Lecture 6 Differential Equations

Jan Tekülve jan.tekuelve@ini.rub.de

Computer Science and Mathematics
Preparatory Course

27.09.2019

Overview

1. Motivation

2. Mathematics

- > Solving Differential Equations
- ➤ Qualitative Analysis
- ➤ Numerical Approximation

3. Tasks

 The vehicle's change in angle depends on its current sensor input

- The vehicle's change in angle depends on its current sensor input
- ► The following equation may describe its behavior

$$rac{doldsymbol{eta}}{dt} = -S_L + S_R,$$

where t describes time and S_L , S_R left and right sensor values.

Differential Equation as Rule System

A differential equation describes how the rate of change of a system depends on its current state. For example:

$$f'(x) = 4f(x) + 5 = g(f(x))$$
 with $g(x) = 4x + 5$

Differential Equation as Rule System

► A differential equation describes how the rate of change of a system depends on its current state. For example:

$$f'(x) = 4f(x) + 5 = g(f(x))$$
 with $g(x) = 4x + 5$

A differential equation describes how a system should change in a given state.

Differential Equation as Rule System

► A differential equation describes how the rate of change of a system depends on its current state. For example:

$$f'(x) = 4f(x) + 5 = g(f(x))$$
 with $g(x) = 4x + 5$

- A differential equation describes how a system should change in a given state.
- Brief oversimplification:

A differential equation describes rules for the future

Solving Differential Equations

- ▶ Given a differential equation of the form $f'(x) = g(f(x)) \dots$ the original function f(x) is usually not known.
- Solving a differential equation describes the process of finding an f(x) that follows the above rule for all x
- Differential equations entail two equations
 - **1.** The function g(f(x)) governing the rate of change
 - **2.** The function f(x) describing the overall behavior

$$ightharpoonup f'(x) = cx$$

$$f'(x) = cf(x)$$

- ightharpoonup f'(x) = cx
 - ightharpoonup The rate of change depends follows a fixed rule depending on x

$$f'(x) = cf(x)$$

- ightharpoonup f'(x) = cx
 - The rate of change depends follows a fixed rule depending on x
 - ► The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$

$$f'(x) = cf(x)$$

- ightharpoonup f'(x) = cx
 - The rate of change depends follows a fixed rule depending on x
 - ► The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
 - This is not a differential equation as no f(x) is on the right side
- ightharpoonup f'(x) = cf(x)

- ightharpoonup f'(x) = cx
 - The rate of change depends follows a fixed rule depending on x
 - ► The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
 - This is not a differential equation as no f(x) is on the right side
- ightharpoonup f'(x) = cf(x)
 - The rate of change is a scaled version of the function itself: g(f(x)) = cf(x)

- ightharpoonup f'(x) = cx
 - The rate of change depends follows a fixed rule depending on *x*
 - ► The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
 - This is not a differential equation as no f(x) is on the right side
- f'(x) = cf(x)
 - The rate of change is a scaled version of the function itself: g(f(x)) = cf(x)
 - ▶ The only function that stays the same when differentiated is the exponential function e^x

- ightharpoonup f'(x) = cx
 - The rate of change depends follows a fixed rule depending on *x*
 - ► The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
 - This is not a differential equation as no f(x) is on the right side
- f'(x) = cf(x)
 - The rate of change is a scaled version of the function itself: g(f(x)) = cf(x)
 - The only function that stays the same when differentiated is the exponential function e^x
 - Considering the chain rule the derivative of e^{cx} is exactly ce^{cx} therefore $f(x) = ce^{cx}$

27.09.2019

- ightharpoonup f'(x) = cx
 - The rate of change depends follows a fixed rule depending on *x*
 - ► The solution can be described by the antiderivative $f(x) = \frac{1}{2}cx^2$
 - This is not a differential equation as no f(x) is on the right side
- f'(x) = cf(x)
 - The rate of change is a scaled version of the function itself: g(f(x)) = cf(x)
 - The only function that stays the same when differentiated is the exponential function e^x
 - Considering the chain rule the derivative of e^{cx} is exactly ce^{cx} therefore $f(x) = ce^{cx}$
 - ▶ Usually a differential equation is not that easily solvable

Dynamical Systems Theory

- Mathematicians want to find solutions to particular differential equations
- ▶ **Dynamical Systems Theory** is concerned with analyzing the qualitative behavior of the system

Attractors

$$f'(x) = y' = \frac{dy}{dx} = -f(x)$$

Lecture 6 - Differential Equations

Attractors

$$f'(x) = y' = \frac{dy}{dx} = -f(x)$$

Attractors

$$f'(x) = y' = \frac{dy}{dx} = -f(x)$$

Repellors

$$f'(x) = y' = \frac{dy}{dx} = -f(x)$$

Initial Condition Matters

Initial Condition Matters

Initial Condition Matters

Back to the Braitenberg Vehicle

 We govern the vehicles behavior with a differential equation

$$\frac{d\boldsymbol{\beta}}{dt} = -\boldsymbol{\beta} - S_L + S_R$$

Back to the Braitenberg Vehicle

 We govern the vehicles behavior with a differential equation

$$rac{doldsymbol{eta}}{dt} = -oldsymbol{eta} - oldsymbol{S}_L + oldsymbol{S}_R.$$

 Adding an attractor gives the vehicle a preferred orientation

1. Motivation

2. Mathematics

- ➤ Solving Differential Equations
- ➤ Qualitative Analysis
- > Numerical Approximation

