Dynamical systems Tutorial

Mathis Richter

dynamical systems are the universal language of science

- physics, engineering, chemistry, theoretical biology, economics, quantitative sociology, ...
- modeling processes
 - time-varying measures
 - forces causing/accounting for movement
 - => dynamical systems

time-variation & rate of change

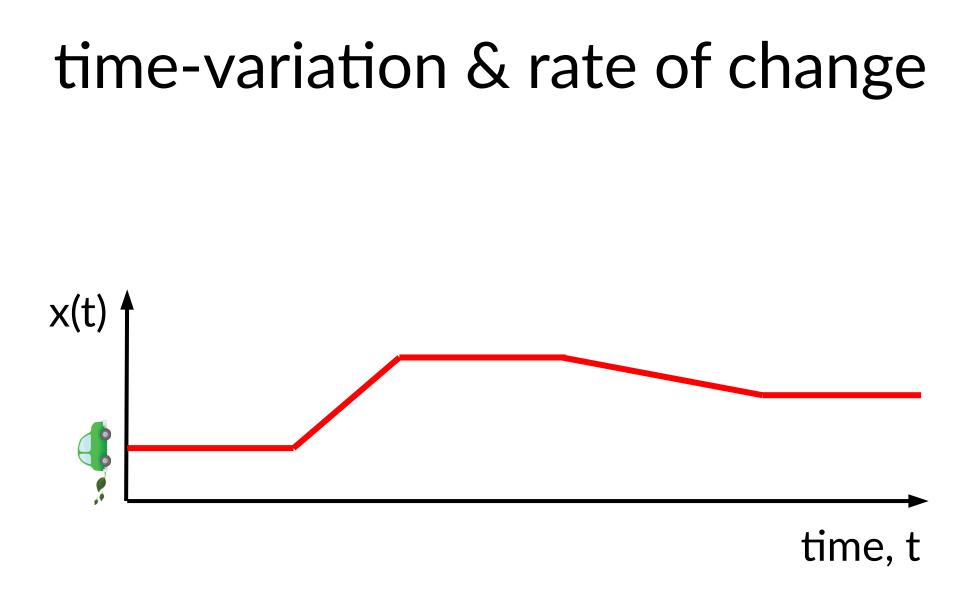
variable x(t)

rate of change dx/dt

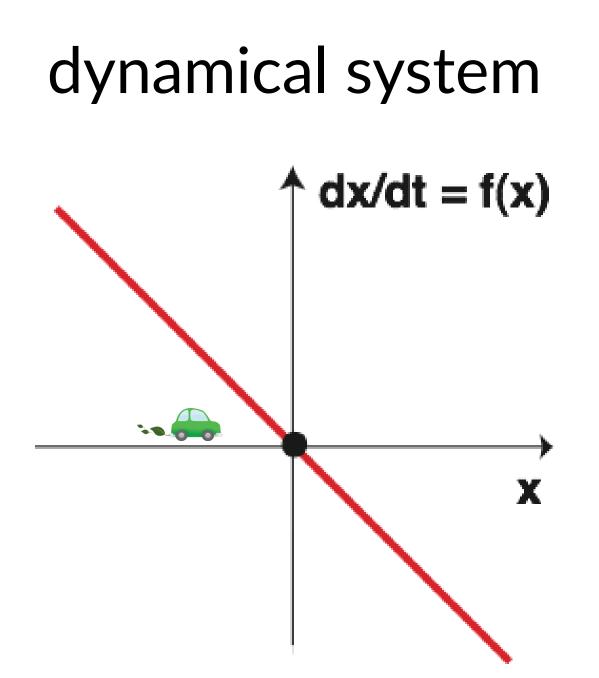
time-variation & rate of change

x(t): position $\dot{x}(t) = dx/dt$: rate of change (speed)

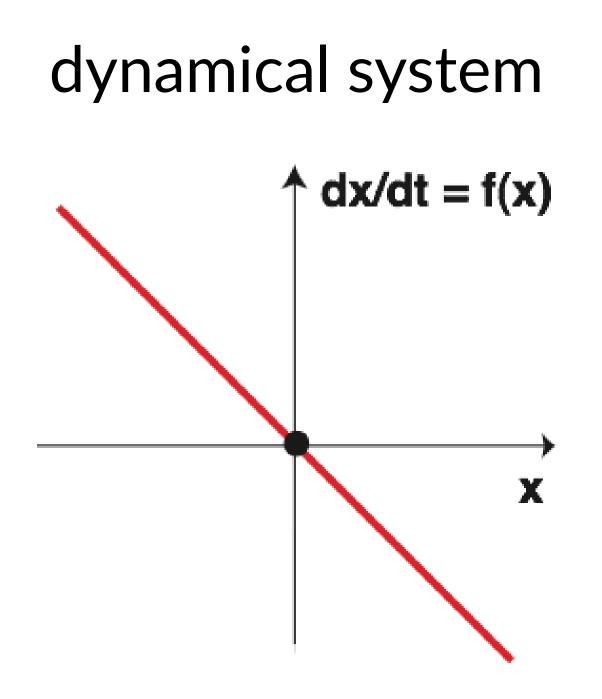
x(t)



