D analysis of the bounding box detector performance, yet
we want to focus on the multi-class mask and 6DoF pose
evaluation. To that end, we first analyze the mask quality
using pixel accuracy for different kernel sizes and scaling
methods before we evaluate the predicted 6DoF poses using
3D IoU and average distances.

Dataset. As we are projecting a dense representation,
the demand for accurate labeling increases significantly
compared to algorithms that use sparse correspondences:
Aberrations within a few centimeters already result in er-
roneous projections of the multi-class segmentation masks.
Therefore, our method is not applicable to established pose
estimation benchmarks, for example the KITTI benchmark
[6]. However, to obtain first results with this new approach,
we utilize the synthetic dataset of Virtual KITTI [1] for a
proof-of-concept. Earlier work [31], [32] already provided
strong examples of how deep learning algorithms can rely
on synthetic data for training.

Since the dataset does not provide a fixed benchmark
definition, we define our own: The dataset was split into
13743 images for training, 1527 for validation and 4540 for
testing, in which each dataset contains scenes with various
weather and lighting conditions. Consecutive frames of

sequences are prevented from appearing in the training and
the test set. An extensive description can be found in [3].
Within the labeling pipeline we utilized the original CAD
models that were used in the rendering of the Virtual KITTI
dataset. Therefore, the projected part-segmentation matches
the vehicles exactly.

Implementation. Our framework is based on the code
of the tensorflow object detection framework [23]. The
parameters of the two-stage detectors are configured as
described in [22], [24]. In short, we use resized images
with 600 pixels height, 5 scales and 3 aspect ratios for the
RPN anchors and 300 object proposals. Feature extraction
is done with the ResNet-101 backbone [8]. We set the
loss weights of the detection heads to αcls = 1, αbox = 2,
αmask = 4 to focus on multi-class mask predictions
since we use pretrained weights from a network trained
solely on classification and bounding box regression.
Our training is limited to 400,000 steps, starting from a
pretrained bounding box detector. We evaluate different
mask kernel sizes m = 14, 28, 42, 56 to analyze if higher
mask resolutions affect the algorithm.

Detector evaluation. To evaluate the performance of the
object detector we take a look at precision, recall and mean
IoU using the Pascal criterion with a threshold thiou = 0.5.
In later evaluations we refer to detections complying with
this criterion as assigned.

Two different training sets are considered at this first stage:
The dataset holds a lot of highly truncated and occluded
objects, marked with the label dontcare in the dataset.
For evaluation, we ignore overlapping detections with these
dontcare vehicles, but want to identify their influence during
training. Therefore we evaluate separate trainings with and
without considering the dontcare vehicles. Table I shows that
the precision, recall and mean IoU of all trained detectors are
very high and therefore provide a lot of well-overlapping 2D
detections as input to our pose estimation algorithm. Training
with the dontcare vehicles results in lower precision but
higher recall, which is reasonable since the detector learns
from harder examples. Due to the fact that the mean IoU is
higher for training without dontcare vehicles, we solely use
this training in the following experiments.

Kernel size Dontcare in training Precision Recall mIoU
14x14 – 99.89 96.11 92.46
14x14 x 93.59 99.79 91.43
28x28 – 99.97 96.74 92.27
28x28 x 94.22 99.8 91.43
42x42 – 99.93 96.33 91.91
42x42 x 93.54 99.79 91.7
56x56 – 99.94 95.88 92.4
56x56 x 93.3 99.79 91.74

TABLE I: Results for the bounding box detector in Precision,
Recall and mean intersection of union (mIoU) for different mask
kernel sizes and different training sets.

Mask evaluation. The prediction of the multi-class ve-

577



hicle masks is evaluated by pixel-wise accuracy PA for
each assigned detection. The final metric mPA is the mean
over the accuracies PA for all assigned detections of the
testing dataset. We evaluate the varying mask kernel sizes
and scaling methods, namely bilinear and nearest-neighbor
scaling, exemplary visualized in Fig. 4. To neglect the
influence of erroneous bounding box sizes, pixels of the
ground truth bounding box that are not in the respective
detection bounding box are not considered false positive.

14x14 28x28 42x42 56x56

14x14 28x28 42x42 56x56

GT

Nearest-neighbor scaling

Bilinear scaling

Fig. 4: Visual comparison of the resulting multi-class masks for
the same detection using the nearest-neighbor or bilinear scaling
method. The different kernel sizes imply different underlying net-
work weights.

