
Neural Dynamics

Gregor Schöner
gregor.schoener@ini.rub.de

mailto:gregor.schoener@ini.rub.de

Activation

how to represent the inner
state of the Central Nervous
System?

=> activation concept

source1 source2

Activation

neural state variables

membrane potential of neurons?

spiking rate?

... population activation...

Activation

activation as a real number, abstracting from
biophysical details

low levels of activation: not transmitted to other systems (e.g.,
to motor systems)

high levels of activation: transmitted to other systems

as described by sigmoidal threshold function

zero activation defined as threshold of that function

0.5

1
B�

0

g(u)

u

Activation

compare to connectionist notion of activation:

same idea, but tied to individual neurons

compare to abstract activation of production
systems (ACT-R, SOAR)

quite different... really a function that measures how far a
module is from emitting its output...

Neurons as input-output threshold elements
that form feed-forward neural networks

0.5

1
B�

0

g(u)

u

output = g (∑ (inputs))

inputs

output

 Neural Dynamics 11

is uniquely represented by a particular rate of neural firing. In general, however, the map is
invertible, so that a many-to-one mapping may result. This is the case, for instance, when dif-
ferent patterns of input are mapped onto the same “response.” Still, information-theoretical
terms are sometimes used to characterize such networks by saying that the output neurons
“encode” particular patterns of input, perhaps with a certain degree of invariance, so that a
set of changes in the input pattern do not affect the output. A whole field of connectionism or
neural network theory is devoted to finding ways of how to learn these forward mappings from
examples. An important part of that theory is the proof that certain classes of learning meth-
ods make such networks universal approximators; that is, they are capable of instantiating any
reasonably behaved mapping from one space to another (Haykin, 2008). In this characterization
of a feed-forward neural network, time does not matter. Any time course of the input pattern
will be reflected in a corresponding time course in the output pattern. The output depends only
on the current input, not on past inputs or on past levels of the output or the hidden neurons.

A recurrent network such as the one illustrated in Figure 1.3 cannot be characterized by
such an input–output mapping. In a recurrent network, loops of connectivity can be found so
that one particular neuron (e.g., u4 in the figure) may provide input to other neurons (e.g., u6),
but also conversely receive input from those other neurons either directly (u6) or through some
other intermediate steps (e.g., through u6 and u5 or through the chain from u6 to u5 to u2 to u4).
The output cannot be computed from the input value because it depends on itself! Recurrence
of this kind is common in the central nervous system, as shown empirically through methods
of quantitative neuroanatomy (Braitenberg and Schüz, 1991).

To make sense of recurrent neural networks, the notion of time is needed, at least in some
rudimentary form. For instance, neural processing in such a network may be thought of as

s1

u1

s3s2

g(u6)

u2 u3

u4 u5

u6

FIGURE 1.2: In this sketch of a feed-forward neural network, activation variables, u1 to u6 , are symbolized by the
circles. Inputs from the sensory surface, s1 to s3 , are represented by arrows. Arrows also represent connections where
the output of one activation variable is input to another. Connections are ordered such that there are no closed loops
in the network.

s1 s3s2

g(u6)

u1 u2 u3

u4 u5

u6

FIGURE 1.3: Same sketch as in Figure 1.2, but now with additional connections that create loops of connectivity,
making this a recurrent neural network.

OUP UNCORRECTED PROOF – FIRSTPROOFS, Mon Aug 03 2015, NEWGEN

01_med_9780199300563_part_1.indd 11 8/3/2015 4:05:48 PM

Recurrent neural networks

require a concept of time

time is not discrete (spiking is
asynchronous) => neural
dynamics…

output(t)

input(t)

output(t+1)

Activation dynamics

activation variables u(t) as time continuous
functions...

what function f?

