Lecture 6
Differential Equations

Jan Tekülve
jan.tekuelve@ini.rub.de

Computer Science and Mathematics
Preparatory Course

27.09.2019
Overview

1. Motivation

2. Mathematics
 - Solving Differential Equations
 - Qualitative Analysis
 - Numerical Approximation

3. Tasks
The Vehicle’s Behavior as Function of Angle Change
The Vehicle’s Behavior as Function of Angle Change
The Vehicle’s Behavior as Function of Angle Change
Motivation

The Vehicle’s Behavior as Function of Angle Change

![Diagram showing the vehicle's behavior change due to angle change](image)
The Vehicle’s Behavior as Function of Angle Change

The vehicle’s change in angle depends on its current sensor input.

\[
\frac{d\beta}{dt} = -S_L + S_R,
\]

where \(t \) describes time and \(S_L \), \(S_R \) left and right sensor values.
The Vehicle’s Behavior as Function of Angle Change

- The vehicle’s change in angle depends on its current sensor input.
- The following equation may describe its behavior:

\[
\frac{d\beta}{dt} = -S_L + S_R,
\]

where \(t\) describes time and \(S_L, S_R\) left and right sensor values.
Differential Equation as Rule System

A differential equation describes how the rate of change of a system depends on its current state. For example:

\[f'(x) = 4f(x) + 5 = g(f(x)) \quad \text{with} \quad g(x) = 4x + 5 \]
Differential Equation as Rule System

- A differential equation describes how the rate of change of a system depends on its current state. For example:

\[f'(x) = 4f(x) + 5 = g(f(x)) \text{ with } g(x) = 4x + 5 \]

- A differential equation describes how a system should change in a given state.
Differential Equation as Rule System

- A differential equation describes how the rate of change of a system depends on its current state. For example:

\[f'(x) = 4f(x) + 5 = g(f(x)) \quad \text{with} \quad g(x) = 4x + 5 \]

- A differential equation describes how a system should change in a given state.

- Brief oversimplification:

 A differential equation describes rules for the future
Solving Differential Equations

Given a differential equation of the form \(f'(x) = g(f(x)) \) ... the original function \(f(x) \) is usually not known.

Solving a differential equation describes the process of finding an \(f(x) \) that follows the above rule for all \(x \)

Differential equations entail two equations

1. The function \(g(f(x)) \) governing the rate of change
2. The function \(f(x) \) describing the overall behavior
Derivative vs. Differential equation

- \(f'(x) = cx \)

- \(f''(x) = cf(x) \)
Derivative vs. Differential equation

- \(f'(x) = cx \)
 - The rate of change depends on a fixed rule depending on \(x \)

- \(f''(x) = cf(x) \)
Derivative vs. Differential equation

- \(f'(x) = cx \)
 - The rate of change depends follows a fixed rule depending on \(x \)
 - The solution can be described by the antiderivative \(f(x) = \frac{1}{2} cx^2 \)

- \(f'(x) = cf(x) \)

- The rate of change is a scaled version of the function itself:
 - \(g(f(x)) = cf(x) \)
- The only function that stays the same when differentiated is the exponential function \(e^x \)

- Considering the chain rule the derivative of \(e^{cx} \) is exactly \(c e^{cx} \) therefore \(f(x) = c e^{cx} \)

- Usually a differential equation is not that easily solvable
Derivative vs. Differential equation

- $f'(x) = cx$
 - The rate of change depends follows a fixed rule depending on x
 - The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
 - This is not a differential equation as no $f(x)$ is on the right side

- $f''(x) = cf(x)$
Derivative vs. Differential equation

- $f'(x) = cx$
 - The rate of change depends on x
 - The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
 - This is not a differential equation as no $f(x)$ is on the right side

- $f''(x) = cf(x)$
 - The rate of change is a scaled version of the function itself:
 $g(f(x)) = cf(x)$
Derivative vs. Differential equation

- $f'(x) = cx$
 - The rate of change depends follows a fixed rule depending on x
 - The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
 - This is not a differential equation as no $f(x)$ is on the right side

- $f''(x) = cf(x)$
 - The rate of change is a scaled version of the function itself:
 $g(f(x)) = cf(x)$
 - The only function that stays the same when differentiated is the exponential function e^x
Derivative vs. Differential equation