The results from table II show three characteristics: While
the first two characteristics – larger mask kernel size results
in a better mPA score and bilinear scaling is better than the
nearest-neighbor method – are quite intuitive, the latter is
of greater interest: Nearest-neighbor scaling mPA shows a
significant performance difference (-6.48%) for the smallest
kernel size but for larger kernels, this difference is rather
small (-4.28% to -2.74%). We conclude that a lower bound
for nearest-neighbor scaling should be estimated in relation
to the object size distribution of the dataset. Since the results
for larger kernel sizes using the significantly faster nearest-
neighbor scaling are in the same range as for bilinear scaling,
we analyze both methods in the pose evaluation section.

Kernel size Scaling mPA

14x14 bilinear 81.27
28x28 bilinear 84.7
42x42 bilinear 85.37
56x56 bilinear 85.71
14x14 nearest-neighbor 74.69
28x28 nearest-neighbor 80.42
42x42 nearest-neighbor 82.09
56x56 nearest-neighbor 82.97

TABLE II: Results for the prediction of the multi-class masks in
mean pixel accuracy mPA w.r.t. different kernel sizes and scaling
methods.

Pose estimation evaluation. The 6DoF fitting algorithm
is evaluated by using 3D IoU as well as average Euclidean
distance and discrepancy of the Euler angles. As stated
earlier, only assigned 2D detections are considered in this
analysis. Since each model appears in the dataset with
varying extents, we scale the 3D correspondences O3D with
the factor extracted from ground truth. Table III and IV

compare the 3D performance and model precision with
respect to different scaling methods, mask kernel sizes and
correspondence calculation methods O2D, O3D. 3D IoU is
calculated from cuboids using the predicted box extent.

The overall performance settles at about 40 percent 3D
IoU, which we consider good for a monocular camera
system. Qualitative results (Fig. 5) show many well esti-
mated examples, even under challenging weather or lighting
conditions. We want to remind the reader that the 3D IoU
metric is very punishing and even a small error in distance
estimation already results in a low score for a normally sized
car. The small average errors for y, αx and αz prove that
the algorithm is well-suited for full 6DoF pose estimation.
In all configurations there were no detections with too few
correspondences to perform PnP-fitting. Regarding model
precision, over half of the detections are predicted with the
correct model. We consider a prediction of the model with
the neural network in future research.

Comparing the different configurations we conclude with
the following statements: The calculation of the corre-
spondences is in favor of the rectangular approximations
O2D,RECT, O3D,CUB, resulting in significantly higher model
precision (up to +9.2%) and slightly higher 3D IoU (up to
+3.97%). Another implication is that larger kernel sizes do
not improve quality of the pose estimation. Neither 3D IoU
nor average distance errors follow any trend – as can be
seen by the various configurations that perform best in the
different metrics. Instead, we consider this algorithmic noise.
This statement appears also to be valid for the two scaling
methods: Solely the smallest kernel for bilinear scaling is
an outlier, supporting our theory from mask evaluation that
the estimation of a minimum kernel size is recommended.
For kernel sizes above 28x28 the 3D performance does not
increase.

An abnormality in the presented results is the lower
average yaw error δy for the smallest mask kernel size. Our
analysis showed that a significant number of vehicles closer
than 5 meters are better for this kernel size, which is caused
by truncated parts that are solely detected at larger kernel
sizes and affect the fitting in a negative way.

Parameter tuning. The presented algorithm permits a lot
of tuning possibilities that are open for further research. In
our experiments we already found the following tweaks to
improve performance: As stated earlier, removing parts with
low pixel counts may be considered (-SP) but we do not
apply this for the mirror and lights classes by whitelisting
(+WL) due to their relatively small size. Another way to
increase performance is the blacklisting of certain parts
(+BL), i.e., the classes for the sides, aprons and the roof due
to their high variance w.r.t. the camera viewpoint. Lastly,
we found a solution to the earlier mentioned truncation
problems by removing correspondences that are directly
at the image borders (+CFIX), resulting in significantly
lower δy error (-0.10rad). Another solution for this problem
could be outlier analysis with methods like RANSAC or a
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Kernel Scaling O2D O3D Model 3D IoU ∆T/m ∆R/rad ∆x/m ∆y/m ∆z/m ∆αx/rad ∆αy /rad ∆αz /rad
14x14 bilinear CM CM 44.51 40.84 3.44 0.35 0.96 0.14 2.34 0.08 0.20 0.07
14x14 bilinear RECT CUB 43.78 40.33 3.43 0.38 0.97 0.13 2.32 0.09 0.21 0.08
28x28 bilinear CM CM 50.36 43.52 3.56 0.41 0.99 0.13 2.44 0.07 0.25 0.08
28x28 bilinear RECT CUB 55.01 42.31 3.98 0.45 1.13 0.13 2.71 0.09 0.28 0.08
42x42 bilinear CM CM 47.67 42.14 4.18 0.41 1.14 0.15 2.90 0.08 0.25 0.08
42x42 bilinear RECT CUB 56.87 42.27 4.31 0.44 1.20 0.14 2.97 0.09 0.26 0.08
56x56 bilinear CM CM 49.47 42.98 3.51 0.42 0.98 0.13 2.4 0.07 0.26 0.08
56x56 bilinear RECT CUB 55.03 42.03 3.64 0.45 1.03 0.12 2.47 0.09 0.29 0.09

