Lecture 5 Integration

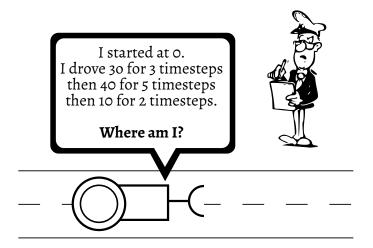
Jan Tekülve

jan.tekuelve@ini.rub.de

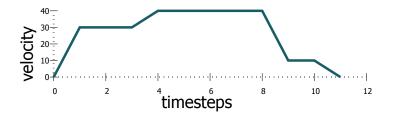
Computer Science and Mathematics Preparatory Course

26.09.2019

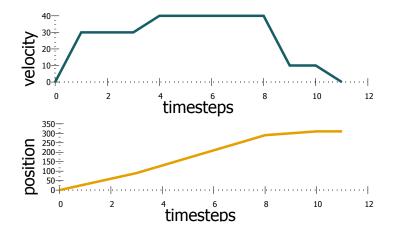
Reverting Differentiation



From Velocity to position



From Velocity to position



Overview

1. Motivation

2. Mathematics

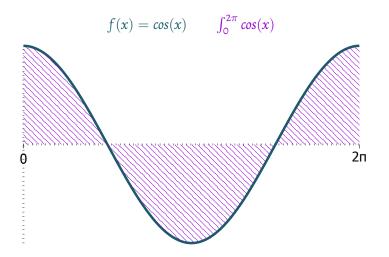
- > Graphical Interpretation of the Integral
- ► Improper Integrals
- > Numerical Integration

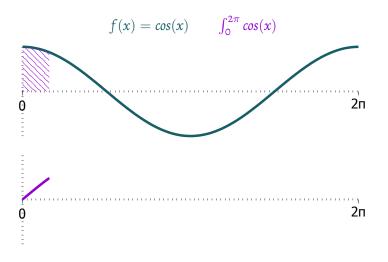
3. Programming

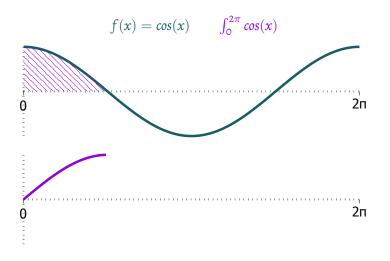
➤ Reading Files

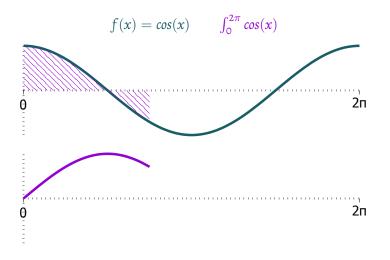
4. Tasks

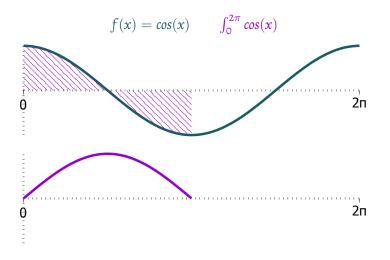
Integral as Area

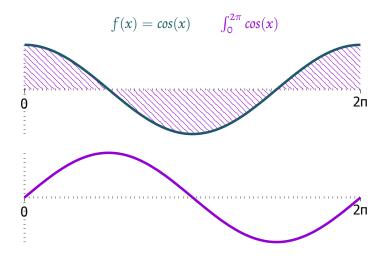


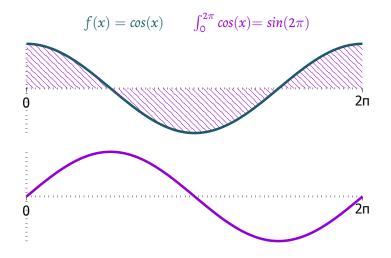












Geometric Definition

Definite Integral

The **definite integral** of a function f(x) between the **lower boundary** a and the **upper boundary** b

$$\int_{a}^{b} f(x)$$

is defined as the size of the area between f and the x-axis inside the boundaries. Areas above the x-Axis are considered positive and areas below negative.

