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Differentiation
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Lecture 4 - Sequences Motivation

Overview

1. Motivation

2. Function Limits
ä Sequences
ä Limit Definition

3. Differentiation
ä Graphical Interpretation
ä Formal Description
ä Rules for Differentiation
ä Numerical Differentiation

4. Tasks
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Lecture 4 - Sequences Function Limits - Sequences

Sequences

Sequence Definition
Functions with the domain N are called sequence. A sequence with the
codomain R is called a sequence of real numbers: f : N→ R, n→ f (n)

Examples:
I Constant sequence: (3)n∈N = (3, 3, 3, 3, 3, . . . )
I Sequence of natural numbers: (n)n∈N = (1, 2, 3, 4, 5, . . . )
I Harmonic sequence: ( 1

n)n∈N = (1, 1
2 ,

1
3 ,

1
4 ,

1
5 , . . . )

I Geometric sequence: (qn)n∈N = (q, q2, q3, q4, q5, . . . )

I Alternating sequence: ((−1)n)n∈N = (−1, 1,−1, 1,−1, . . . )
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Lecture 4 - Sequences Function Limits - Sequences

Recursive Sequences

Recursive Sequence Definition
A sequence (an)n∈N may be recursively defined by:

1. �e first sequence element : a1, called initial value
2. A recursive rule defining element an+1 through previous elements an

Example: �e Fibonacci Sequence

an+1 =an + an−1 = (1, 1, 2, 3, 5, 8, 13, 21, . . . ),
with a1 = 1 and a2 = 1

25.09.2019 8 / 34



Lecture 4 - Sequences Function Limits - Sequences

Properties of Sequences

Boundedness
A sequence (an)n∈N has

I an upper bound, if there is a K ∈ R, such that an ≤ K for all n ∈ N

I a lower bound, if there is a K ∈ R, such that an ≥ K for all n ∈ N

Monotonicity
A sequence (an)n∈N is :

I (strictly) monotonically increasing, if an(<) ≤ an+1 for all n ∈ N

I (strictly) monotonically decreasing, if an(>) ≥ an+1 for all n ∈ N
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Lecture 4 - Sequences Function Limits - Limit Definition

Convergence and Divergence

Definitions

I A sequence (an)n∈N of real numbers converges to a real number L, if for
all ε > 0, there exists a natural numberN:

|an − L| < ε for all n ≥ N

Translation: A sequence converges to a real number L, if you get closer
to Lwith each additional element in the sequence

I L is called the limit of a sequence

lim
n→∞

an = L

I A sequence that does not converge is called divergent
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Lecture 4 - Sequences Function Limits - Limit Definition

Convergence Example

�e harmonic sequence ( 1
n)n∈N = (1, 1

2 ,
1
3 ,

1
4 ,

1
5 , . . . ) converges to Zero
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A sequence (an)n∈N of real numbers converges to a real number L, if for all
ε > 0, there exists a natural numberN : |an − L| < ε for all n ≥ N
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Lecture 4 - Sequences Function Limits - Limit Definition

Convergence Example

A sequence (an)n∈N of real numbers converges to a real number L, if for all
ε > 0, there exists a natural numberN : |an − L| < ε for all n ≥ N
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Lecture 4 - Sequences Function Limits - Limit Definition

Properties of Limits

Calculating with Limits
For two converging sequences (xn)n∈N and (yn)n∈N with limits
limn→∞ xn = Lx and limn→∞ yn = Ly the following holds:

I Scalar multiplication: limn→∞(axn) = aLx for a ∈ R

I Addition: limn→∞(xn + yn) = Lx + Ly

I Multiplication: limn→∞(xnyn) = LxLy

I Division: limn→∞( xnyn ) =
Lx
Ly

I Norm: limn→∞(|xn|) = |Lx|
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Lecture 4 - Sequences Differentiation

1. Motivation

2. Function Limits
ä Sequences
ä Limit Definition

3. Differentiation
ä Graphical Interpretation
ä Formal Description
ä Rules for Differentiation
ä Numerical Differentiation

4. Tasks
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Lecture 4 - Sequences Differentiation - Graphical Interpretation