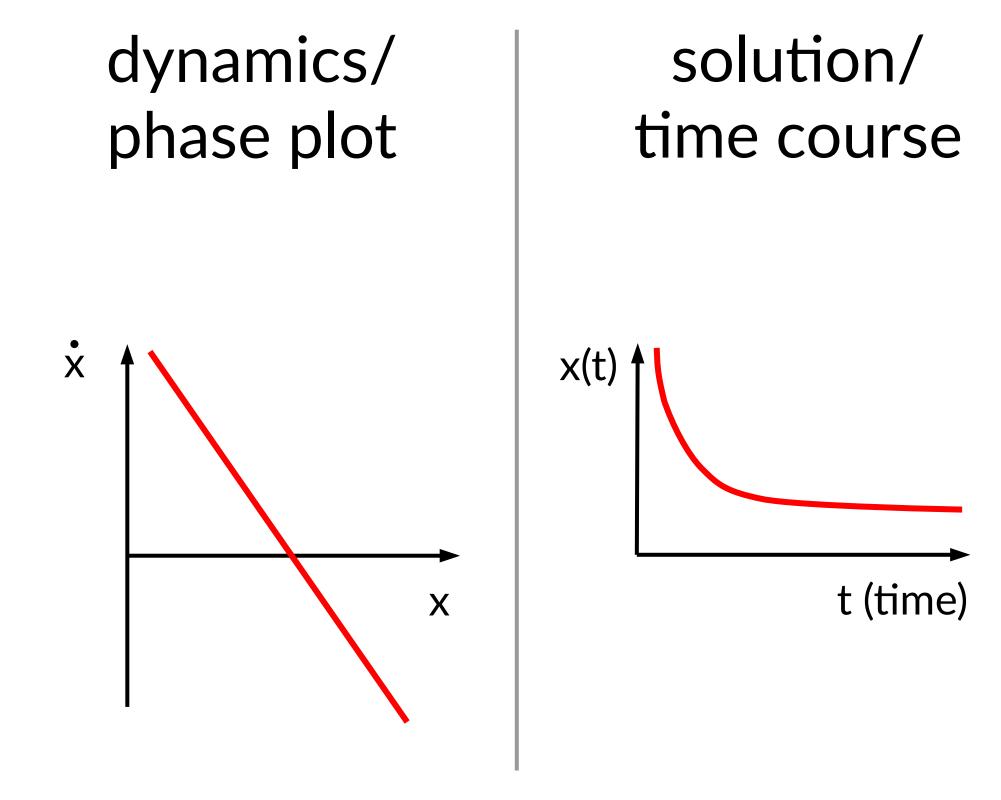
 $\dot{x} = dx/dt = rate of change = slope of this graph$



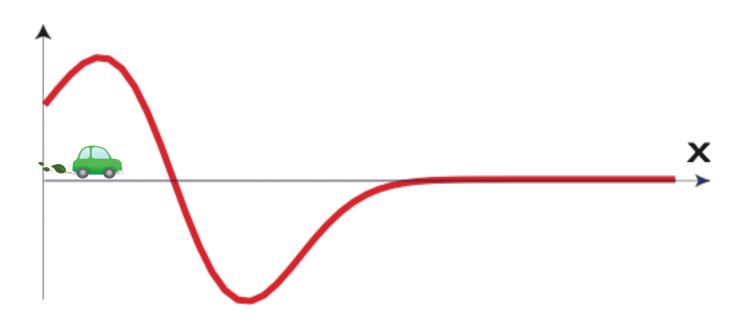
relationship between a variable and its rate of change



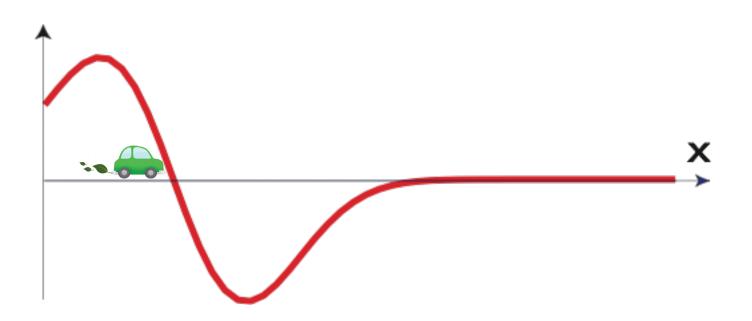
What equation is shown here?