The Antiderivative

Definition

If f is a function with domain $[a, b] \to \mathbb{R}$ and there is a function F, which is differentiable in the interval [a, b] with the property that

F'(x)=f(x),

then F is considered the **antiderivative** of f

The Antiderivative

Definition

If f is a function with domain $[a, b] \to \mathbb{R}$ and there is a function F, which is differentiable in the interval [a, b] with the property that

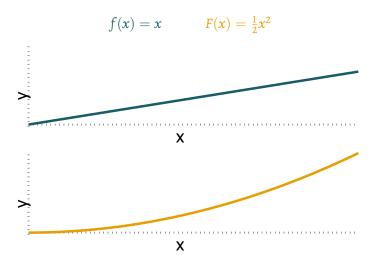
F'(x)=f(x),

then F is considered the **antiderivative** of f

Properties of the antiderivative

- Differentiation removes constants, because of that an antiderivative is described by a family of functions F(x) + c
- Unlike with differentiation there are no fixed rules to compute an antiderivative from a given f

A function and its antiderivative



Calculating the Integral

Calculating the area in an interval

If f is integrable and continuous in [a, b]. Then the following holds for each antiderivative F of f

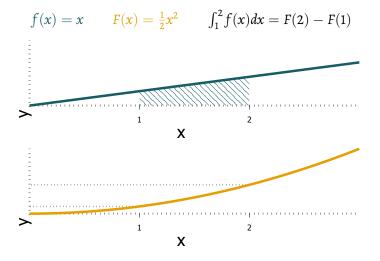
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} F'(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Example:

• Area under f(x) between values 1 and 2

$$\int_{1}^{2} x dx = \left[\frac{1}{2}x^{2}\right]_{1}^{2} = \frac{1}{2}2^{2} - \frac{1}{2}1^{2} = 1.5$$

Integral as area underneath a function



The Integral as Linear Operator

Integration Rules

Summation

$$\int_a^b f(x) + g(x) = \int_a^b f(x) + \int_a^b g(x)$$

The Integral as Linear Operator

Integration Rules

Summation

$$\int_a^b f(x) + g(x) = \int_a^b f(x) + \int_a^b g(x)$$

Scalar Multiplication

$$\int_{a}^{b} cf(x) = c \int_{a}^{b} f(x)$$

The Integral as Linear Operator

Integration Rules

Summation

$$\int_a^b f(x) + g(x) = \int_a^b f(x) + \int_a^b g(x)$$

Scalar Multiplication

$$\int_{a}^{b} cf(x) = c \int_{a}^{b} f(x)$$

Boundary Transformations

$$\int_{a}^{b} f(x) + \int_{b}^{c} f(x) = \int_{a}^{c} f(x) \quad \wedge \quad \int_{a}^{b} f(x) = -\int_{b}^{a} f(x)$$

Improper Integrals

Infinite Intervals

It is possible to calculate the area in infinitely large intervals. Intervals with an infinite boundary are called **Improper Integrals**

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$

Example:

Convergent improper integral

$$\int_{1}^{\infty} x^{-2} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-2} dx = \lim_{b \to \infty} \left[-x^{-1} \right]_{1}^{b} = \lim_{b \to \infty} \left(-b^{-1} + 1 \right) = 1$$

Numerical Approximation

 It is not trivial to find the antiderivative to a given function or a given dataset

Numerical Approximation

- It is not trivial to find the antiderivative to a given function or a given dataset
- Instead of calculating the Integral the area beneath a curve may be approximated, by splitting the area into sub-areas

Numerical Approximation

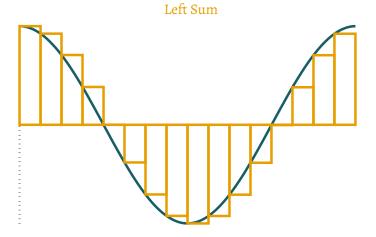
- It is not trivial to find the antiderivative to a given function or a given dataset
- Instead of calculating the Integral the area beneath a curve may be approximated, by splitting the area into sub-areas

Partioning an Interval

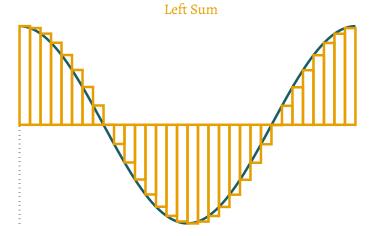
Let $(x_i)_{i \in [a,b]}$ be a sequence of *n* increasing numbers in [a, b] with fixed distance *h* between x_i and $x_i + 1$ for all x_i .

$$a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$$

Riemann Sums



Riemann Sums



Riemann Sums

Left and Right Sum

For an interval $[x_i, x_{i+1}]$ and a function f the functions

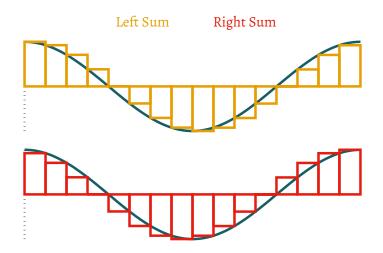
Left(f, [x_i , x_{i+1} [) = $f(x_i)$ and Right(f, [x_i , x_{i+1}]) = $f(x_{i+1})$

are defined to return the leftmost or rightmost value of the function in the interval.