⌧ u̇(t) = f(u)

du(t)/dt

u(t)

Activation dynamics

start with f=0

⌧ u̇ = ⇠t

time, t

u(t)

resting
level

du/dt

u
resting level

probability distribution
of perturbations

Activation dynamics

need stabilization

⌧ u̇ = �u+ h+ ⇠t.

time, t

du/dt

u

u(t)

resting level

resting
level

Neural dynamics

In a dynamical system, the present predicts the future: given
the initial level of activation u(0), the activation at time t:
u(t) is uniquely determined

du(t)

dt
= u̇(t) = �u(t) + h (h < 0)

du/dt = f(u)

u

resting
level

vector-field

mental simulation

=> dynamical systems tutorial Mathis Richter

Neural dynamics
stationary state=fixed point= constant solution

stable fixed point: nearby solutions converge to the
fixed point=attractor

du(t)

dt
= u̇(t) = �u(t) + h (h < 0)

du/dt = f(u)

u

resting
level

vector-field

Neural dynamics

attractor structures ensemble of solutions=flow

⌧ u̇(t) = �u(t) + h

du/dt = f(u)

u

resting
level

vector-field

0 0.05 0.1 0.15 0.2 0.25 0.3

time, t

u(t)

resting
level

T

Neuronal dynamics

inputs=contributions to
the rate of change

positive: excitatory

negative: inhibitory

=> shifts the attractor

activation tracks this
shift (stability)

⌧ u̇(t) = �u(t) + h + inputs(t)

u

h+s

input, s

resting
level, h

du/dt

time, t

u(t)

resting level, h

g(u(t))

input, s

=> simulation

tutorial on numerics

dynamical system
continuous time

differential
quotient
approximates the
derivative in
discrete time

Euler iteration
equation in
discrete time

 Neural Dynamics 19

shown in that figure is the result of integration across the Gaussian white noise process. This
leads to a time-continuous process, called the Wiener process, that is still very random because
its increments are independent of each other. That is, at any moment in time, the direction of
change is independent of the current level of activation. We used this insight in Figure 1.8 to
argue for a deterministic portion, f(u), of the dynamics that limits variance by introducing sta-
bility. This was done in Figure 1.9, in which f u u h() = − + .

Conventionally, the source of randomness, the stochastic perturbation on the right-hand
side of the dynamics, is referred to as noise. The consequence of randomness is variability
of the solutions of the stochastic dynamics. That variability is referred to as fluctuations. Not
all authors strictly adhere to that convention, however. Essentially all the models we use in
DFT have a noise component and are thus stochastic differential equations. In many cases we
compare the fluctuations of the time courses obtained from the stochastic dynamics to vari-
ability across time or trials observed in experiment. In some instances, those comparisons
lead to quantitative match and predictive power (e.g., Schöner, Haken, Kelso, 1986; Schutte,
Spencer, 2009).

The numerical solution of stochastic differential equations differs a bit from the numerics
of deterministic differential equations. Before we review that, however, we will first discuss
numerics in greater detail. Numerics is an issue for the modeler, of course, not for the ner-
vous system. The nervous system is essentially an analogue computer that implements neu-
ral dynamics directly (although that implementation is not trivial either, using spikes, as we
briefly discussed in Box 1.1). But as modelers we solve the dynamical equations numerically
on digital computers when we run simulations to account for neural or behavioral data. When
we use neural dynamics to drive robots that behave autonomously based on their own sensory
information (as in Chapters 4, 9, 12, and 14), we do the same: The robots have on-board comput-
ers, on which we solve the equations in real time, taking input from the sensors and sending
the computed solutions to the actuators. On computers, time is discrete. The computer goes
through computational steps, paced by its clock. The time step available to us at the macro-
scopic level at which we write our code is much, much larger than the clock cycle on the hard-
ware (e.g., somewhere around 10 to 50 milliseconds for our computational cycles compared to
1 millionth of a millisecond for the hardware clock cycle on a 1 GHz processor).

How to approximate the continuous time dynamics in discrete time is the topic of numer-
ics, a well-established field of applied mathematics. For numerical solutions of deterministic
differential equations, consult Braun (1993); for numerical solutions of stochastic differential
equations, consult Kloeden and Platen (1999). Here we outline only the main ideas.

