
COMPUTER VISION: DEEP LEARNING LAB COURSE

DAY 1 – BASICS

 SEBASTIAN HOUBEN

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 2

Schedule

Today

 Computer Vision and Deep Learning

 Image Classification

 Representation of images in Python

 Feature extraction

 Evaluating an image classifier

 Convolution

 German Traffic Sign Recognition Benchmark

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 3

Computer Vision

 Programs that process images as input

 Gain understanding of images or video

 Mimic performance of human visual system

 Typical tasks

 Object detection

 Object segmentation

 Image registration

 Pose estimation

 Face recognition

 Egomotion

 Optical Flow

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 4

Computer Vision

 Programs that process images as input

 Gain understanding of images or video

 Mimic performance of human visual system

 Typical tasks

 Object detection

 Object segmentation

 Image registration

 Pose estimation

 Face recognition

 Egomotion

 Optical Flow

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 5

Computer Vision

 Programs that process images as input

 Gain understanding of images or video

 Mimic performance of human visual system

 Typical tasks

 Object detection

 Object segmentation

 Image registration

 Pose estimation

 Face recognition

 Egomotion

 Optical Flow

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 6

Computer Vision

 Programs that process images as input

 Gain understanding of images or video

 Mimic performance of human visual system

 Typical tasks

 Object detection

 Object segmentation

 Image registration

 Pose estimation

 Face recognition

 Egomotion

 Optical Flow

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 7

Computer Vision

 Programs that process images as input

 Gain understanding of images or video

 Mimic performance of human visual system

 Typical tasks

 Object detection

 Object segmentation

 Image registration

 Pose estimation

 Face recognition

 Egomotion

 Optical Flow

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 8

Deep Learning

Popular computer vision technique

 2012 ImageNet Challenge significantly improved by a new

method called AlexNet

 Building on technique from 1999 (LeCun)

 That builds on technique from 1980 (Fukushima)

 Let the computer figure out itsself how to solve a problem

 Very successful in nearly all areas of computer vision

 Defining state-of-the-art

 Prerequisites / reasons for hype

 Lots of data for a problem

 Fast parallel architectures (GPUs)

 New powerful libraries

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 9

Image Classification

 Given an image tell me what it depicts

 One of a fixed number of exclusive choices

 Image depicts one uniquely identifiable

object

 Image may only depict a certain set of

objects

 Distinguishable object choices are called

classes

 Correct class of an image is called label

 A classification problem with only two classes is

called binary

Image
Classifier

(cat vs dog)
{cat,dog}

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 10

Image Classification Challenges

 Object may be depicted with different acquisition

techniques

 Different view angles (geometry)

 Intraclass variation

 Illumination

 Deformation

 Occlusion

 Background clutter

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 11

Representation of images in Python

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 12

Representation of images in Python

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 13

Representation of images in Python

 Each picture element (pixel) is composed of

three values

 R for the red component

 G for the green component

 B for the blue component

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 14

Representation of images in Python

 Each picture element (pixel) is composed of

three values

 R for the red component

 G for the green component

 B for the blue component

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 15

Representation of images in Python

 Each picture element (pixel) is composed of three

values

 R for the red component

 G for the green component

 B for the blue component

 Images are often represented in matrix structures

 Unclear where pixel (0,0) or (1,1) is

 Unclear which direction is given first

 Watch your data type (OpenCV is picky)

 uint8 [0,255] (OpenCVs favorite)

 short [-32768, 32767]

 float32 (for visualizing)

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 16

Image Classification

 Linear classifier (choice today) finds hyperplane

to seperate sets of points

 Transform images to point representation

 i.e. Feature Extraction

 Low-dimensional

 Compact representation

Linear
Classifier

{cat,dog}

Feature Extraction

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 17

Image Classification

 Linear classifier (choice today) finds hyperplane

to seperate sets of points

 Transform images to point representation

 i.e. Feature Extraction

 Low-dimensional

 Compact representation

 Evaluation

 Error rate:

Percentage of wrongly classified images

 Confusion matrix:

Error for each pair of classes

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 18

Convolution

 Basic image processing operation: Transforms image to image

 Task: Computer similarity of each pixel with given template (kernel)

 1/10

*
1

10
∙ 4 +

1

10
∙ 3 +

1

10
∙ 2 +

1

10
∙

6 +
2

10
∙ 2+

1

10
∙ 4 +

1

10
∙ 3 +

1

10
∙ 5 +

1

10
∙ 3

1/10 1/10

2/10 1/10 1/10

1/10 1/10 1/10

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 19

Convolution

 Basic image processing operation

 Task: Compute similarity of each pixel with

given template (kernel)

 Pay attention to range of kernel and image!

1/10

*

1/10 1/10

2/10 1/10 1/10

1/10 1/10 1/10

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 20

Convolution

 Basic image processing operation

 Task: Compute similarity of each pixel with

given template (kernel)

 Pay attention to range of kernel and image!

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 21

Convolution

 Basic image processing operation

 Task: Computer similarity of each pixel with

given template (kernel)

 Pay attention to range of kernel and image!