- present determines the future
 - given initial condition
 - predict evolution (or predict the past)



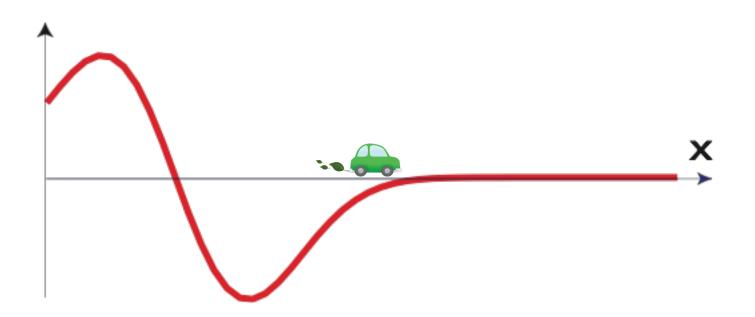
- present determines the future
 - given initial condition
 - predict evolution (or predict the past)



- present determines the future
 - given initial condition
 - predict evolution (or predict the past)



- present determines the future
 - given initial condition
 - predict evolution (or predict the past)

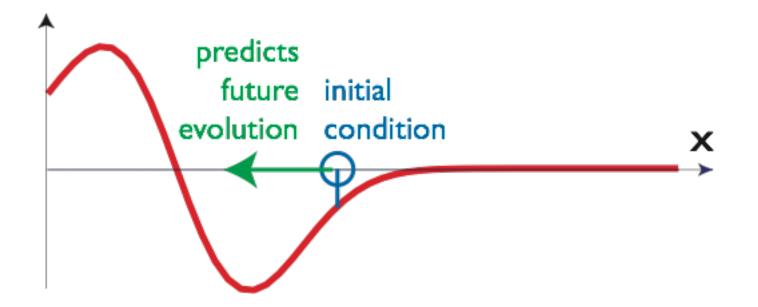


present determines the future

given initial condition

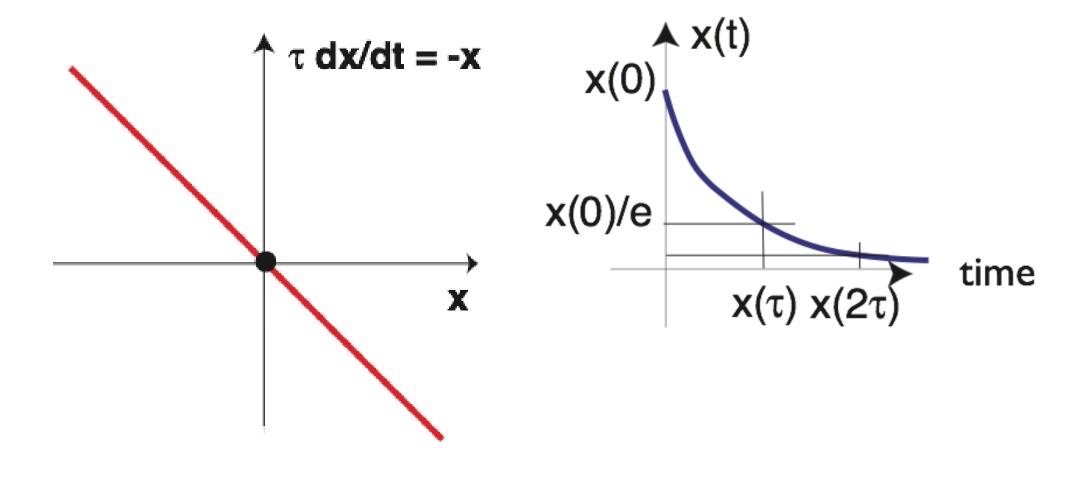
predict evolution (or predict the past)

```
dx/dt=f(x)
```



