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Neural dynamics

activation dynamics of 
individual “neurons”
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Neural Dynamics
dynamic neural “networks” 
consisting of one or two neurons
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… toward fields

where do “inputs” come from…? 

from sensory systems

from other neurons 

=> activation variables gain their meaning from 
the connections from the sensory surfaces or to 
the motor surfaces 
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is uniquely represented by a particular rate of neural firing. In general, however, the map is 
invertible, so that a many-to-one mapping may result. This is the case, for instance, when dif-
ferent patterns of input are mapped onto the same “response.” Still, information-theoretical 
terms are sometimes used to characterize such networks by saying that the output neurons 
“encode” particular patterns of input, perhaps with a certain degree of invariance, so that a 
set of changes in the input pattern do not affect the output. A whole field of connectionism or 
neural network theory is devoted to finding ways of how to learn these forward mappings from 
examples. An important part of that theory is the proof that certain classes of learning meth-
ods make such networks universal approximators; that is, they are capable of instantiating any 
reasonably behaved mapping from one space to another (Haykin, 2008). In this characterization 
of a feed-forward neural network, time does not matter. Any time course of the input pattern 
will be reflected in a corresponding time course in the output pattern. The output depends only 
on the current input, not on past inputs or on past levels of the output or the hidden neurons.

A recurrent network such as the one illustrated in Figure 1.3 cannot be characterized by 
such an input–output mapping. In a recurrent network, loops of connectivity can be found so 
that one particular neuron (e.g., u4 in the figure) may provide input to other neurons (e.g., u6), 
but also conversely receive input from those other neurons either directly (u6) or through some 
other intermediate steps (e.g., through u6 and u5 or through the chain from u6 to u5 to u2 to u4).  
The output cannot be computed from the input value because it depends on itself! Recurrence 
of this kind is common in the central nervous system, as shown empirically through methods 
of quantitative neuroanatomy (Braitenberg and Schüz, 1991).

To make sense of recurrent neural networks, the notion of time is needed, at least in some 
rudimentary form. For instance, neural processing in such a network may be thought of as 
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FIGURE 1.2: In this sketch of a feed-forward neural network, activation variables, u1 to u6 , are symbolized by the 
circles. Inputs from the sensory surface, s1 to s3 , are represented by arrows. Arrows also represent connections where 
the output of one activation variable is input to another. Connections are ordered such that there are no closed loops 
in the network.
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FIGURE 1.3: Same sketch as in Figure 1.2, but now with additional connections that create loops of connectivity, 
making this a recurrent neural network.
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… toward fields

there is no behavioral evidence for discrete 
sampling…

=> abstract from discrete sampling… 
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… toward fields

define field is over the continuous stimulus 
dimension

… as dictated by input/output connectivity… 
activation
field

input from the
sensory surface

dimension

dimension



… toward fields

or by forward projections 
onto motor surfaces… 

=> behavioral dynamics

e.g., through peripheral 
reflex loops

motor 
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activation fields

define activation fields over continuous spaces

homologous to sensory surfaces, e.g., visual or auditory space 
(retinal, allocentric, ...)

homologous to motor surfaces, e.g., saccadic end-points or 
direction of movement of the end-effector in outer space

feature spaces, e.g., localized visual orientations, color, 
impedance, ...

abstract spaces, e.g., ordinal space, along which serial order is 
represented 

e.g., space, movement 
parameters, feature 
dimensions, viewing 

parameters, ...

dimension

activation
field

metric contents

information, probability, certainty



Example motion perception: 
space of possible percepts 

activation

motion directionhorizontalposition

ve
rt

ic
al

 p
os

iti
on

horizontal position

motion
direction 0



Activation patterns representing 
different percepts
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Example: movement planning: 
space of possible actions
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Activation patterns representing 
states of motor decision making
bi-modal distribution of activation over movement 
direction in pre-motor cortex before a selection 
decision is made 

mono-modal distribution once the decision is made

Neuron
806

Figure 6. Population Activity in PMd and M1

Population activity in one-target (A) and two-target (B) tasks represented as color contour plots for cells in rostral PMd, caudal PMd, and M1.
In each row, panels are aligned on spatial cue onset (S), color-cue onset (C), and GO signal onset (G). In each panel, each horizontal row
represents the average activity of cells whose PD lies at a given angle from the direction of the selected target (filled circle on left). Color
indicates change in firing rate relative to the background rate of each cell sample during the 500 ms prior to spatial cue onset (scale on left).
(C) Contour plots of PMd activity recorded in the 90° variant of the two-target task. (Left) SC activity in the one-target task. (Middle) SC
activity when a second spatial cue appeared 90° CCW from a cue in each cell’s PD. (Right) SC activity when a second spatial cue appeared
90° CW from the PD.

period (Figure 7B), possibly in anticipation of the arrival the target by the prior color cue, and not the other spa-
tial cue during most of the SC epoch. Only 3 (7%) PRof the salient SC cues (Crammond and Kalaska, 1996;

Vaadia et al., 1988). cells were bimodally tuned in both two-target and MS
tasks. The spatial cues did not evoke a directional re-When the two spatial cues appeared in the SC epoch

of the MS task, the activity of 70/87 cells (80%) was sponse in SR and BU cells in the two-target task, but
evoked a unimodal response in 28/33 (85%) of them inunimodally tuned when averaged over the SC epoch, 5

(6%) were bimodally tuned, and 12 (14%) were un- the MS task. The unimodal response in the SC epoch
of the MS task was stronger than the bimodal SC re-tuned. Strikingly, 40/45 PR cells (89%), which were bi-

modally tuned during the SC epoch of the two-target task sponse in the two-target task, suggesting that cell ac-
tivity reflected the quality of the directional information(Figure 3B), were unimodally tuned in response to the

same cues in the MS task (Figure 7A). They signaled provided by the cues, not their physical properties.
Nevertheless, a minority of cells showed a main effectthe location of the spatial cue that was designated as

[Cisek, Kalaska: Neuron 2005]



Summary: activation fields

e.g., space, movement 
parameters, feature 
dimensions, viewing 
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