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Schedule 

Today 

 Neural Nets 

 Training of Neural Nets 

 Gradient Computation 

 Deep Neural Nets 

 Bare Necessities for Training Deep Neural Nets 

 Tensorflow 
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Classifier 

 
{cat,dog} 

Feature Extraction 

Neural Net – Multilayer Perceptron 
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Neural Net – Multilayer Perceptron 
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Neural Net – Multilayer Perceptron 
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Neural Net – Multilayer Perceptron 
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Neural Net – Non-Linearities 
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Neural Net – Interpretation 

 Input norm should be limited 

 Nothing should fire for zero input 

 Shift by mean and normalize by 

standard deviation (over training set) 

 

 Hidden neuron reacts if input is similar 

to weight vector 

 Hidden neurons code regions of 

feature space 

 More hidden neurons can devide the 

feature space in more regions 
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Neural Net – Interpretation 

 Second layer weights control output 

for each region 

 Net can approximate each continuous 

function 

 Polynomials can 

 Sine functions can (Fourier series) 
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Neural Net – Training 

 Training data:  

 Predictions (!):  

 Accuracy: 

 

 Loss: 

 

 

 

 Training:    
 n samples 

 m classes 

 d input size 
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Neural Net – Training 

 Simple case:  

 

 

 

 

 

 

 

 Vanishing Gradient 
 n samples 

 m classes 

 d input size 
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Neural Net – Training 

 

 

 

 Basic form of gradient: 

 

 Gradient descent:   

 

 Stochastic gradient descent: 

 

 Batch gradient descent 



INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 13 

Deep Neural Nets 

 3-Layer network can approximate any continuous function 

 More layers tend to work better 

 Not quite clear why 

 Handwavy: Natural phenonemons are hierarchically 

structered 

 Hopefully layers will adapt to those different 

phenomenons 

 Vanishing Gradient Problem 

 Many, many parameters 

Alex Krizhevsky et al. 
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Deep Neural Nets - Adaptations 

 Non-Linearity: 

 

Output: 

 

 Loss function:  

Cross-entropy 

 

 Weight initialization:  

 

 Data preparation:  
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Convolutional Neural Nets 

 Neural net with parameter reuse 

 Each layer gets an image with c channels as input 

 This is convoluted with    filters of size 

 resulting in an image with     channels 

 Idea: Find certain local image patches / patterns 

 

Alex Krizhevsky et al. 
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Convolutional Neural Nets 

 Idea: Exact location of image patch is not so important 

 Compress information 

 Maxpool-Layers: Take small window (e.g., 2x2) and only 

propagate maximum value to next layer 

 

 

Alex Krizhevsky et al. 
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Convolutional Neural Nets 

 Idea: at the end only relevant information is propagated 

 Use classical neural net (fully-connected) to classify results 

 

 

Alex Krizhevsky et al. 
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Tensorflow 

 Python library for Deep Learning 

 Gradient computation 

 Backpropagation 

 2000+ operations (e.g., convolution, maxpooling) 

 Symbolic computation 

 Write a program that writes (and executes) a program 

 Similar to Numpy 
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Tensorflow 

 GPU paralellization (via CUDA kernels) 

 Caveats: 

 Slightly hard to learn 

 Hard to debug 

 

 Alternatives: 

 PyTorch (Torch) 

 Theano (basically the same) 

 Caffe (C++) 

 Keras (Simplification of Theano / Tensorflow) 
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Tensorflow: Layout 
import tensorflow as tf 
import numpy as np 
 
tf.reset_default_graph()    # tensorflow internal reset 
 
x = tf.Variable( np.array( [2, 1] ), dtype=tf.float32, name= “x“ ) # a variable in the program our program writes  
y = tf.constant( np.array( [3, 5] ) , dtype=tf.float32, name= “y“ ) # a constant in the program our program writes 
 
z = tf.placeholder( shape=[None, 2], dtype=tf.float32, name= “z“ ) # an input in the program our program writes 
 
loss = tf.reduce_sum((x - y + z)**2)   # many other numpy operations are implemented 
 
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # a subroutine that takes one gradient descent step on loss 
 
z_ = np.array([[2,0]]) 
 
with tf.Session() as sess: 
  sess.run(tf.global_variables_initializer())  # initialize variables in program 
  print( loss.eval( feed_dict={z:z_}), x.eval()  )   # 17.0, [ 2.  1.] 
  for k in range(100): 
    train_step.run( feed_dict={z:z_})   # compute loss, compute backpass (derivative), one step downwards 
 
  print( loss.eval( feed_dict={z:z_}), x.eval() )  # 9.66338e-13,  [1.00000024  4.99999905] 
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Tensorflow: Checkpointing 
import tensorflow as tf 
import numpy as np 
 
tf.reset_default_graph()   # tensorflow internal reset 
 
# fancy model implemented here ... 
 
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)  
 
saver = tf.train.Saver() 
epoch_cnt = 0 
 
with tf.Session() as sess: 
  sess.run(tf.global_variables_initializer())  # initialize variables in program 
  saver.restore(sess, tf.train.latest_checkpoint(os.path.dirname(os.path.realpath(__file__)))) # restore last checkpoint  
  for # ... 
    epoch_cnt += 1 
    # optimization going on here ... 
    saver.save(sess, os.path.dirname(os.path.realpath(__file__)) + '/tsd_model', global_step=epoch_cnt, write_meta_graph=False) 
    # save current state of variables (but not the model) 
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Tensorflow 

 NWHC order  

 stacking of images 

 number, width, height, channel 

 try to adapt to this order 

 

 



QUESTIONS? 

 EXERCISES. 


