
COMPUTER VISION: DEEP LEARNING LAB COURSE

DAY 3 – CONVOLUTIONAL NEURAL NETWORKS

 SEBASTIAN HOUBEN

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 2

Schedule

Today

 Neural Nets

 Training of Neural Nets

 Gradient Computation

 Deep Neural Nets

 Bare Necessities for Training Deep Neural Nets

 Tensorflow

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 3

Classifier

{cat,dog}

Feature Extraction

Neural Net – Multilayer Perceptron

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 4

Neural Net – Multilayer Perceptron

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 5

Neural Net – Multilayer Perceptron

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 6

Neural Net – Multilayer Perceptron

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 7

Neural Net – Non-Linearities

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 8

Neural Net – Interpretation

 Input norm should be limited

 Nothing should fire for zero input

 Shift by mean and normalize by

standard deviation (over training set)

 Hidden neuron reacts if input is similar

to weight vector

 Hidden neurons code regions of

feature space

 More hidden neurons can devide the

feature space in more regions

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 9

Neural Net – Interpretation

 Second layer weights control output

for each region

 Net can approximate each continuous

function

 Polynomials can

 Sine functions can (Fourier series)

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 10

Neural Net – Training

 Training data:

 Predictions (!):

 Accuracy:

 Loss:

 Training:
 n samples

 m classes

 d input size

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 11

Neural Net – Training

 Simple case:

 Vanishing Gradient
 n samples

 m classes

 d input size

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 12

Neural Net – Training

 Basic form of gradient:

 Gradient descent:

 Stochastic gradient descent:

 Batch gradient descent

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 13

Deep Neural Nets

 3-Layer network can approximate any continuous function

 More layers tend to work better

 Not quite clear why

 Handwavy: Natural phenonemons are hierarchically

structered

 Hopefully layers will adapt to those different

phenomenons

 Vanishing Gradient Problem

 Many, many parameters

Alex Krizhevsky et al.

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 14

Deep Neural Nets - Adaptations

 Non-Linearity:

Output:

 Loss function:

Cross-entropy

 Weight initialization:

 Data preparation:

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 15

Convolutional Neural Nets

 Neural net with parameter reuse

 Each layer gets an image with c channels as input

 This is convoluted with filters of size

 resulting in an image with channels

 Idea: Find certain local image patches / patterns

Alex Krizhevsky et al.

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 16

Convolutional Neural Nets

 Idea: Exact location of image patch is not so important

 Compress information

 Maxpool-Layers: Take small window (e.g., 2x2) and only

propagate maximum value to next layer

Alex Krizhevsky et al.

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 17

Convolutional Neural Nets

 Idea: at the end only relevant information is propagated

 Use classical neural net (fully-connected) to classify results

Alex Krizhevsky et al.

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 18

Tensorflow

 Python library for Deep Learning

 Gradient computation

 Backpropagation

 2000+ operations (e.g., convolution, maxpooling)

 Symbolic computation

 Write a program that writes (and executes) a program

 Similar to Numpy

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 19

Tensorflow

 GPU paralellization (via CUDA kernels)

 Caveats:

 Slightly hard to learn

 Hard to debug

 Alternatives:

 PyTorch (Torch)

 Theano (basically the same)

 Caffe (C++)

 Keras (Simplification of Theano / Tensorflow)

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 20

Tensorflow: Layout
import tensorflow as tf
import numpy as np

tf.reset_default_graph() # tensorflow internal reset

x = tf.Variable(np.array([2, 1]), dtype=tf.float32, name= “x“) # a variable in the program our program writes
y = tf.constant(np.array([3, 5]) , dtype=tf.float32, name= “y“) # a constant in the program our program writes

z = tf.placeholder(shape=[None, 2], dtype=tf.float32, name= “z“) # an input in the program our program writes

loss = tf.reduce_sum((x - y + z)**2) # many other numpy operations are implemented

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # a subroutine that takes one gradient descent step on loss

z_ = np.array([[2,0]])

with tf.Session() as sess:
 sess.run(tf.global_variables_initializer()) # initialize variables in program
 print(loss.eval(feed_dict={z:z_}), x.eval()) # 17.0, [2. 1.]
 for k in range(100):
 train_step.run(feed_dict={z:z_}) # compute loss, compute backpass (derivative), one step downwards

 print(loss.eval(feed_dict={z:z_}), x.eval()) # 9.66338e-13, [1.00000024 4.99999905]

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 21

Tensorflow: Checkpointing
import tensorflow as tf
import numpy as np

tf.reset_default_graph() # tensorflow internal reset

fancy model implemented here ...

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

saver = tf.train.Saver()
epoch_cnt = 0

with tf.Session() as sess:
 sess.run(tf.global_variables_initializer()) # initialize variables in program
 saver.restore(sess, tf.train.latest_checkpoint(os.path.dirname(os.path.realpath(__file__)))) # restore last checkpoint
 for # ...
 epoch_cnt += 1
 # optimization going on here ...
 saver.save(sess, os.path.dirname(os.path.realpath(__file__)) + '/tsd_model', global_step=epoch_cnt, write_meta_graph=False)
 # save current state of variables (but not the model)

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 22

Tensorflow

 NWHC order

 stacking of images

 number, width, height, channel

 try to adapt to this order

QUESTIONS?

 EXERCISES.