exponential relaxation to attractors

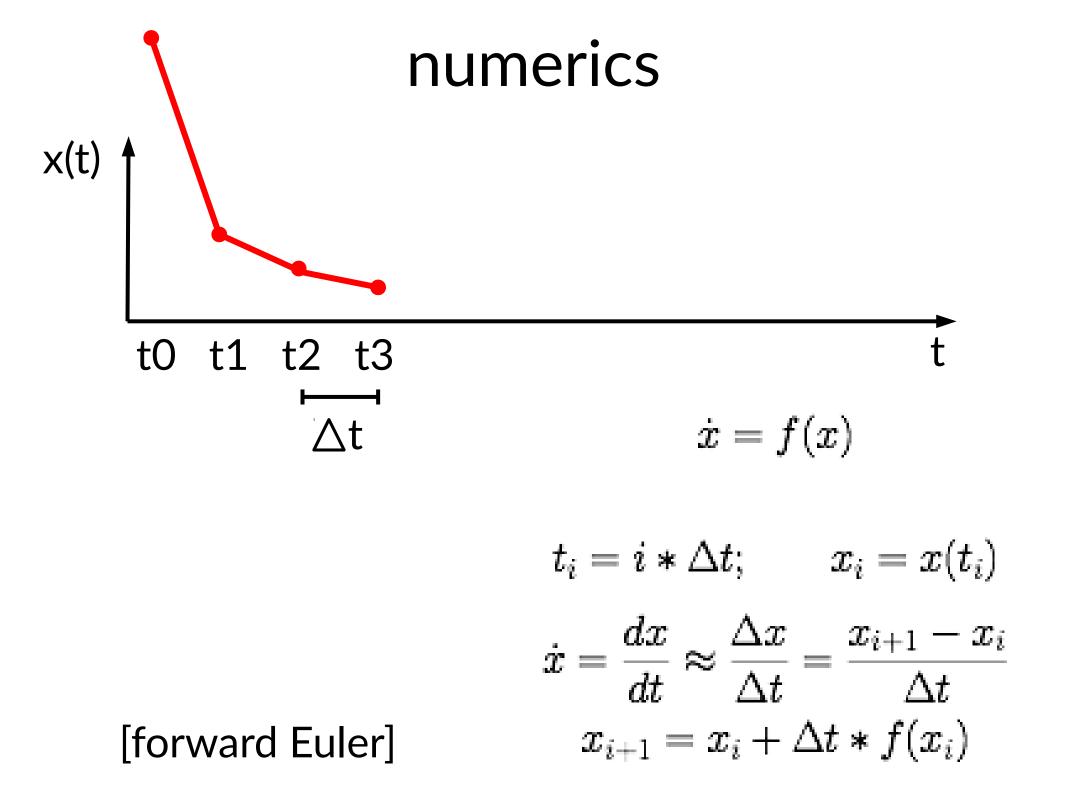
=> time scale



- x: spans the state space (or phase space)
- f(x): is the "dynamics" of x (or vectorfield)
- x(t) is a solution of the dynamical systems to the initial condition x_0
 - if its rate of change = f(x)
 - and x(0)=x_0