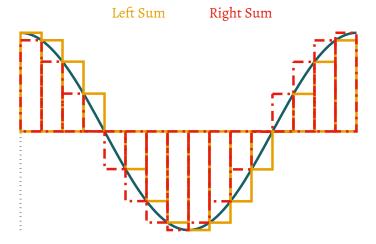
► Left and Right Sum are defined as the Sums of Left and Right across whole partitioned interval (x_i)_{i∈[a,b]}

$$I_L = \sum_{i=1}^{n} \text{Left}(f, x_i, x_{i+1}) \text{ and } I_R = \sum_{i=1}^{n} \text{Right}(f, x_i, x_{i+1})$$

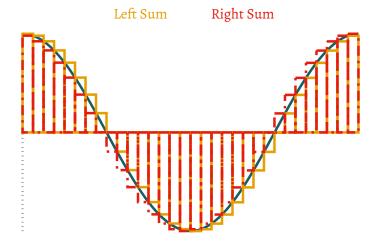
Left and Right Sum



Left and Right Sum



Left and Right Sum



Estimation of the True Integral

▶ Left and Right Sums for a partition (x_i)_{i∈[a,b]} give us an estimate of the integral

$$I_L \leq \int_a^b f(x) dx \leq I_R,$$

if the function in the interval is increasing and

$$I_R \leq \int_a^b f(x) dx \leq I_L,$$

if the function in the interval is decreasing.

Midpoint Method

Calculating Midpoints

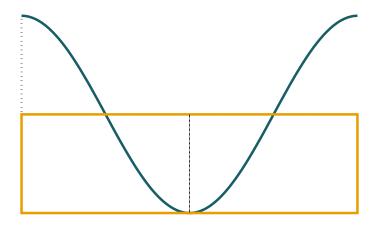
Another way of approximating an integral with finite sums is the **Midpoint Method**, which uses the function value in the middle of a given interval $[x_i, x_{i+1}]$

$$Mid(f, [x_i, x_{i+1}]) = f(\frac{x_i + x_{i+1}}{2})$$

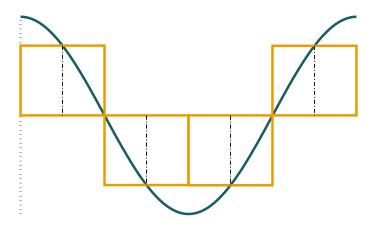
The sum of Midpoints also yields an estimation of the area under the curve

$$I_M = \int_i^n Mid(f, [x_i, x_{i+1}])$$

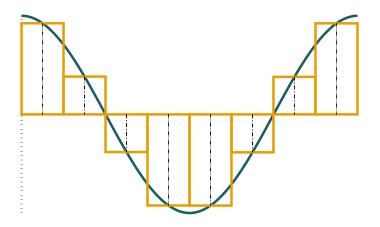
Midpoint Sums



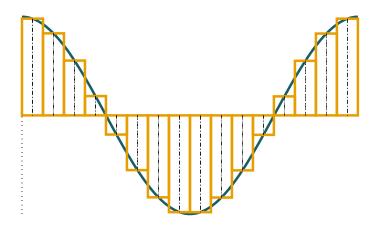
Midpoint Sums



Midpoint Sums



Midpoint Sums



(Simple) Numerical Integration

- We can understand Numerical Integration as the opposite of Numerical Differentiation
- Thus instead of subtracting following elements, we will add to the previous element
- ► This is equivalent to the left Riemann Sums

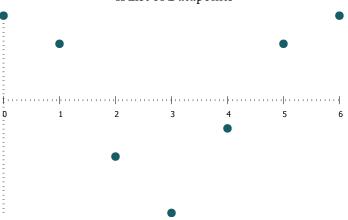
(Simple) Numerical Differentiation

The set \mathbb{I} describes the computable domain of f in the given context. It is possible to calculate function value $f(x_i)$, where $x_i \in \mathbb{I}$.

$$F(x_i) \approx F(x_{i-1}) + (f(x_i) \cdot (x_i - x_{i-1})),$$

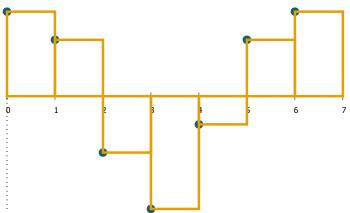
where x_{i-1} is the smallest negative distance from x_i in \mathbb{I} .

