
COMPUTER VISION: DEEP LEARNING LAB COURSE 

DAY 3 – CONVOLUTIONAL NEURAL NETWORKS 

   SEBASTIAN HOUBEN 
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Schedule 

Today 

 Neural Nets 

 Training of Neural Nets 

 Gradient Computation 

 Deep Neural Nets 

 Bare Necessities for Training Deep Neural Nets 

 Tensorflow 
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Classifier 

 
{cat,dog} 

Feature Extraction 

Neural Net – Multilayer Perceptron 
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Neural Net – Multilayer Perceptron 
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Neural Net – Multilayer Perceptron 
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Neural Net – Multilayer Perceptron 
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Neural Net – Non-Linearities 
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Neural Net – Interpretation 

 Input norm should be limited 

 Nothing should fire for zero input 

 Shift by mean and normalize by 

standard deviation (over training set) 

 

 Hidden neuron reacts if input is similar 

to weight vector 

 Hidden neurons code regions of 

feature space 

 More hidden neurons can devide the 

feature space in more regions 
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Neural Net – Interpretation 

 Second layer weights control output 

for each region 

 Net can approximate each continuous 

function 

 Polynomials can 

 Sine functions can (Fourier series) 
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Neural Net – Training 

 Training data:  

 Predictions (!):  

 Accuracy: 

 

 Loss: 

 

 

 

 Training:    
 n samples 

 m classes 

 d input size 
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Neural Net – Training 

 Simple case:  

 

 

 

 

 

 

 

 Vanishing Gradient 
 n samples 

 m classes 

 d input size 
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Neural Net – Training 

 

 

 

 Basic form of gradient: 

 

 Gradient descent:   

 

 Stochastic gradient descent: 

 

 Batch gradient descent 
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Deep Neural Nets 

 3-Layer network can approximate any continuous function 

 More layers tend to work better 

 Not quite clear why 

 Handwavy: Natural phenonemons are hierarchically 

structered 

 Hopefully layers will adapt to those different 

phenomenons 

 Vanishing Gradient Problem 

 Many, many parameters 

Alex Krizhevsky et al. 
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Deep Neural Nets - Adaptations 

 Non-Linearity: 

 

Output: 

 

 Loss function:  

Cross-entropy 

 

 Weight initialization:  

 

 Data preparation:  
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Convolutional Neural Nets 

 Neural net with parameter reuse 

 Each layer gets an image with c channels as input 

 This is convoluted with    filters of size 

 resulting in an image with     channels 

 Idea: Find certain local image patches / patterns 

 

Alex Krizhevsky et al. 
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Convolutional Neural Nets 

 Idea: Exact location of image patch is not so important 

 Compress information 

 Maxpool-Layers: Take small window (e.g., 2x2) and only 

propagate maximum value to next layer 

 

 

Alex Krizhevsky et al. 
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Convolutional Neural Nets 

 Idea: at the end only relevant information is propagated 

 Use classical neural net (fully-connected) to classify results 

 

 

Alex Krizhevsky et al. 
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Tensorflow 

 Python library for Deep Learning 

 Gradient computation 

 Backpropagation 

 2000+ operations (e.g., convolution, maxpooling) 

 Symbolic computation 

 Write a program that writes (and executes) a program 

 Similar to Numpy 
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Tensorflow 

 GPU paralellization (via CUDA kernels) 

 Caveats: 

 Slightly hard to learn 

 Hard to debug 

 

 Alternatives: 

 PyTorch (Torch) 

 Theano (basically the same) 

 Caffe (C++) 

 Keras (Simplification of Theano / Tensorflow) 
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Tensorflow: Layout 
import tensorflow as tf 
import numpy as np 
 
tf.reset_default_graph()    # tensorflow internal reset 
 
x = tf.Variable( np.array( [2, 1] ), dtype=tf.float32, name= “x“ ) # a variable in the program our program writes  
y = tf.constant( np.array( [3, 5] ) , dtype=tf.float32, name= “y“ ) # a constant in the program our program writes 
 
z = tf.placeholder( shape=[None, 2], dtype=tf.float32, name= “z“ ) # an input in the program our program writes 
 
loss = tf.reduce_sum((x - y + z)**2)   # many other numpy operations are implemented 
 
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # a subroutine that takes one gradient descent step on loss 
 
z_ = np.array([[2,0]]) 
 
with tf.Session() as sess: 
  sess.run(tf.global_variables_initializer())  # initialize variables in program 
  print( loss.eval( feed_dict={z:z_}), x.eval()  )   # 17.0, [ 2.  1.] 
  for k in range(100): 
    train_step.run( feed_dict={z:z_})   # compute loss, compute backpass (derivative), one step downwards 
 
  print( loss.eval( feed_dict={z:z_}), x.eval() )  # 9.66338e-13,  [1.00000024  4.99999905] 
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Tensorflow: Checkpointing 
import tensorflow as tf 
import numpy as np 
 
tf.reset_default_graph()   # tensorflow internal reset 
 
# fancy model implemented here ... 
 
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)  
 
saver = tf.train.Saver() 
epoch_cnt = 0 
 
with tf.Session() as sess: 
  sess.run(tf.global_variables_initializer())  # initialize variables in program 
  saver.restore(sess, tf.train.latest_checkpoint(os.path.dirname(os.path.realpath(__file__)))) # restore last checkpoint  
  for # ... 
    epoch_cnt += 1 
    # optimization going on here ... 
    saver.save(sess, os.path.dirname(os.path.realpath(__file__)) + '/tsd_model', global_step=epoch_cnt, write_meta_graph=False) 
    # save current state of variables (but not the model) 
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Tensorflow 

 NWHC order  

 stacking of images 

 number, width, height, channel 

 try to adapt to this order 

 

 



QUESTIONS? 

 EXERCISES. 