 Pad borders with zeros

 Stride

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 22

Convolution

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 23

German Traffic Sign Recognition Benchmark

 38,000 images from (German) traffic signs

 Vienna Convention

 43 classes

 Over 1,000 different traffic signs instances

 Variance

 Illumination

 Motion Blur

 Clutter

 Dirt / Graffiti / Stickers

 Occlusion

 Angle

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 24

German Traffic Sign Recognition Benchmark

 Filename structure

 0000CC/00XXX_00YYY.ppm

 CC = class index

 XXX = instance of class index

 YYY = image of instance index

 e.g. 00003/00004_00024.ppm

 Class 3: speed limit 60

 Instance 4

 Image 24

 Border of at least 5 pixel

 Border of around 10% of traffic sign size

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 25

German Traffic Sign Recognition Benchmark

 Best human: 1.16% error rate

 Best machine classifier (2011): 0.54% error rate

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 26

Hands-On Python: Numpy

 https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

 “Matlab for Python“

 Matrix / Tensor manipulation (numeric)

 Fundamental library for nearly all of scientific computing in Python

 Tensorflow (Day 3 and 4) corresponds in large parts to Numpy

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 27

Numpy: ndarray

import numpy as np

A = np.array([[0, 1, 2], [2, 3, 4]]) # 2x3 matrix

A.shape # (2, 3)
A.size # 6 (numel in Matlab)
A.dtype.name # ´int64´

B = [[0, 1, 2], [2, 3]] # ok
A_ = np.array([[0, 1, 2], [2, 3]]) # error

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 28

Numpy: Initialization

A = np.array([[0, 1, 2], [2, 3, 4]]) # 2x3 matrix

B = np.zeros((2, 3))
2x3 matrix

C = np.ones((2, 3, 4), dtype = np.int16)
2x3x4 tensor, created with data type
C_ = np.zeros_like(C)

D = np.empty((2, 3))
2x3 matrix, uninitialized, np.random.rand, np.random.randn

E = np.arange(0, 2, 0.3)
array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])

F = np.linspace(0, 2, 9)
array([0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2.])

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 29

Numpy: Operations
operations usually work element-wise (even *)

a = np.array([20,30,40,50])
b = np.arange(4) # array([0, 1, 2, 3])

a – b # array([20, 29, 38, 47])

b**2 # array([0, 1, 4, 9])

10*np.sin(a) # [9.12945251, -9.88031624, 7.4511316 , -2.62374854]

a<35 # array([True, True, False, False], dtype=bool)

np.logical_and(a < 35, b > 0) # [False, True, False, False]
(a < 35) & (b > 0) # brackets are necessary !

a.dot(b.transpose()) # matrix product (matmul)

a.astype(np.uint8) # np.float32, np.int32, np.int16

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 30

Numpy: Dimension manipulation

import numpy as np

A = np.arange(0, 20)

A = A.reshape([4, 5]) # 4 rows, 5 columns
A.ravel () # back to np.arange(0, 20)

A.min() # smallest element
A.min(axis = 1) # shape = (4,), iterate along the columns (rowwise minimum element)
max, sum, mean, var, cumsum

B = np.arange(0, 24).reshape([2, 3, 4])

C = B.sum(axis = 1) # shape = (2, 1, 4)
C = C.squeeze() # shape = (2, 4)

C = np.expand_dims(C, axis=1) # shape = (2, 1, 4)

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 31

Numpy: Indexing

import numpy as np

A = np.arange(0, 5) # [0, 1, 2, 3, 4]

A[0] = 5 # [5, 1, 2, 3, 4]

A[2:3] = 4 # [5, 1, 4, 3, 4]
A[-2] = 4 # [5, 1, 4, 4, 4], A.shape[0] – 2 = 5 – 2 = 3

A[1:4:2] = 0 # [5, 0, 4, 0, 4], start with 1, stepwidth 2, stay below 4
A[1:-1:2] = 0 # [5, 0, 4, 0, 4], start with 1, stepwidth 2, stay below A.shape[0] – 1 = 5 - 1
A[1::2] = 0 # [5, 0, 4, 0, 4], start with 1, stepwidth 2, stay below A.shape[0] = 5

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 32

Numpy: Indexing

import numpy as np

A = np.arange(0, 6).reshape([2, 3]) # [[0, 1, 2], [3, 4, 5]]

A[0, 1] = -1 # [[0, -1, 2], [3, 4, 5]]

A[1, :] = -1 # [[0, -1, 2], [-1, -1, -1]]

A[1, 1:] = 6 # [[0, -1, 2], [-1, 6, 6]]

A[np.array([[True, False, True][True, True,False]], dtype=bool)] = 1 # [[1, -1, 1], [1, 1, 6]]

A[A > 1] = -1 # [[1, -1, 1], [1, 1, -1]]

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 33

Numpy: Concatenating

import numpy as np

a = np.array([[1, 2], [3, 4]]) # [[1, 2], [3, 4]]
b = np.array([[5, 6]]) # [5, 6]

np.concatenate((a, b), axis = 0) # [[1, 2], [3, 4], [5, 6]], same as np.hstack((a,b))
np.concatenate((a, b.transpose()), axis = 1) # [[1, 2, 5], [3, 4, 6]], same as np.vstack((a,b.transpose())

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 34

Hands-On Python: OpenCV

 see the handout for some important functions

 OpenCV can work with numpy-arrays

 But: Be careful about data types

 Use uint8 if working in OpenCV

 Rather receive wrong results than errors

QUESTIONS?

 EXERCISES.

