COMPUTER VISION: DEEP LEARNING LAB COURSE
DAY 2 - FEATURE-BASED IMAGE CLASSIFICATION

SEBASTIAN HOUBEN



Schedule

Today
" Histogram of Oriented Gradients (HOG)

" Dimensionality Reduction with Principal
Component Analysis (PCA)

" Going Deeper into Classification
= Underfitting / Overfitting
" Training-Test-Validation
= Support Vector Machine (SVM)
" Multi-Class SVM
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Classification pipeline

Feature Extraction
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Classification pipeline (Multi-class)

Feature Extraction

Histogram-of-Oriented-

Gradients
2 {speed limit 20,
SN 5 N speed limit 30,
1 ..., derestriction,
8 yield way, ...}
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Histogram-of-Oriented-Gradients

= Dalal & Triggs 2005
= Initially used for pedestrian detection

" Describes local gradient orientation distribution
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Histogram-of-Oriented-Gradients

"  Compute gradients

®  Convolute image with

~1
[-1 0 1] and [0]

1

"  Yields pixel-wise orientation
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Histogram-of-Oriented-Gradients

Dalal & Triggs 2005
Initially used for pedestrian detection
Describes local gradient orientation distribution
Compute gradients

®  Convolute image with

~1
[-1 o 1] and [0]

1

"  Yields pixel-wise orientation

Divide image into cells (e.g., 8x8 pixels)
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Histogram-of-Oriented-Gradients

®  Dalal & Triggs 2005
® Initially used for pedestrian detection

®  Describes local gradient orientation distribution

®  Compute gradients

®  Convolute image with
—1 £025

[-1 0 1] and | g = 0g

1

"  Yields pixel-wise orientation

10 130 150 170
Orientation

® Divide image into cells (e.g., 8x8 pixels)
"  Compute a histogram of all orientations present in each cell

" Weigh the contribution of each pixel with its absolute
gradient magnitude
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Histogram-of-Oriented-Gradients

Dalal & Triggs 2005

Initially used for pedestrian detection
Describes local gradient orientation distribution
Compute gradients

®  Convolute image with
(-1 0 1] and (}1
1
"  Yields pixel-wise orientation
Divide image into cells (e.g., 8x8 pixels)
Compute a histogram of all orientations present in each cell

" Weigh the contribution of each pixel with its absolute
gradient magnitude

Combine neighbouring cells to blocks (e.g. 2x2 cells) and normalize
histograms with respect to sum of all pixel gradients magnitudes
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Histogram-of-Oriented-Gradients

®  Dalal & Triggs 2005

®  Initially used for pedestrian detection

®  Describes local gradient orientation distribution I ; .:
. 4 .::-,l.llgl, L LT /; i+l
®  Compute gradients “n — ;
®  Convolute image with ‘Nﬁ . biia
_1 I ‘l II / bé+10
[-1 0 1] and 0 470 = lilla ——%
1 7Y bit1s
A '
®  Yields pixel-wise orientation r III /

®=  Divide image into cells (e.g., 8x8 pixels)

®  Compute a histogram of all orientations present in each cell

®  Weigh the contribution of each pixel with its absolute
gradient magnitude

®  Combine neighbouring cells to blocks (e.g. 2x2 cells) and normalize
histograms with respect to sum of all pixel gradients magnitudes

"  For all blocks for all cells concatenate the histograms
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Histogram-of-Oriented-Gradients
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Visualizing High-dimensional Feature Spaces

" High-dimensional vectors are hard to interpret
" Visualizing in 2d or 3d is preferable

" Dimensionality reduction / embedding
" Several methods:
= PCA (Principal Component Analysis)

" t-SNE (t-distributed Stochastic Nearest-
Neighbour Embedding)

" LLE (Locally-Linear Embedding)
= MDS (Multi-Dimensional Scaling)
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Visualizing High-dimensional Feature Spaces
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Visualizing High-dimensional Feature Spaces

A " Find function that maps data points to 2
I dimensions:  f:R"™ — R?
" Make it easy: Linear
. * " Thus, can be represented by a 2 x n matrix

— )= La= () o

° . " But linear means 0 is mapped to 0

Vv

®  Subtract mean value from dataset beforehand
® Consists of two rows

" Rows represent the axes of main variance
(principal axes)
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Visualizing High-dimensional Feature Spaces

A " Rows represent the axes of main variance
a (principal axes)
| . T 2
-1
Pl Ll P=1 27 h)
- > ™ Row vector maximizing this, is given by
. A eigenvector of
. C = Z :clcc'f
w.r.t. largest eigenvalue (covariance matrix C)
" Generally: Take the eigenvectors corresponding to

the largest eigenvalues of the covariance matrix
and project the zero-mean dataset to these
vectors
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Image Classification

" Linear classifier finds hyperplane to seperate
sets of points

= A more complex classifier might find a better
way to seperate the two datasets
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Image Classification

" Linear classifier finds hyperplane to seperate
sets of points

10

" A more complex classifier might find a better
way to seperate the two datasets

" Many ML methods have hyper-parameters that
control the complexity of the function to fit

" But: In general, very complex functions tend to
perform worse on unseen data
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Error

Image Classification

" Linear classifier finds hyperplane to seperate
sets of points

" A more complex classifier might find a better
way to seperate the two datasets

" Many ML methods have hyper-parameters that

Test error control the complexity of the function to fit

,,,,,,,,, = But: In general, very complex functions tend to
Training error perform worse on unseen data
—>

Complexity
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Error

Underfitting
Good fit

Overfitting
Test error
—— Training error
———>

Complexity

Image Classification
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Error

Image Classification

Underfitting
Good fit

Overfitting
a [
Test error ol
il - [~ . . L
~— Training error of R *
— > ‘e
Complexity
B J—— o 1 2 3 3 3 6
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Error

Image Classification

Underfitting
Good fit

Overfitting
.1 [
Test error ol
~—~—— Training error of e e *
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Complexity

[
Pt
[¥E)
=l
[%;]
4]

25 1 0

RUHR
22  INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION ggéVHEL?S'TAT R U B



Error

Test error

-
-
-
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Training error

Complexity

Image Classification

" Linear classifier finds hyperplane to seperate
sets of points

" A more complex classifier might find a better
way to seperate the two datasets

" Many ML methods have hyper-parameters that
control the complexity of the function to fit

" But: In general, very complex functions tend to
perform worse on unseen data

" Need to estimate the training error: split dataset
into training-validation-test
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Support Vector Machines

RUHR
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Support Vector Machines

" Labelled Data: (z;,v;), z; € R",y; € {—1,1}

A ¢
= Solve: . )
min w!w .
w,b .
s.t. y; (wT:r:%- + b) >1 ¢ ° .
. / . 7
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Support Vector Machines

" Labelled Data: (z;,v;), z; € R",y; € {—1,1}

A ¢
" Solve: . .
mm w w—I—CZ& .
s.t. yi-(w :r@-—l—b)21—£@- ) . .
&ZU . / ° i’
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Support Vector Machines

" Labelled Data: (z;,v;), z; € R",y; € {—1,1}

Solve:

mln w w—l—Cfot

C,~ are a hyper-parameter that control complexity

s.t. i - (w ¢7($¢) +b) >1-¢
§& =0

Multiclass: One-vs-All

" most confident classifier wins

= Confidence ist given by distance to border
Multiclass: One-vs-One
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QUESTIONS?
EXERCISES.



