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Schedule 

Today 

 Histogram of Oriented Gradients (HOG) 

 Dimensionality Reduction with Principal 

Component Analysis (PCA) 

 Going Deeper into Classification 

 Underfitting / Overfitting 

 Training-Test-Validation 

 Support Vector Machine (SVM) 

 Multi-Class SVM 
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Classifier 

 
{cat,dog} 

Feature Extraction 

Classification pipeline 
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Multi-class 

SVM 
 

{speed limit 20, 
speed limit 30, 
…, derestriction, 
yield way, …} 

Histogram-of-Oriented-
Gradients 

Classification pipeline (Multi-class) 

Feature Extraction 
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Histogram-of-Oriented-Gradients 

 Dalal & Triggs 2005 

 Initially used for pedestrian detection 

 Describes local gradient orientation distribution 
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Histogram-of-Oriented-Gradients 

 Dalal & Triggs 2005 

 Initially used for pedestrian detection 

 Describes local gradient orientation distribution 

 Compute gradients 

 Convolute image with                

    

        and  

 

 Yields pixel-wise orientation 
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Histogram-of-Oriented-Gradients 

 Dalal & Triggs 2005 

 Initially used for pedestrian detection 

 Describes local gradient orientation distribution 

 Compute gradients 

 Convolute image with                

    

        and  

 

 Yields pixel-wise orientation 

 Divide image into cells (e.g., 8x8 pixels) 
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Histogram-of-Oriented-Gradients 

 Dalal & Triggs 2005 

 Initially used for pedestrian detection 

 Describes local gradient orientation distribution 

 Compute gradients 

 Convolute image with                

    

        and  

 

 Yields pixel-wise orientation 

 Divide image into cells (e.g., 8x8 pixels) 

 Compute a histogram of all orientations present in each cell 

 Weigh the contribution of each pixel with its absolute 

gradient magnitude 
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Histogram-of-Oriented-Gradients 

 Dalal & Triggs 2005 

 Initially used for pedestrian detection 

 Describes local gradient orientation distribution 

 Compute gradients 

 Convolute image with                

    

        and  

 

 Yields pixel-wise orientation 

 Divide image into cells (e.g., 8x8 pixels) 

 Compute a histogram of all orientations present in each cell 

 Weigh the contribution of each pixel with its absolute 

gradient magnitude 

 Combine neighbouring cells to blocks (e.g. 2x2 cells) and normalize 

histograms with respect to sum of all pixel gradients magnitudes 
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Histogram-of-Oriented-Gradients 

 Dalal & Triggs 2005 

 Initially used for pedestrian detection 

 Describes local gradient orientation distribution 

 Compute gradients 

 Convolute image with                

    

        and  

 

 Yields pixel-wise orientation 

 Divide image into cells (e.g., 8x8 pixels) 

 Compute a histogram of all orientations present in each cell 

 Weigh the contribution of each pixel with its absolute 

gradient magnitude 

 Combine neighbouring cells to blocks (e.g. 2x2 cells) and normalize 

histograms with respect to sum of all pixel gradients magnitudes 

 For all blocks for all cells concatenate the histograms 
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Histogram-of-Oriented-Gradients 
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Visualizing High-dimensional Feature Spaces 

 High-dimensional vectors are hard to interpret 

 Visualizing in 2d or 3d is preferable 

 Dimensionality reduction / embedding 

 Several methods: 

 PCA (Principal Component Analysis) 

 t-SNE (t-distributed Stochastic Nearest-

Neighbour Embedding) 

 LLE (Locally-Linear Embedding) 

 MDS (Multi-Dimensional Scaling) 
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Visualizing High-dimensional Feature Spaces 
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Visualizing High-dimensional Feature Spaces 

 Find function that maps data points to 2 

dimensions: 

 Make it easy: Linear 

 Thus, can be represented by a 2 x n matrix 

 

 

 But linear means 0 is mapped to 0 

 Subtract mean value from dataset beforehand 

 Consists of two rows  

 Rows represent the axes of main variance 

(principal axes) 
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Visualizing High-dimensional Feature Spaces 

 Rows represent the axes of main variance 

(principal axes) 

   

 

 Row vector maximizing this, is given by 

eigenvector of 

 

 

w.r.t. largest eigenvalue (covariance matrix C) 

 Generally: Take the eigenvectors corresponding to 

the largest eigenvalues of the covariance matrix 

and project the zero-mean dataset to these 

vectors 
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Image Classification 

 Linear classifier finds hyperplane to seperate 

sets of points 

 A more complex classifier might find a better 

way to seperate the two datasets 
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Image Classification 

 Linear classifier finds hyperplane to seperate 

sets of points 

 A more complex classifier might find a better 

way to seperate the two datasets 

 Many ML methods have hyper-parameters that 

control the complexity of the function to fit 

 But: In general, very complex functions tend to 

perform worse on unseen data 
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Image Classification 

 Linear classifier finds hyperplane to seperate 

sets of points 

 A more complex classifier might find a better 

way to seperate the two datasets 

 Many ML methods have hyper-parameters that 

control the complexity of the function to fit 

 But: In general, very complex functions tend to 

perform worse on unseen data 

 Complexity 

Er
ro

r 

Test error 

Training error 
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Complexity 

Er
ro

r 

Test error 

Training error 

Image Classification 

Underfitting 
Good fit 

Overfitting 
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Complexity 

Er
ro

r 

Test error 

Training error 

Image Classification 

Underfitting 
Good fit 

Overfitting 
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Image Classification 

 Linear classifier finds hyperplane to seperate 

sets of points 

 A more complex classifier might find a better 

way to seperate the two datasets 

 Many ML methods have hyper-parameters that 

control the complexity of the function to fit 

 But: In general, very complex functions tend to 

perform worse on unseen data 

 Need to estimate the training error: split dataset 

into training-validation-test 

 

Complexity 

Er
ro

r 

Test error 

Training error 
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Support Vector Machines 
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Support Vector Machines 

 Labelled Data:  

 Solve: 
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Support Vector Machines 

 Labelled Data:  

 Solve: 
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Support Vector Machines 

 Labelled Data:  

 Solve: 

 

 

 

 

       are a hyper-parameter that control complexity 

 Multiclass: One-vs-All 

 most confident classifier wins 

 Confidence ist given by distance to border 

 Multiclass: One-vs-One 

 

 



QUESTIONS? 

 EXERCISES. 


