
COMPUTER VISION: DEEP LEARNING LAB COURSE

DAY 3 – CONVOLUTIONAL NEURAL NETWORKS

 SEBASTIAN HOUBEN

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 2

Schedule

Today

 Neural Nets

 Training of Neural Nets

 Gradient Computation

 Deep Neural Nets

 Bare Necessities for Training Deep Neural Nets

 Tensorflow

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 3

Classifier

{cat,dog}

Feature Extraction

Neural Net – Multilayer Perceptron

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 4

Neural Net – Multilayer Perceptron

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 5

Neural Net – Multilayer Perceptron

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 6

Neural Net – Multilayer Perceptron

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 7

Neural Net – Non-Linearities

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 8

Neural Net – Interpretation

 Input norm should be limited

 Nothing should fire for zero input

 Shift by mean and normalize by

standard deviation (over training set)

 Hidden neuron reacts if input is similar

to weight vector

 Hidden neurons code regions of

feature space

 More hidden neurons can devide the

feature space in more regions

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 9

Neural Net – Interpretation

 Second layer weights control output

for each region

 Net can approximate each continuous

function

 Polynomials can

 Sine functions can (Fourier series)

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 10

Neural Net – Training

 Training data:

 Predictions (!):

 Accuracy:

 Loss:

 Training:
 n samples

 m classes

 d input size

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 11

Neural Net – Training

 Simple case:

 Vanishing Gradient
 n samples

 m classes

 d input size

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 12

Neural Net – Training

 Basic form of gradient:

 Gradient descent:

 Stochastic gradient descent:

 Batch gradient descent

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 13

Deep Neural Nets

 3-Layer network can approximate any continuous function

 More layers tend to work better

 Not quite clear why

 Handwavy: Natural phenonemons are hierarchically

structered

 Hopefully layers will adapt to those different

phenomenons

 Vanishing Gradient Problem

 Many, many parameters

Alex Krizhevsky et al.

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 14

Deep Neural Nets - Adaptations

 Non-Linearity:

Output:

 Loss function:

Cross-entropy

 Weight initialization:

 Data preparation:

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 15

Convolutional Neural Nets

 Neural net with parameter reuse

 Each layer gets an image with c channels as input

 This is convoluted with filters of size

 resulting in an image with channels

 Idea: Find certain local image patches / patterns

Alex Krizhevsky et al.

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 16

Convolutional Neural Nets

 Idea: Exact location of image patch is not so important

 Compress information

 Maxpool-Layers: Take small window (e.g., 2x2) and only

propagate maximum value to next layer

Alex Krizhevsky et al.

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 17

Convolutional Neural Nets

 Idea: at the end only relevant information is propagated

 Use classical neural net (fully-connected) to classify results

Alex Krizhevsky et al.

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 18

Tensorflow

 Python library for Deep Learning

 Gradient computation

 Backpropagation

 2000+ operations (e.g., convolution, maxpooling)

 Symbolic computation

 Write a program that writes (and executes) a program

 Similar to Numpy

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 19

Tensorflow

 GPU paralellization (via CUDA kernels)

 Caveats:

 Slightly hard to learn

 Hard to debug

 Alternatives:

 PyTorch (Torch)

 Theano (basically the same)

 Caffe (C++)

 Keras (Simplification of Theano / Tensorflow)

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 20

Tensorflow: Layout
import tensorflow as tf
import numpy as np

tf.reset_default_graph() # tensorflow internal reset

x = tf.Variable(np.array([2, 1]), dtype=tf.float32, name= “x“) # a variable in the program our program writes
y = tf.constant(np.array([3, 5]) , dtype=tf.float32, name= “y“) # a constant in the program our program writes

z = tf.placeholder(shape=[None, 2], dtype=tf.float32, name= “z“) # an input in the program our program writes

loss = tf.reduce_sum((x - y + z)**2) # many other numpy operations are implemented

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # a subroutine that takes one gradient descent step on loss

z_ = np.array([[2,0]])

with tf.Session() as sess:
 sess.run(tf.global_variables_initializer()) # initialize variables in program
 print(loss.eval(feed_dict={z:z_}), x.eval()) # 17.0, [2. 1.]
 for k in range(100):
 train_step.run(feed_dict={z:z_}) # compute loss, compute backpass (derivative), one step downwards

 print(loss.eval(feed_dict={z:z_}), x.eval()) # 9.66338e-13, [1.00000024 4.99999905]

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 21

Tensorflow: Checkpointing
import tensorflow as tf
import numpy as np

tf.reset_default_graph() # tensorflow internal reset

fancy model implemented here ...

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

saver = tf.train.Saver()
epoch_cnt = 0

with tf.Session() as sess:
 sess.run(tf.global_variables_initializer()) # initialize variables in program
 saver.restore(sess, tf.train.latest_checkpoint(os.path.dirname(os.path.realpath(__file__)))) # restore last checkpoint
 for # ...
 epoch_cnt += 1
 # optimization going on here ...
 saver.save(sess, os.path.dirname(os.path.realpath(__file__)) + '/tsd_model', global_step=epoch_cnt, write_meta_graph=False)
 # save current state of variables (but not the model)

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 22

Tensorflow

 NWHC order

 stacking of images

 number, width, height, channel

 try to adapt to this order

QUESTIONS?

 EXERCISES.