TABLE III: Results for the pose evaluation based on bilinearly upscaled masks. We compare different kernel sizes and the two different
correspondence calculation methods using Euclidean distances (∆x, ∆y, ∆z), discrepancy of the Euler angles (∆αx, ∆αy , ∆αz), model
precision (Model) and 3D intersection over union (3D IoU). Euclidean distances are summed up to ∆T while ∆R represents the
accumulated angular errors. The reported distances are defined in the camera frame with x pointing to the right, y pointing downwards
and z pointing to the front.

Kernel Scaling O2D O3D Model 3D IoU ∆T/m ∆R/rad ∆x/m ∆y/m ∆z/m ∆αx/rad ∆αy /rad ∆αz /rad
14x14 nearest-n. CM CM 42.26 26.63 4.41 0.36 1.16 0.18 3.07 0.08 0.21 0.07
14x14 nearest-n. RECT CUB 42.05 36.78 3.72 0.38 1.02 0.16 2.54 0.09 0.22 0.08
28x28 nearest-n. CM CM 49.17 38.24 3.85 0.40 1.04 0.15 2.66 0.07 0.25 0.08
28x28 nearest-n. RECT CUB 53.94 42.21 4.49 0.43 1.12 0.15 2.75 0.09 0.27 0.08
42x42 nearest-n. CM CM 47.55 40.62 4.41 0.4 1.19 0.16 3.05 0.08 0.24 0.08
42x42 nearest-n. RECT CUB 55.93 42.25 4.49 0.43 1.22 0.16 3.10 0.09 0.26 0.08
56x56 nearest-n. CM CM 49.6 42.30 3.50 0.41 0.96 0.14 2.40 0.07 0.26 0.08
56x56 nearest-n. RECT CUB 55.03 42.03 3.64 0.45 1.03 0.14 2.48 0.08 0.28 0.08

TABLE IV: Results for the pose evaluation based for masks upscaled with the nearest-neighbor scheme. We compare different kernel
sizes and the two different correspondence calculation methods using Euclidean distances (∆x, ∆y, ∆z), discrepancy of the Euler angles
(∆αx, ∆αy , ∆αz), model precision (Model) and 3D intersection over union (3D IoU). Euclidean distances are summed up to ∆T while
∆R represents the accumulated angular errors. The reported distances are defined in the camera frame with x pointing to the right, y
pointing downwards and z pointing to the front.

visibility analysis during fitting. Table V gives an overview of
the performance increases: In the best configuration, model
precision is boosted by +9% and for 3D IoU we were able
to achieve more than +6%. Applying these techniques, we
had a ratio of 0.09% unfittable detections.

Configuration Model 3D IoU ∆T/m ∆R/rad
56x56 bilinear RECT 55.03 42.03 3.64 0.45
-SP +BL +WL 63.83 48.87 2.48 0.29
-SP +BL +WL +CFIX 64.17 49.34 2.42 0.28

TABLE V: Results in model precision (Model), 3D intersection
over union (3D IoU) and the summed errors (∆T, ∆R) for
improved algorithmic configurations.

Execution performance. The inference time of Mask-
RCNN is not affected by the multi-class extension, yet the
training time is higher and scales with the configured mask
kernel size. Calculating the correspondences and PnP-fitting
is within a few milliseconds and therefore can be considered
real-time capable. The choice of the scaling method makes
a difference since bilinear scaling takes about two orders
of magnitude longer than nearest-neighbor scaling, which is
usually within a double-digit microsecond range.

V. CONCLUSION

We presented a 6DoF pose estimation algorithm utilizing
the representation of a multi-class segmentation, which is
a first achievement toward the goal of extracting 3D infor-
mation from pixel-wise semantics with a monocular camera

setup. The evaluation shows promising 3D results under
various image conditions and provides extensive insights
on configuration and parameters. The high accuracy of
the underlying multi-class mask representation brings great
benefits for detailed vehicle analysis, extracting dynamic
parts and indicators. The significantly increased performance
from parameter tuning highlights the fact that the used
representation holds a lot of unexplored potential, which can
be exploited by a better fitting procedure considering all pixel
information and the underlying predicted probability distri-
butions. A detailed analysis regarding a judicious trade-off
between computational demand for fitting and performance
is necessary. Our future work will investigate under which
conditions the used representation can be applied to real-
world data.
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