Programming Session

Jan Tekülve
jan.tekuelve@ini.rub.de

Computer Science and Mathematics
Preparatory Course

23.09.2019
Brief Excursion on Number Systems

Number Systems

- **Natural Numbers**: \(\mathbb{N} = \{0, 1, 2, 3, 4, \ldots \} \)
- **Integer Numbers**: \(\mathbb{Z} = \ldots, -2, -1, 0, 1, 2, \ldots \)
- **Rational Numbers**: \(\mathbb{Q} \)
- **Real Numbers**: \(\mathbb{R} \)
Brief Excursion on Number Systems

Number Systems

- **Natural Numbers**: \(\mathbb{N} = \{0, 1, 2, 3, 4, \ldots \} \)
- **Integer Numbers**: \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots \} \)
- **Rational Numbers**: \(\mathbb{Q} \)
- **Real Numbers**: \(\mathbb{R} \)
Brief Excursion on Number Systems

Number Systems

- **Natural Numbers**: \(\mathbb{N} = \{0, 1, 2, 3, 4, \ldots \} \)
- **Integer Numbers**: \(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots \} \)
- **Rational Numbers**: \(\mathbb{Q} = \frac{a}{b} \), where \(a, b \in \mathbb{Z} \) and \(b \neq 0 \)
- **Real Numbers**: \(\mathbb{R} \)
Real Numbers

- Between two rational numbers is an infinite amount of rational numbers
Real Numbers

- Between two rational numbers is an infinite amount of rational numbers
- However: $\sqrt{2}$ is not a rational number
Real Numbers

- Between two rational numbers is an infinite amount of rational numbers.

- However: $\sqrt{2}$ is not a rational number.

- The irrational number $\sqrt{2} = 1.4142135 \ldots$ is part of the real world:
Definitions

Number Systems

➤ **Natural Numbers**: $\mathbb{N} = \{0, 1, 2, 3, 4, \ldots \}$

➤ **Integer Numbers**: $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots \}$

➤ **Rational Numbers**: $\mathbb{Q} = \frac{a}{b}$, where $a, b \in \mathbb{Z}$ and $b \neq 0$

➤ **Real Numbers**: $\mathbb{R} = \mathbb{Q} +$ irrational numbers
Definitions

Number Systems

- **Natural Numbers**: $\mathbb{N} = \{0, 1, 2, 3, 4, \ldots \}$
- **Integer Numbers**: $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots \}$
- **Rational Numbers**: $\mathbb{Q} = \frac{a}{b}$, where $a, b \in \mathbb{Z}$ and $b \neq 0$
- **Real Numbers**: $\mathbb{R} = \mathbb{Q} +$ irrational numbers

Honorable Mention

- **Complex Numbers**: $\mathbb{C} = a + ib$, where $a, b \in \mathbb{R}$ and $i = \sqrt{-1}$
Number Systems

\[\mathbb{R} \supseteq \mathbb{Q} \supseteq \mathbb{Z} \supseteq \mathbb{N} \]
If-Else

- If and else are organized by indentation and colons

```python
x = 3.5
is_x_4 = False
if x == 4:
    is_x_4 = True  # indented block is called only
    print("x is 4")  # if <condition> applies
else:
    print("x is not 4")
# Regular program continues here
```
While Loops

- Print the numbers from 1 to 10

```python
goal = 5  # define two variables for the exit condition
test = 0
while test != goal:
    test = test + 1  # Increase test by 1
    print(test)  # prints 1,2,3,4,5 a number per loop
```
The List Datatype

- Lists allow to manage a collection of variables

```python
names = ["Alice","Bob","Carl","Dora"]
numbers = [1,2,3,5,8]
```

- Accessing and modifying elements in a lists

```python
print(names)  #['Alice','Bob','Carl','Dora']
single_name = names[2]  #single_name = 'Carl'
first_element = numbers[0]  #first_element = 1
last_name = names[len(names)-1]  #last_name = 'Dora'
```

```python
names[1] = "Bert"  #names ['Alice','Bert','Carl','Dora']
```
Operations on Lists

Example Operations

numbers = [1,2,3,5,8]
names = ["Alice","Bob","Carl"]
count = len(names) #count=3
names.append("Daisy") #['Alice','Bob','Carl','Daisy']
numbers2 = [13,21,34]
numbers3 = numbers + numbers2 #[1,2,3,5,8,13,21,34]
subset = numbers3[2:5] #[3,5,8]
#characters from position 2 (included) to 5 (excluded)
Helpful Functions

► The random module

```python
import random #import the module similar to import math
#assigns dice_roll a number between 1 and 6
dice_roll = random.randint(1,6)
#assigns coin_flip either a 0 or 1
coin_flip = random.randint(0,1)
```

► Deleting list elements

```python
names = ["alf","donald","charly brown","bud spencer"]
del names[1] #deletes the second element
print(names) # ["alf","charly brown","bud spencer"]
```
Tasks: Control Statements

1. Write a script that determines whether a given input number is an integer or rational number. Print the result to the console.
 - Use python's `input` function to retrieve the input number
 - Typecast the input to an integer and store the result in a new variable
 - Typecast the input to a float and store the result in a new variable
 - Compare both variables in an if-clause to determine, whether the input was an int or float.

2. Write a Guessing Game, where the script chooses a random integer between 0 and 20 and the user has to guess it. With each guess the user gets told if his guess was higher or lower than the desired number.
 - Start by assigning a random integer to a variable using `random.randint(0,20)`
 - Create a while-loop in which the user is asked for a number
 - Depending on the number input tell the user whether his guess was smaller, higher or equal to the desired value
 - Think about how to end the while-loop
Tasks: Lists

3. Write a script that returns the biggest element in a list
 - Create a list with arbitrary numbers of your choice
 - Loop through the list with a for loop
 - In each loop compare the current list element with your current estimate of the highest number

4. Write a script that looks for a specific element in the list and deletes it
 - Loop through the list with a for-loop and store the elements position in a variable
 - After the for loop remove the element at that position with the *del* command

5. (Bonus) Write a script that takes a list and transfers its elements to a second list in sorted order.
 - Look for the smallest element in the first list. Write it to the second list. Delete it in the first list. Repeat.