Graphical Example



A List of Datapoints

Graphical Example



A List of Datapoints

Integrating a List of Datapoints

From a sensor we receive the following velocity values $f(x_i)$:

i	0	1	2	3	4	5	6
x_i	0	1	2	3	4	5	6
$i \\ x_i \\ f(x_i)$	3	2	-2	-4	-1	2	3

Integrating a List of Datapoints

From a sensor we receive the following velocity values $f(x_i)$:

i	0	1	2	3	4	5	6
x_i	0	1	2	3	4	5	6
$i \\ x_i \\ f(x_i)$	3	2	-2	-4	-1	2	3

The distance between each point is 1. The area underneath each point is therefore 1 * f(x_i)

Integrating a List of Datapoints

From a sensor we receive the following velocity values $f(x_i)$:

i	0	1	2	3	4	5	6
x_i	0	1	2	3	4	5	6
$i \\ x_i \\ f(x_i)$	3	2	-2	-4	-1	2	3

- The distance between each point is 1.
 The area underneath each point is therefore 1 * f(x_i)
- The integrated position for $x_3 = 3$ and startpoint s = 2 equals:

 $F(x_3) = s + 1f(x_0) + 1f(x_1) + 1f(x_2) + 1f(x_3) = 2 + 3 + 2 + (-2) + (-4) = 1$

• The position at time-step $x_3 = 3$ is 1

Changing the Precision

From a sensor we receive the following velocity values $f(x_i)$:

Changing the Precision

From a sensor we receive the following velocity values $f(x_i)$:

i	0	1	2	3	4	5	6
$i \\ x_i \\ f(x_i)$	0	0.5	1	1.5	2	2.5	3
$f(x_i)$	3	2.5	2	0	-2	-2.5	-4

The distance between each point is 0.5.
 The area underneath each point is therefore 0.5 * f(x_i)

Changing the Precision

From a sensor we receive the following velocity values $f(x_i)$:

i	0	1	2	3	4	5	6
x_i	0	0.5	1	1.5	2	2.5 -2.5	3
$f(x_i)$	3	2.5	2	0	-2	-2.5	-4

- The distance between each point is 0.5. The area underneath each point is therefore 0.5 * f(x_i)
- The integrated position for $x_6 = 3$ and startpoint s = 2 equals:

$$F(x_6) = s + 0.5f(x_0) + 0.5f(x_1) + 0.5f(x_2) + 0.5f(x_3) + 0.5f(x_4) + 0.5f(x_5) + 0.5f(x_6) = 2 + 1.5 + 1.25 + 1 + 0 + (-1) + (-1.25) + (-2) = 1.5$$

• The position at time-step
$$x_6 = 3$$
 is 1.5

1. Motivation

2. Mathematics

- Graphical Interpretation of the Integral
- Improper Integrals
- Numerical Integration

3. Programming▶ Reading Files

4. Tasks

Reading Files

Opening a file

```
fileObject = open("file.txt", "r")
#The option r stands for read
```

Reading the file contents

```
#readlines creates a list containing each line
lines = fileObject.readlines()
for line in lines:
    print(line)
```

Close the file after usage:

fileObj.close()#This can be done right after readlines()

Details on Strings

Useful string operations

```
#Strip removes the new-line character '\n'
line = line.strip()
#Split tokenizes the string at the given character
line = line.split(" ")# 'Hello you' to ['Hello','you']
line = line.split("o")# 'Hello you' to ['Hell',' y','u']
line = line.replace("l","b")# 'Hello you' to 'Hebbo you'
```

Task Template

- Download the archive task_template_5.zip from the course homepage. Extract it into a folder of your choice.
- The archive contains task_51.py, student_code_51.py, task_52.py, student_code_52.py, and velocity_series.txt.
- ▶ You only need to edit code in the *student_code* files.

Explain Task Template!

Tasks

- **1.** Implement the function area(a,b), which returns the area between x-axis and function curve f(x) in the interval a, b.
 - The functions f(x) and F(x) are implemented already and you can call them in your code
 - Run *task51.py* to verify your result and plot an example area.
 - Given $F(x) = 4x^3 + 10$ calculate f(x) on a piece of paper.
 - Implement both functions F(x) and f(x) instead of the given ones. Test using *task51.py*.
- **2.** Calculate the derivatives of F(x) = sin(x) and verify the result via numerical integration. Do the same for: $F(x) = 3(5x^2)^2$ and $F(x) = (3x^3 + 3) \cdot (2x^2 + 2)$
 - Implement the function numerical_integration using the formula for (simple) numerical integration
 - ► Use a for loop through all y-values of function f(x) and use them to calculate the values F(x).
 - Append them to the list y_values_F

Tasks

File Reading Task (optional)

- 1. Write a script that opens *velocity_series.txt* from the course page, reads its contents and stores them as a list of floating values.
 - ▶ Use *file.readlines*() to receive a list of strings containing each line
 - Extract the velocity in each line by applying the *split()* method in a for-loop
 - ▶ In the loop typecast the velocity into a float and append it to a second list
- 2. Copy your function *numerical_integration* from the previous task and calculate the resulting series of positions.
 - You can receive the step size and the starting point from the file velocity_series.txt