A function and its derivative

f (x) = x2 f ′(x) = 2x
y

x

y

x
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Lecture 4 - Sequences Differentiation - Graphical Interpretation

A function and its derivative

f (x) = 0.5 f ′(x) = 0
y

x

y

x

25.09.2019 16 / 34



Lecture 4 - Sequences Differentiation - Graphical Interpretation

A function and its derivative

f (x) = sin(x) f ′(x) = cos(x)
y

x

y

x
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Lecture 4 - Sequences Differentiation - Graphical Interpretation

Derivative as a Tangent

f (x) = sin(x) f ′(x) = cos(x)

-π/2

y

x
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Lecture 4 - Sequences Differentiation - Graphical Interpretation

Derivative as a Tangent

f (x) = sin(x) f ′(x) = cos(x)

-π/2

3π/8

0

y

x

25.09.2019 18 / 34



Lecture 4 - Sequences Differentiation - Formal Description

Formal Definition
Differentiable Function

I A function f with domain M is called differentiable at position x0 if, if
the limit value

lim
x→x0

f (x)− f (x0)

x − x0

exists.

I �is limit is called f ′ or derivative of f at position x0. If f ′ is defined for
all x0 ∈ M, then f ′ becomes a new function called the derivative of f

I Alternate notations:

f ′(x0) =
df
dx

(x0) = lim
x→0

f (x + h)− f (x0)

h

25.09.2019 19 / 34
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Lecture 4 - Sequences Differentiation - Formal Description

Differentiation as Limit Example

I Statement: �e derivative of f (x) = x2 is f ′(x) = 2x

I Applying the formula

lim
x→x0

f (x)− f (x0)

x − x0
= lim

x→x0

x2 − x0
2

x − x0

I Simplifying

lim
x→x0

(x − x0)(x + x0)

x − x0
= lim

x→x0

����(x − x0)(x + x0)

����x − x0
= lim

x→x0
(x + x0)

I Applying the limit:
lim
x→x0

(x + x0) = 2x
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Differentiation is a linear operator

Rules

I Constant Factor
d
dx

(af ) = a
d
dx

(f )

I Sums
d
dx

(f + g) =
d
dx

(f ) +
d
dx

(g)

Example:

d
dx

(4x2) = 4
d
dx

(x2) = 4(2x) = 8x

d
dx

(4x2 + x2) = 4
d
dx

(x2) +
d
dx

(x2) = 4(2x) + 2x = 10x
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Differentiation for Products and Quotients

Rules

I Multiplication
d
dx

(fg) =
d
dx

(f )g+ f
d
dx

(g)

I Exponentiation
d
dx

(f n) = n
d
dx

(f )n−1

I Division
d
dx

(
f
g

)
=

d
dx (f )g− f

d
dx (g)

g2
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Examples

I Multiplication

d
dx

(x2sin(x)) =
d
dx

(x2)sin(x) + x2 d
dx

(sin(x)) = 2xsin(x) + x2cos(x)

I Division

d
dx

(
1
x

)
=

d
dx (1)x − 1 d

dx (x)
x2 =

0− 1
x2 =

−1
x2

25.09.2019 23 / 34



Lecture 4 - Sequences Differentiation - Rules for Differentiation

Examples

I Multiplication

d
dx

(x2sin(x)) =
d
dx

(x2)sin(x) + x2 d
dx

(sin(x)) = 2xsin(x) + x2cos(x)

I Division

d
dx

(
1
x

)
=

d
dx (1)x − 1 d

dx (x)
x2 =

0− 1
x2 =

−1
x2

25.09.2019 23 / 34



Lecture 4 - Sequences Differentiation - Rules for Differentiation

Exponentiation Rule derives from Multiplication Rule

I Example f ′(x3)

d
dx

(x3) =
d
dx

(x2x) =
d
dx

(x2)x + x2 d
dx

(x)

= 2xx + x2 = 3x2

I Example f ′(x4)

d
dx

(x4) =
d
dx

(x2x2) =
d
dx

(x2)x2 + x2 d
dx

(x2)

= 2xx2 + x22x = 2x3 + 2x3 = 4x3
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Special cases

