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Schedule 

Today 

 Histogram of Oriented Gradients (HOG) 

 Dimensionality Reduction with Principal 

Component Analysis (PCA) 

 Going Deeper into Classification 

 Underfitting / Overfitting 

 Training-Test-Validation 

 Support Vector Machine (SVM) 

 Multi-Class SVM 
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Multi-class 
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Gradients 

Classification pipeline (Multi-class) 

Feature Extraction 
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Histogram-of-Oriented-Gradients 

 Dalal & Triggs 2005 

 Initially used for pedestrian detection 

 Describes local gradient orientation distribution 

 

 

 



INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 6 

Histogram-of-Oriented-Gradients 

 Dalal & Triggs 2005 

 Initially used for pedestrian detection 

 Describes local gradient orientation distribution 

 Compute gradients 

 Convolute image with                

    

        and  

 

 Yields pixel-wise orientation 
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Histogram-of-Oriented-Gradients 

 Dalal & Triggs 2005 

 Initially used for pedestrian detection 

 Describes local gradient orientation distribution 

 Compute gradients 
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        and  

 

 Yields pixel-wise orientation 

 Divide image into cells (e.g., 8x8 pixels) 
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Histogram-of-Oriented-Gradients 

 Dalal & Triggs 2005 

 Initially used for pedestrian detection 

 Describes local gradient orientation distribution 

 Compute gradients 
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        and  

 

 Yields pixel-wise orientation 

 Divide image into cells (e.g., 8x8 pixels) 

 Compute a histogram of all orientations present in each cell 

 Weigh the contribution of each pixel with its absolute 

gradient magnitude 
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Histogram-of-Oriented-Gradients 

 Dalal & Triggs 2005 

 Initially used for pedestrian detection 

 Describes local gradient orientation distribution 

 Compute gradients 

 Convolute image with                
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 Yields pixel-wise orientation 

 Divide image into cells (e.g., 8x8 pixels) 

 Compute a histogram of all orientations present in each cell 

 Weigh the contribution of each pixel with its absolute 

gradient magnitude 

 Combine neighbouring cells to blocks (e.g. 2x2 cells) and normalize 

histograms with respect to sum of all pixel gradients magnitudes 
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Histogram-of-Oriented-Gradients 

 Dalal & Triggs 2005 

 Initially used for pedestrian detection 

 Describes local gradient orientation distribution 

 Compute gradients 

 Convolute image with                

    

        and  

 

 Yields pixel-wise orientation 

 Divide image into cells (e.g., 8x8 pixels) 

 Compute a histogram of all orientations present in each cell 

 Weigh the contribution of each pixel with its absolute 

gradient magnitude 

 Combine neighbouring cells to blocks (e.g. 2x2 cells) and normalize 

histograms with respect to sum of all pixel gradients magnitudes 

 For all blocks for all cells concatenate the histograms 
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Histogram-of-Oriented-Gradients 
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Visualizing High-dimensional Feature Spaces 

 High-dimensional vectors are hard to interpret 

 Visualizing in 2d or 3d is preferable 

 Dimensionality reduction / embedding 

 Several methods: 

 PCA (Principal Component Analysis) 

 t-SNE (t-distributed Stochastic Nearest-

Neighbour Embedding) 

 LLE (Locally-Linear Embedding) 

 MDS (Multi-Dimensional Scaling) 
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Visualizing High-dimensional Feature Spaces 
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Visualizing High-dimensional Feature Spaces 

 Find function that maps data points to 2 

dimensions: 

 Make it easy: Linear 

 Thus, can be represented by a 2 x n matrix 

 

 

 But linear means 0 is mapped to 0 

 Subtract mean value from dataset beforehand 

 Consists of two rows  

 Rows represent the axes of main variance 

(principal axes) 
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Visualizing High-dimensional Feature Spaces 

 Rows represent the axes of main variance 

(principal axes) 

   

 

 Row vector maximizing this, is given by 

eigenvector of 

 

 

w.r.t. largest eigenvalue (covariance matrix C) 

 Generally: Take the eigenvectors corresponding to 

the largest eigenvalues of the covariance matrix 

and project the zero-mean dataset to these 

vectors 
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Image Classification 

 Linear classifier finds hyperplane to seperate 

sets of points 

 A more complex classifier might find a better 

way to seperate the two datasets 
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Image Classification 

 Linear classifier finds hyperplane to seperate 

sets of points 

 A more complex classifier might find a better 

way to seperate the two datasets 

 Many ML methods have hyper-parameters that 
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 But: In general, very complex functions tend to 

perform worse on unseen data 
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Image Classification 

 Linear classifier finds hyperplane to seperate 

sets of points 

 A more complex classifier might find a better 

way to seperate the two datasets 

 Many ML methods have hyper-parameters that 

control the complexity of the function to fit 

 But: In general, very complex functions tend to 

perform worse on unseen data 

 Complexity 
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ro

r 

Test error 

Training error 
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Image Classification 

Underfitting 
Good fit 

Overfitting 
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Image Classification 

 Linear classifier finds hyperplane to seperate 

sets of points 

 A more complex classifier might find a better 

way to seperate the two datasets 

 Many ML methods have hyper-parameters that 

control the complexity of the function to fit 

 But: In general, very complex functions tend to 

perform worse on unseen data 

 Need to estimate the training error: split dataset 

into training-validation-test 

 

Complexity 

Er
ro

r 

Test error 

Training error 
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Support Vector Machines 
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Support Vector Machines 

 Labelled Data:  

 Solve: 
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Support Vector Machines 

 Labelled Data:  

 Solve: 
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Support Vector Machines 

 Labelled Data:  

 Solve: 

 

 

 

 

       are a hyper-parameter that control complexity 

 Multiclass: One-vs-All 

 most confident classifier wins 

 Confidence ist given by distance to border 

 Multiclass: One-vs-One 

 

 



QUESTIONS? 

 EXERCISES. 