numerics

sample time discretely compute solution by iterating through time



linear dynamics

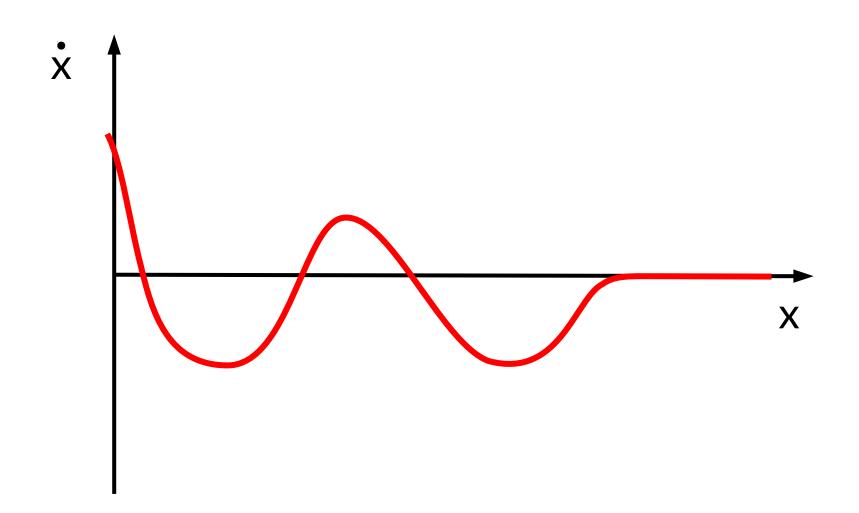
fixed point

is a constant solution of the dynamical system

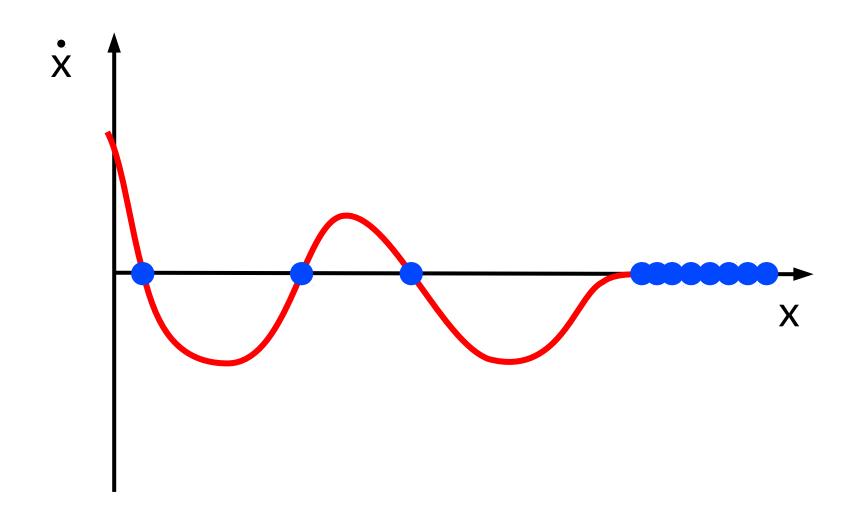
$$\dot{x} = f(x)$$

 $\dot{x} = 0 \Rightarrow f(x_0) = 0$

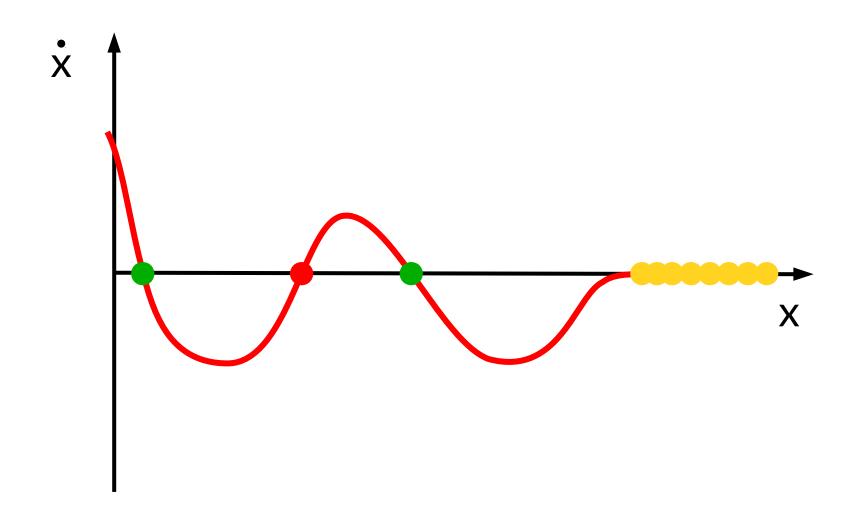
fixed points



fixed points



fixed points



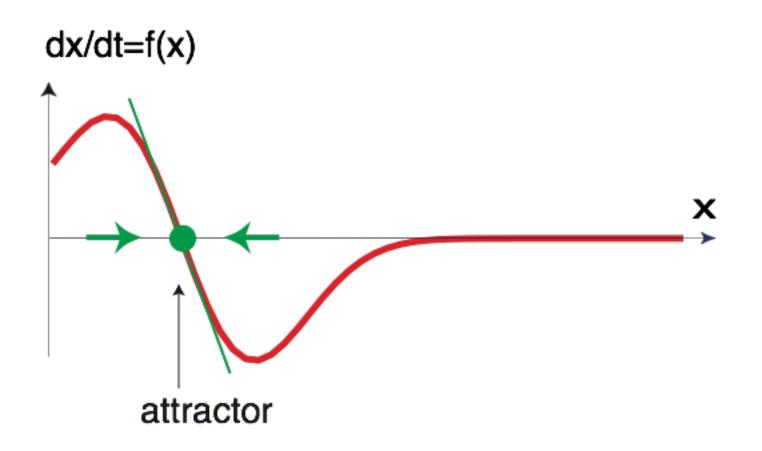
stability

mathematically really: asymptotic stability

defined: a fixed point is asymptotically stable, when solutions of the dynamical system that start nearby converge in time to the fixed point

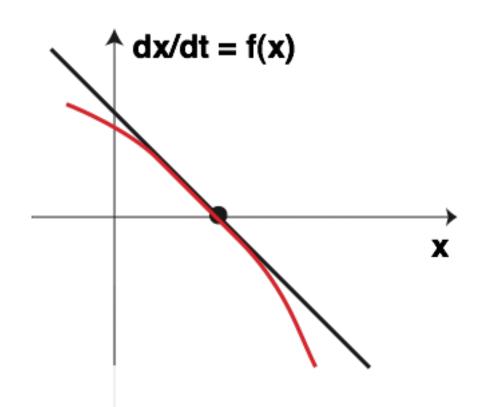
attractor

fixed point, to which neighboring initial conditions converge = attractor



linear approximation near attractor

- non-linearity as a small perturbation/deformation of linear system
 - => non-essential nonlinearity



stability in a linear system

 if the slope of the linear system is negative, the fixed point is (asymptotically stable)

=> attractor

 $d\lambda/dt=f(\lambda)$

stability in a linear system

If the slope of the linear system is positive, then the fixed point is unstable

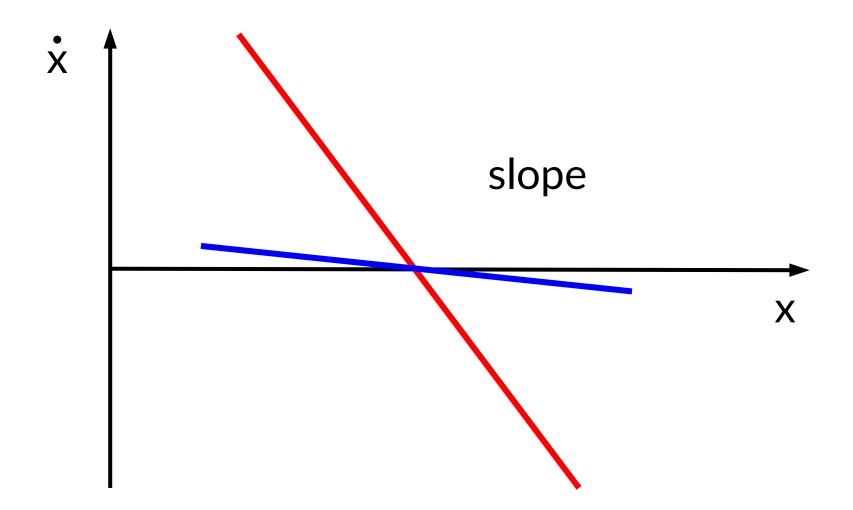
=> repellor

 $d\lambda/dt=f(\lambda)$

stability in a linear system

 if the slope of the linear system is zero, then the system is indifferent (marginally stable: stable but not asymptotically stable) $d\lambda/dt=f(\lambda)$