Let’s say we want to numerically solve this differential equation, the deterministic version
of Equation B1.4:

 .!u f u= () (B1.5)

We assume that we have a computational cycle that allows us to provide estimated values,
u ti(), of the time course of u(t) at the discrete times, t i ti = ∆ . Here, ∆t, is the time step and we
have used an index, i = …0 1 2 3, , , , to count the discrete time events. The classical and simplest
approach is called the Euler method and is based on approximating the derivative, !u, around one
of the sample times, ti, by the differential quotient:

 !u t
u t u t

ti
i i() ≈ () − ()−1

∆
 (B1.6)

If you don’t remember this from high school, look it up, even on Wikipedia. It is easy to fig-
ure out. If you insert this into Equation B1.5, multiply by ∆t and add u ti−()1 , you obtain the Euler
formula:

OUP UNCORRECTED PROOF – FIRSTPROOFS, Mon Aug 03 2015, NEWGEN

01_med_9780199300563_part_1.indd 19 8/3/2015 4:05:49 PM

 Neural Dynamics 19

shown in that figure is the result of integration across the Gaussian white noise process. This
leads to a time-continuous process, called the Wiener process, that is still very random because
its increments are independent of each other. That is, at any moment in time, the direction of
change is independent of the current level of activation. We used this insight in Figure 1.8 to
argue for a deterministic portion, f(u), of the dynamics that limits variance by introducing sta-
bility. This was done in Figure 1.9, in which f u u h() = − + .

Conventionally, the source of randomness, the stochastic perturbation on the right-hand
side of the dynamics, is referred to as noise. The consequence of randomness is variability
of the solutions of the stochastic dynamics. That variability is referred to as fluctuations. Not
all authors strictly adhere to that convention, however. Essentially all the models we use in
DFT have a noise component and are thus stochastic differential equations. In many cases we
compare the fluctuations of the time courses obtained from the stochastic dynamics to vari-
ability across time or trials observed in experiment. In some instances, those comparisons
lead to quantitative match and predictive power (e.g., Schöner, Haken, Kelso, 1986; Schutte,
Spencer, 2009).

The numerical solution of stochastic differential equations differs a bit from the numerics
of deterministic differential equations. Before we review that, however, we will first discuss
numerics in greater detail. Numerics is an issue for the modeler, of course, not for the ner-
vous system. The nervous system is essentially an analogue computer that implements neu-
ral dynamics directly (although that implementation is not trivial either, using spikes, as we
briefly discussed in Box 1.1). But as modelers we solve the dynamical equations numerically
on digital computers when we run simulations to account for neural or behavioral data. When
we use neural dynamics to drive robots that behave autonomously based on their own sensory
information (as in Chapters 4, 9, 12, and 14), we do the same: The robots have on-board comput-
ers, on which we solve the equations in real time, taking input from the sensors and sending
the computed solutions to the actuators. On computers, time is discrete. The computer goes
through computational steps, paced by its clock. The time step available to us at the macro-
scopic level at which we write our code is much, much larger than the clock cycle on the hard-
ware (e.g., somewhere around 10 to 50 milliseconds for our computational cycles compared to
1 millionth of a millisecond for the hardware clock cycle on a 1 GHz processor).

How to approximate the continuous time dynamics in discrete time is the topic of numer-
ics, a well-established field of applied mathematics. For numerical solutions of deterministic
differential equations, consult Braun (1993); for numerical solutions of stochastic differential
equations, consult Kloeden and Platen (1999). Here we outline only the main ideas.

Let’s say we want to numerically solve this differential equation, the deterministic version
of Equation B1.4:

 .!u f u= () (B1.5)

We assume that we have a computational cycle that allows us to provide estimated values,
u ti(), of the time course of u(t) at the discrete times, t i ti = ∆ . Here, ∆t, is the time step and we
have used an index, i = …0 1 2 3, , , , to count the discrete time events. The classical and simplest
approach is called the Euler method and is based on approximating the derivative, !u, around one
of the sample times, ti, by the differential quotient:

 !u t
u t u t

ti
i i() ≈ () − ()−1

∆
 (B1.6)