I �e derivative of f (x) = ex is f ′(x) = ex

I �e derivative of f (x) = ln(x) is f ′(x) = 1
x

I �e derivative of f (x) = sin(x) is f ′(x) = cos(x)
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Composite functions

Chain Rule

I Function h is a composition of functions g and f

h(x) = (g ◦ f )(x) = g(f (x))

I If g and f are differentiable, h is also differentiable

d
dx

(h(x)) =
d
dx

(g(y))
d
dx

(f (x)), with y = f (x)

I Verbal rule: Inner derivative times outer derivative
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Chain Rule Examples

I h(x) = 5(7x + 2)4 = g(f (x))

g(x) = 5x4 ∧ f (x) = 7x + 2
g′(x) = 20x3 ∧ f ′(x) = 7
h′(x) = 20(7x + 2)37 = 140(7x + 2)3

I h(x) = e5x = g(f (x))

g(x) = ex ∧ f (x) = 5x
g′(x) = ex ∧ f ′(x) = 5

h′(x) = e5x5 = 5e5x
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Finding Local Extrema

f (x) = sin(x) f ′(x) = cos(x)
y

x

y

x
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f (x) = x2 f ′(x) = 2x
y

x

y
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Calculation of Local Extrema
I f (x) = 4x2 + 6x

f ′(x) = 8x + 6

f ′(x) = 8x + 6 !
= 0

⇐⇒ 8x = −6

⇐⇒ x =
−6
8

=
−3
4

I f (x) = sin(x)

f ′(x) = cos(x)

f ′(x) = cos(x) !
= 0

⇐⇒ x = cos−1(0)

⇐⇒ x = 90◦ =
π

2
, 270◦ =

3π
2
, ...
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Differentiability is not given

f (x) = 1
x f ′(x) = −1

x2

y

x

y

x
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Lecture 4 - Sequences Differentiation - Numerical Differentiation

Numerical Differentiation

I Problem: Only function values f (x0) of f (x) are known, but not the real
function f

I Instead of calculating the derivative of f analytically, it is possible to
approximate f ′(x) using numerical differentiation

(Simple) Numerical Differentiation
�e set I describes the computable domain of f in the given context. It is
possible to calculate function value f (xi), where xi ∈ I.

f ′(xi) ≈
f (xi+1)− f (xi)
xi+1 − xi

,

where xi+1 is the smallest positive distance from xi in I.
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Lecture 4 - Sequences Differentiation - Numerical Differentiation

Numerical Differentiation Example

I From a sensor we receive the following values:
xi 0 1 2 3 4 5 6 7 8 9
f (xi) 3.1 2.9 2.4 1.4 1.6 3 3.1 3.3 3.5 4.2

I �e derivative at x3 equals:

f ′(x3) =
f (x3+1)− f (x3)

x3+1 − x3
⇒ f (x4)− f (x3)

4− 3
=

1.6− 1.4
1

= 0.2

I �e change at position x3 is 0.2
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Lecture 4 - Sequences Tasks

Task Template Braitenberg

I Download the archive task template 4.zip from the course homepage.
Extract it into a folder of your choice.

I �e archive contains task 4 1.py, task 4 1 student code.py and
braitenberg.png.

I Use task 4 1.py to run the program, but edit code only in
task 4 1 student code.py.

Explain Task Template!
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Lecture 4 - Sequences Tasks

Tasks

1. Calculate the vehicle’s velocity through numerical differentiation.
I Open task 4 1 student code.py and implement the function

calc velocity from position.
I Use the given list of positions to estimate the vehicles velocity using

numerical differentiation.
I Append the resulting velocity values to the player velocities x list.
I Tip: Use a for-loop that runs through the position values and compares

the current list-entry to the preceding one.

2. Write a script the calculates the Fibonacci sequence for an arbitrary
numberN of elements. Print the numbers to the console.
I �e first two elements of a1 and a2 are always 1
I Write a loop that runsN times and calculates the Fibonacci number

an+1 = an + an−1
I Tip: Use variables to store the values for the current value an and the

previous value an−1 and update them in each loop.
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