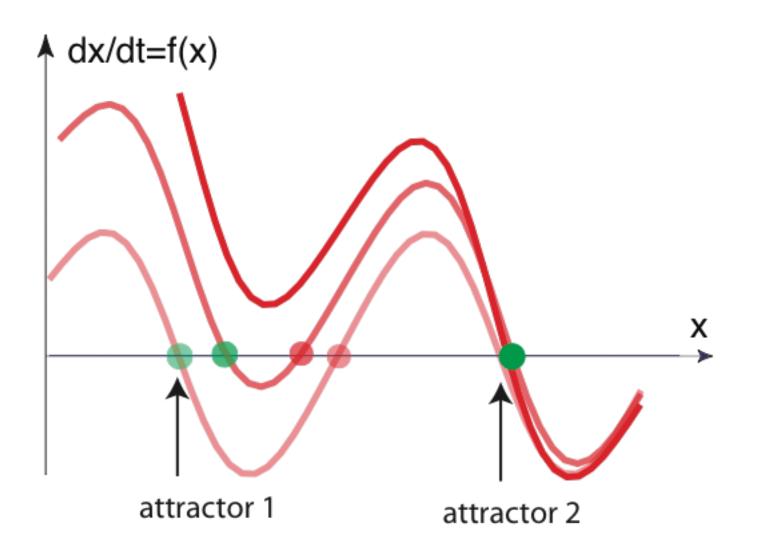
degree of stability



bifurcations

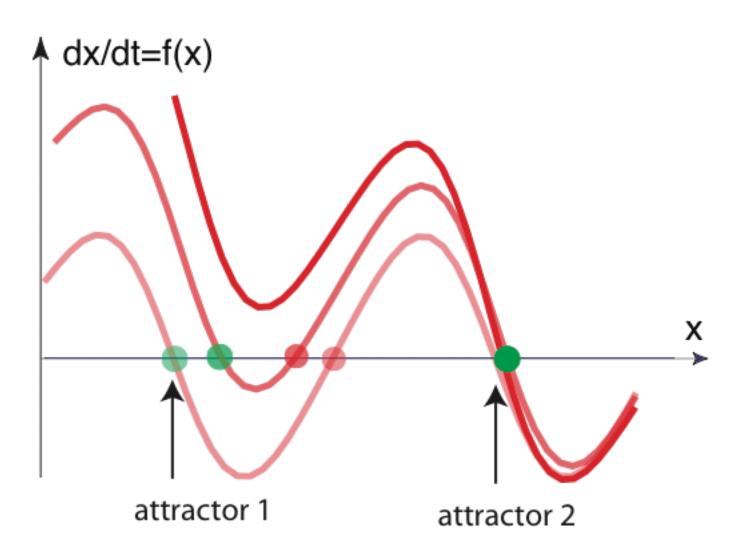
- Iook now at families of dynamical systems, which depend (smoothly) on parameters
- ask: as the parameters change (smoothly), how do the solutions change (smoothly?)
 - smoothly: topological equivalence of the dynamical systems at neighboring parameter values
 - bifurcation: dynamical systems NOT topological equivalent as parameter changes infinitesimally

bifurcation



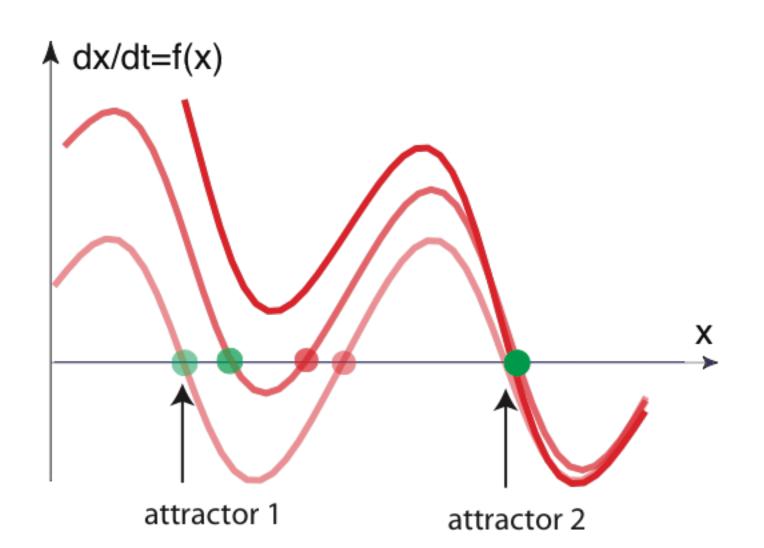
bifurcation

bifurcation=qualitative change of dynamics (change in number, nature, or stability of fixed points) as the dynamics changes smoothly