If you don’t remember this from high school, look it up, even on Wikipedia. It is easy to fig-
ure out. If you insert this into Equation B1.5, multiply by ∆t and add u ti−()1 , you obtain the Euler
formula:

OUP UNCORRECTED PROOF – FIRSTPROOFS, Mon Aug 03 2015, NEWGEN

01_med_9780199300563_part_1.indd 19 8/3/2015 4:05:49 PM

20 Fou n dat ions of Dy na m ic Fi e l d T h eory

 u t u t t f u ti i i() = () + ()()− −1 1∆ . (B1.7)

In this derivation, you will first find that the function f u ti()() on the right-hand side should
be taken at the current time step, ti. That leads to the “implicit Euler” method. When the time
step is sufficiently small, we may approximate this value of the function by its value at the
previous time step, f u ti−()()1 , as in Equation B1.7. This is easy to implement in a numerical pro-
gram: Initialize the time series by setting u t1() to the initial condition. Then loop through the
discrete times, computing at each iteration step the next value of u ti() based on Equation B1.7,
which makes use only of the previous value, u ti−()1 . The time step, ∆t, must be small enough
that it can sample the time courses of activation. Near an attractor, the timescale of u t() is given
by the relaxation time, τ, illustrated in Figure 1.11. The time step needs to be smaller than the
relaxation time: ∆t ≪ τ. In practice, our neural dynamics is usually close to an attractor, whose
stability helps keep the numerics stable. We often get away with a Euler step that is only about
10 times smaller than the relaxation time.

When noise comes into the picture, things are a bit different, a fact sometimes overlooked
by modelers. The Euler formula for the stochastic differential equation B1.4 reads:

 u t u t t f u t t q ti i i i() = () + ()() + ()− −1 1∆ ∆ .ξ (B1.8)

Note that the noise term scales differently than the deterministic term with the Euler
step, ∆t.

There are much better numerical procedures for solving deterministic differential equa-
tions. These get away with a larger Euler step to achieve the same precision. In fact, MATLAB
considers the Euler method so outdated that it doesn’t include the Euler algorithm any longer
in its library (it is easily programmed by hand, of course). In practice, we still use this simplest
and worst (from the point of view of numerics experts) algorithm. First, it is good enough.
Second, it lends itself to implementation on robots, on which we also take sensor readings
at every time step. The more advanced algorithms take into account multiple samples of the
dynamical variable at multiple time steps, and many also vary the time step, ∆t, depending
on how strongly the solution varies. Neither is well suited to updating the sensor data. For
sensor data, we want to go as fast as we can to track any changes in the input. So we are not
so interested in using the largest Euler step that delivers acceptable precision. A final issue
is that the more advanced methods for stochastic differential equations are quite complex,
requiring a considerable number of estimates and auxiliary variables to be iterated. Although
those methods scale better with the time step in principle, the amount of computation needed
at each time step can be quite large, more than offsetting the advantage gained by the larger
Euler step.

Any initial level of activation will thus remain
unchanged over time. But what happens when ran-
dom perturbations impact the activation variable?
A random perturbation can be modeled as a random
kick that generates a non-zero rate of change for a
short (infinitesimal) moment in time (see Box 1.4
for a brief tutorial in stochastics). The random per-
turbations may be distributed as Gaussian, as hinted
at in the figure, so large kicks are less frequent than
small kicks, the average kick size being zero. Kicks
at different times are assumed to be independent

of each other. Such random inf luences are called
Gaussian white noise, ξ t(), and form a good model of
sources of stochasticity, based on fundamental laws
of probability (Arnold, 1974). Formally, the neural
dynamics with noise can be written as

 τ ξ"u t= (). (1.2)

Any time a positive kick is applied, activation
increases. Every time a negative kick is applied, acti-
vation decreases. Over time, activation performs a

OUP UNCORRECTED PROOF – FIRSTPROOFS, Mon Aug 03 2015, NEWGEN

01_med_9780199300563_part_1.indd 20 8/3/2015 4:05:50 PM

Matlab code

⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal dynamics with self-excitation

stimulus

input

output

self-excitationu c
s

u

du/dt

resting
level, h

input strength

⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal
dynamics
with self-
excitation

⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))Neuronal
dynamics
with self-
excitation u

du/dt

resting
level, h

0.5

1
B�

0

g(u)

u

=> nonlinear dynamics!

at intermediate stimulus
strength: bistable

“on” vs “off” state

u

du/dt

time, t

u(t)<0

u(t)>0

⇥ u̇(t) = �u(t) + h + S(t) + c�(u(t))

Neuronal
dynamics
with self-
excitation

increasing input strength =>
detection instability

u

du/dt

resting
level, h

input strengthNeuronal
dynamics
with self-
excitation

u

du/dt

�

fixed point

unstable

stable
stimulus
strength

stimulus
strength

decreasing input strength
=> reverse detection
instability

u

du/dt

resting
level, h

input strengthNeuronal
dynamics
with self-
excitation

u

du/dt

�

fixed point

unstable

stable

stimulus
strength

stimulus
strength

the detection and the
reverse detection instability
create discrete events out of
input that changes
continuously in time

time, t

u(t)

detection
instability

reverse
detection
instability

Neuronal
dynamics
with self-
excitation

=> simulation

Neuronal dynamics with competition

stimulus

input

output

u1
inhibitory coupling

output

u2

⌧ u̇1(t) = �u1(t) + h� �(u2(t)) + S1

⌧ u̇2(t) = �u2(t) + h� �(u1(t)) + S2

the rate of change of activation at one site
depends on the level of activation at the other
site

mutual inhibition

⌧ u̇1(t) = �u1(t) + h� �(u2(t)) + S1

⌧ u̇2(t) = �u2(t) + h� �(u1(t)) + S2

sigmoidal nonlinearity

Neuronal dynamics with competition

to visualize, assume that
u_2 has been activated by
input to positive level

=> then u_1 is suppressed

u1

h+s1

du1/dt

u2

h+s2

inhibition
from u2

du2/dt

h+s1-c12

Neuronal dynamics with competition

why would u_2 be positive
before u_1 is? E.g., it grew
faster than u_1 because its
inputs are stronger/inputs
match better

=> input advantage
translates into time
advantage which translates
into competitive advantage

u1

h+s1

du1/dt

u2

h+s2

inhibition
from u2

du2/dt

h+s1-c12

Neuronal dynamics with competition

vector-field in the
absence of input

0

0

u 1

resting state

re
st

in
g

st
at

e

u
2

du/dt = f(u)

u

resting
level

vector-field

1D cut
through
vector-

field

Neuronal dynamics with competition

vector-field (without
interaction) when both
neurons receive input

0

0

u 1

stimulus determined state

st
im

ul
us

 d
et

er
m

in
ed

 s
ta

te u
2

1D cut
through
vector-

field

du/dt = f(u)

u

activated
level

input

Neuronal dynamics with competition

only activated neurons participate in interaction!

0.5

1

B

0

S(u)

u

sigmoidal nonlinearity

Neuronal dynamics with competition

0

0

site 1 inhibits site 2

0

0

0

0

interaction combined

u1

site 2 inhibits site 1

u 2u 2

u 2

u1u1

vector-field of mutual inhibition

Neuronal dynamics with competition

vector-field with strong
mutual inhibition:

bistable

0

0

interaction

u
1

u 2

0

0

u 1
u

2
0

0

u 1

u
2

input total

Neuronal dynamics with competition

Neuronal dynamics with competition

0

0

u 1

resting state

re
st

in
g

st
at

e

u
2

before input is presented after input is presented

=>biased competition
stronger input to site 1:

attractor with activated u_1 stronger,
attractor with activated u_2 weaker, may become unstable

0

00

0

interaction

u
1 u

1

u 2

0

0

u 1

u
2

input

u 2

total

Neuronal dynamics with competition

Neuronal dynamics with competition

0

0

u 1

resting state

re
st

in
g

st
at

e

u
2

before input is presented after input is presented

=>biased competition

=> simulation

=> hands-on exercise NOW

in the robotics lab..

next

where do activation variables come from?

=> DFT lecture