- $f'(x) = cx$
 - The rate of change depends on x following a fixed rule depending on x
 - The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
 - This is not a differential equation as no $f(x)$ is on the right side

- $f''(x) = cf(x)$
 - The rate of change is a scaled version of the function itself:
 $g(f(x)) = cf(x)$
 - The only function that stays the same when differentiated is the exponential function e^x
 - Considering the chain rule the derivative of e^{cx} is exactly ce^{cx} therefore $f(x) = ce^{cx}$
Derivative vs. Differential equation

- \(f'(x) = cx \)
 - The rate of change depends follows a fixed rule depending on \(x \)
 - The solution can be described by the antiderivative \(f(x) = \frac{1}{2}cx^2 \)
 - This is not a differential equation as no \(f(x) \) is on the right side

- \(f'(x) = cf(x) \)
 - The rate of change is a scaled version of the function itself:
 \[g(f(x)) = cf(x) \]
 - The only function that stays the same when differentiated is the exponential function \(e^x \)
 - Considering the chain rule the derivative of \(e^{cx} \) is exactly \(ce^{cx} \) therefore
 \[f(x) = ce^{cx} \]
 - Usually a differential equation is not that easily solvable
Dynamical Systems Theory

- Mathematicians want to find solutions to particular differential equations

- **Dynamical Systems Theory** is concerned with analyzing the qualitative behavior of the system
Qualitative Behavior of Differential Equations

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]
Qualitative Behavior of Differential Equations

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]
Qualitative Behavior of Differential Equations

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]
Qualitative Behavior of Differential Equations

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]
Qualitative Behavior of Differential Equations

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]
Qualitative Behavior of Differential Equations

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]
Qualitative Behavior of Differential Equations

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]
Attractors

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]
Attactors

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]

\[f(x) \]

\[f(x) \]
Attractors

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]
Repellors

\[f'(x) = y' = \frac{dy}{dx} = -f(x) \]
Initial Condition Matters

\[f'(x) = y' = \frac{dy}{dx} = \sin(x) \]
Initial Condition Matters

\[f'(x) = y' = \frac{dy}{dx} = \sin(x) \]
Initial Condition Matters

\[f'(x) = y' = \frac{dy}{dx} = \sin(x) \]
Initial Condition Matters

\[f'(x) = y' = \frac{dy}{dx} = \sin(x) \]
Initial Condition Matters

\[f'(x) = y' = \frac{dy}{dx} = \sin(x) \]
Initial Condition Matters

\[f'(x) = y' = \frac{dy}{dx} = \sin(x) \]
Initial Condition Matters

\[f'(x) = y' = \frac{dy}{dx} = \sin(x) \]
Back to the Braitenberg Vehicle

We govern the vehicles behavior with a differential equation:

\[
\frac{d\beta}{dt} = -\beta - S_L + S_R,
\]
Back to the Braitenberg Vehicle

▶ We govern the vehicles behavior with a differential equation

\[
\frac{d\beta}{dt} = -\beta - S_L + S_R,
\]

▶ Adding an attractor gives the vehicle a preferred orientation
1. Motivation

2. Mathematics
 - Solving Differential Equations
 - Qualitative Analysis
 - Numerical Approximation

3. Tasks
Euler Approximation

\[
\frac{dy}{dx} = y \quad y(0) = 1
\]

\[y(x) = e^x\]
Euler Approximation

\[\frac{dy}{dx} = y \quad y(0) = 1 \]

\[\Delta x = 1 \]

\[\begin{array}{c|c|c}
 x & y & \frac{dy}{dx} \\
 0 & 1 & 1 \\
\end{array} \]

\[y(x) = e^x \]
Euler Approximation

\[
\frac{dy}{dx} = y \quad y(0) = 1
\]

\[\Delta x = 1\]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$\frac{dy}{dx}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

\[y(x) = e^x\]
Euler Approximation

\[\frac{dy}{dx} = y \quad y(0) = 1 \]

\[\Delta x = 1 \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(\frac{dy}{dx})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

\[y(x) = e^x \]
Euler Approximation

\[\frac{dy}{dx} = y \quad y(0) = 1 \]

\[\Delta x = 1 \]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>\frac{dy}{dx}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Varying the stepsize