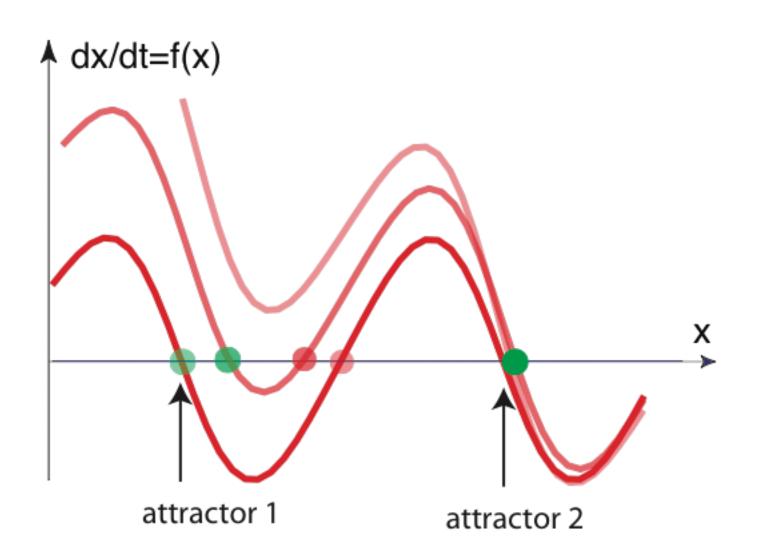
tangent bifurcation

the simplest bifurcation: an attractor collides with a repellor and the two annihilate



reverse bifurcation

Changing the dynamics in the opposite direction



bifurcations are instabilities

- that is, an attractor becomes unstable before disappearing
- (or the attractor appears with reduced stability)
- formally: a zero-real part is a necessary condition for a bifurcation to occur

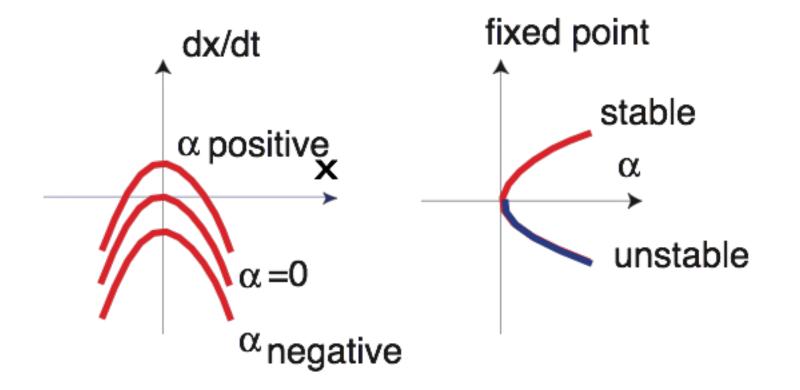
tangent bifurcation

tangent bifurcation

normal form of tangent bifurcation

 $\dot{x} = lpha - x^2$

(=simplest polynomial equation whose flow is topologically equivalent to the bifurcation)

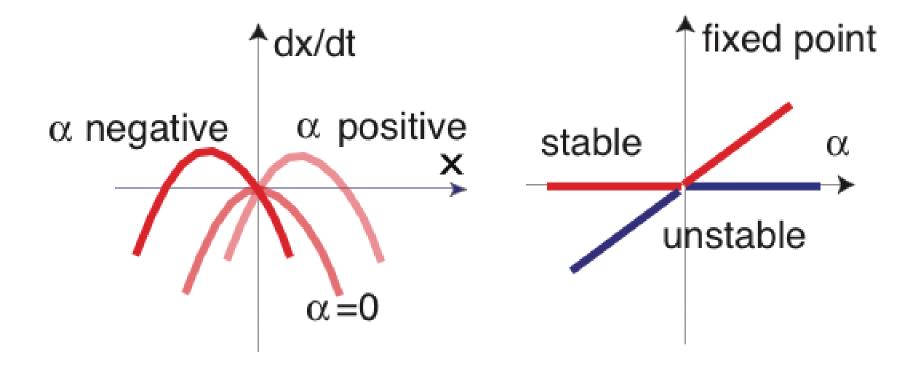


Hopf theorem

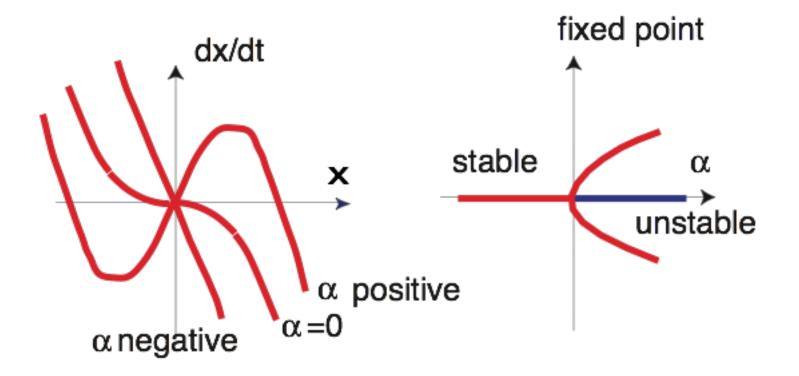
when a single (or pair of complex conjugate) eigenvalue crosses the imaginary axis, one of four bifurcations occur