3. Tasks

$$\frac{dy}{dx} = y \quad y(0) = 1$$

$$\frac{dy}{dx} = y \quad y(0) = 1$$

$$\Delta x = 1$$

$$x \quad y \quad \frac{dy}{dx}$$

$$0 \quad 1 \quad 1$$

$$\frac{dy}{dx} = y \quad y(0) = 1$$

$$\Delta x = 1$$

$$x \quad y \quad \frac{dy}{dx}$$

$$0 \quad 1 \quad 1$$

$$1 \quad 2 \quad 2$$

$$\frac{dy}{dx} = y \quad y(0) = 1$$

$$\Delta x = 1$$

$$x \quad y \quad \frac{dy}{dx}$$

$$0 \quad 1 \quad 1$$

$$1 \quad 2 \quad 2$$

$$2 \quad 4 \quad 4$$

$$\frac{dy}{dx} = y \quad y(0) = 1$$

$$\frac{\Delta x = 1}{0 \quad 1 \quad 1}$$

$$\frac{x \quad y \quad \frac{dy}{dx}}{1 \quad 1}$$

$$1 \quad 2 \quad 2$$

$$2 \quad 4 \quad 4$$

$$3 \quad 8 \quad 8$$

$$\frac{dy}{dx} = y \quad y(0) = 1$$

$$\frac{dy}{dx} = y \quad y(0) = 1$$

$$\Delta x = 0.5$$

$$\frac{x}{0} \quad \frac{y}{1} \quad \frac{dy}{dx}$$

$$\frac{dy}{dx} = y \quad y(0) = 1$$

$$\Delta x = 0.5$$

$$\frac{x}{0} \quad \frac{y}{dx} \quad \frac{dy}{dx}$$

$$0 \quad 1 \quad 1$$

$$0.5 \quad 1.5 \quad 1.5$$

$$\frac{dy}{dx} = y \quad y(0) = 1$$

$$\Delta x = 0.5$$

$$\frac{x}{0} \quad \frac{y}{1} \quad \frac{dy}{dx}$$
0 1 1
0.5 1.5 1.5
1 2.25 2.25

$$\frac{dy}{dx} = y \quad y(0) = 1$$

$$\Delta x = 0.5$$

\boldsymbol{x}	у	$\frac{dy}{dx}$
0	1	1
0.5	1.5	1.5
1	2.25	2.25
1.5	3.375	3.375

$$\frac{dy}{dx} = y \quad y(0) = 1$$

$$\Delta x = 0.5$$

\boldsymbol{x}	У	$\frac{dy}{dx}$
0	1	1
0.5	1.5	1.5
1	2.25	2.25
1.5	3.375	3.375
2	5.0625	5.0625

Euler Approximation in Words

- 1. Start with a certain value for x and y and the differential equation $\frac{dy}{dx} = \dots$ you want to approximate
- **2.** Decide for a step size that determines the accuracy of your approximation
- 3. Repeat as long as you like:
 - **3.1** Use the current *y*-value to calculate the current rate of change $\frac{dy}{dx}$
 - **3.2** Calculate the next *y*-value by taking the current *y*-value and adding to it the rate of change times the step size
 - **3.3** Increase *x* by the step size

Task Template

- ► Download the archive *task_template_6.zip* from the course homepage. Extract it into a folder of your choice.
- ► The archive contains task_61.py, student_code_61.py, and braitenberg.png.
- ▶ You only need to edit code in the *student_code* file.

Explain Task Template!

Tasks

- **1.** Change the behavior of the vehicle by implementing the function *calc_angle_change*.
 - current_angle is the current orientation of the vehicle in degree.
 - left_sensor_values and right_sensor_values are the measured values of the sensors. They increase the closer they are to an obstacle.
 - First make the angle change dependent on the current sensor values. How can you make the vehicle avoid obstacles?
 - ► Let your change in the angle depend on the current angle itself. Set an attractor at 45°, such that the vehicle will turn towards 45° degrees in the absence of obstacles.
 - ▶ What do you need to change to make the vehicle go towards obstacles?

Tasks (continued)

- **2.** Imagine the differential equation $\frac{dy}{dx} = -y + 20$, where *y* describes the heading of your vehicle.
 - You know that your initial orientation is $y(0) = 40^{\circ}$.
 - ► Use the euler approximation method to calculate the *y*-values up to an *x*-value of 4 . Use a step size of 0.5.
 - Implement the euler approximation method in a python script, which can go to a certain *x*-value with a certain step size.
 - ► Hint: You can reuse a lot of the code from yesterday.
 - Calculate how long your for-loop has to run depending on the desired *x*-value and your step size.
 - Save your results in three different lists. One for the x-values, one for the y-values and one for the $\frac{dy}{dx}$ term.
 - Plot your *x*-values against your *y*-values and your *y*-values against your $\frac{dy}{dx}$ -values. (See the next slide for plotting commands.)

Matplotlib.pyplot

► The pyplot submodule

```
# A submodule can be imported with the . operator
import matplotlib.pyplot as plt
# The as operator allows renaming for convenience
xValues = [1,1,2,3,5,8,13]
vValues = [3,4,7,6,9,10,12]
plt.plot(xValues, yValues) #plots lines
# This generates the plot and .show() displays it
plt.show()
#plots points and lines
plt.plot(xValues,yValues,linestyle = "-", marker="o")
plt.show()
```