\[\frac{dy}{dx} = y \quad y(0) = 1 \]

\[y(x) = e^x \]
Varying the stepsize

\[
\frac{dy}{dx} = y \quad y(0) = 1 \\
\Delta x = 0.5
\]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$\frac{dy}{dx}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$y(x) = e^x$
Varying the stepsize

\[\frac{dy}{dx} = y \quad y(0) = 1 \]

\[\Delta x = 0.5 \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(\frac{dy}{dx})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

\[y(x) = e^x \]
Varying the stepsize

\[\frac{dy}{dx} = y \quad y(0) = 1 \]

\[\Delta x = 0.5 \]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>(\frac{dy}{dx})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1</td>
<td>2.25</td>
<td>2.25</td>
</tr>
</tbody>
</table>

\[y(x) = e^x \]
Varying the stepsize

\[
\frac{dy}{dx} = y \quad y(0) = 1 \\
\Delta x = 0.5
\]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$\frac{dy}{dx}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1</td>
<td>2.25</td>
<td>2.25</td>
</tr>
<tr>
<td>1.5</td>
<td>3.375</td>
<td>3.375</td>
</tr>
</tbody>
</table>

\[y(x) = e^x\]
Varying the stepsize

\[
\frac{dy}{dx} = y \quad y(0) = 1
\]

\[\Delta x = 0.5\]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$\frac{dy}{dx}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1</td>
<td>2.25</td>
<td>2.25</td>
</tr>
<tr>
<td>1.5</td>
<td>3.375</td>
<td>3.375</td>
</tr>
<tr>
<td>2</td>
<td>5.0625</td>
<td>5.0625</td>
</tr>
</tbody>
</table>

\[y(x) = e^x\]
Euler Approximation in Words

1. Start with a certain value for x and y and the differential equation $\frac{dy}{dx} = \ldots$ you want to approximate

2. Decide for a step size that determines the accuracy of your approximation

3. Repeat as long as you like:
 3.1 Use the current y-value to calculate the current rate of change $\frac{dy}{dx}$
 3.2 Calculate the next y-value by taking the current y-value and adding to it the rate of change times the step size
 3.3 Increase x by the step size
Task Template

- Download the archive `task_template_6.zip` from the course homepage. Extract it into a folder of your choice.

- The archive contains `task_61.py`, `student_code_61.py`, and `braitenberg.png`.

- You only need to edit code in the `student_code` file.

Explain Task Template!
Tasks

1. Change the behavior of the vehicle by implementing the function `calc_angle_change`.
 - `current_angle` is the current orientation of the vehicle in degree.
 - `left_sensor_values` and `right_sensor_values` are the measured values of the sensors. They increase the closer they are to an obstacle.
 - First make the angle change dependent on the current sensor values. How can you make the vehicle avoid obstacles?
 - Let your change in the angle depend on the current angle itself. Set an attractor at 45°, such that the vehicle will turn towards 45° degrees in the absence of obstacles.
 - What do you need to change to make the vehicle go towards obstacles?
2. Imagine the differential equation $\frac{dy}{dx} = -y + 20$, where y describes the heading of your vehicle. You know that your initial orientation is $y(0) = 40^\circ$.

- Use the euler approximation method to calculate the y-values up to an x-value of 4. Use a step size of 0.5.
- Implement the euler approximation method in a python script, which can go to a certain x-value with a certain step size.
- Hint: You can reuse a lot of the code from yesterday.
- Calculate how long your for-loop has to run depending on the desired x-value and your step size.
- Save your results in three different lists. One for the x-values, one for the y-values and one for the $\frac{dy}{dx}$ term.
- Plot your x-values against your y-values and your y-values against your $\frac{dy}{dx}$-values. (See the next slide for plotting commands.)
Matplotlib.pyplot

The pyplot submodule

A submodule can be imported with the . operator
import matplotlib.pyplot as plt
The as operator allows renaming for convenience
xValues = [1,1,2,3,5,8,13]
yValues = [3,4,7,6,9,10,12]
plt.plot(xValues,yValues) #plots lines
This generates the plot and .show() displays it
plt.show()

#plots points and lines
plt.plot(xValues,yValues,linestyle = "-", marker="o")
plt.show()