- tangent bifurcation
- transcritical bifurcation
- pitchfork bifurcation
- Hopf bifurcation

transcritical bifurcation



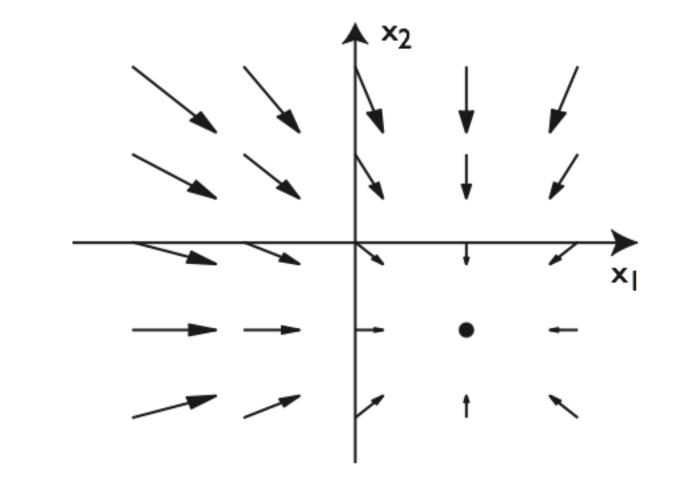
pitchfork bifurcation



pitchfork bifurcation

Hopf: need higher dimensions

2D dynamical system: vector-field

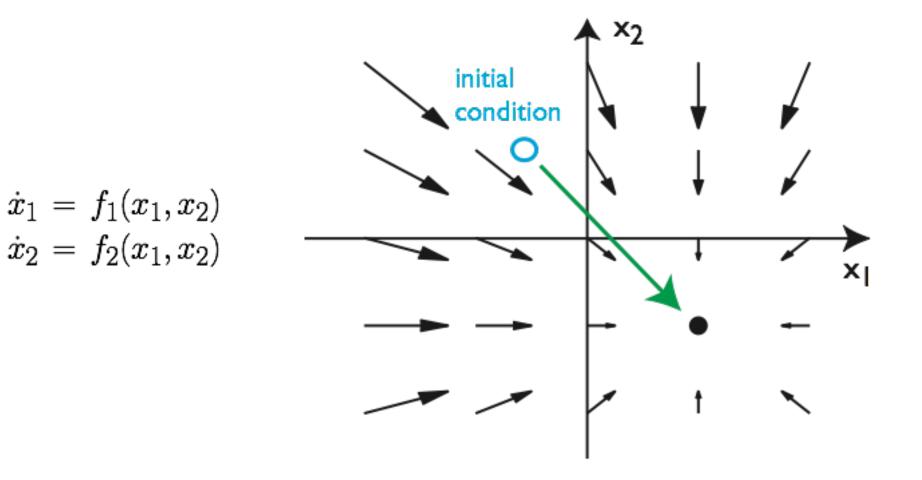


$$egin{array}{lll} \dot{x}_1 &= f_1(x_1,x_2) \ \dot{x}_2 &= f_2(x_1,x_2) \end{array}$$

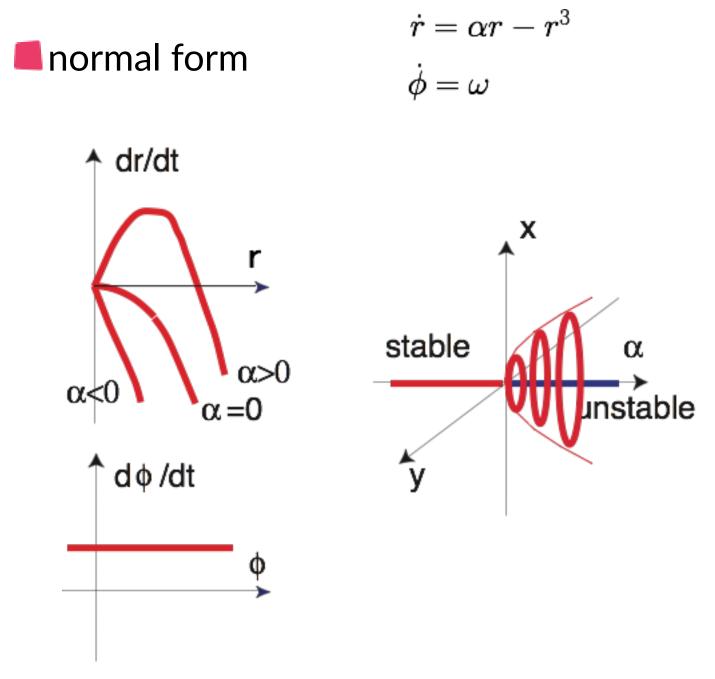
vector-field



fixed point, stability, attractor



Hopf bifurcation



forward dynamics

- given known equation, determined fixed points /limit cycles and their stability
- more generally: determine invariant solutions (stable, unstable and center manifolds)

inverse dynamics

given solution, find the equation...

this is the problem faced in design of behavioral dynamics...

inverse dynamics: design

- in the design of behavioral dynamics... you may be given:
- attractor solutions/stable states
- and how they change as a function of parameters/conditions
- identify the class of dynamical systems using the 4 elementary bifurcations
- and use normal form to provide an exemplary representative of the equivalence class of dynamics

important concepts

time-variation

rate of change

dynamical system

phase plot vs. time course plot

present determines the future

numerical solutions

fixed points (attractors, repellors)

stability

bifurcations & instabilities