
COMPUTER VISION: DEEP LEARNING LAB COURSE

DAY 1 – BASICS

 SEBASTIAN HOUBEN

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 2

Schedule

Today

 Computer Vision and Deep Learning

 Image Classification

 Representation of images in Python

 Feature extraction

 Evaluating an image classifier

 Convolution

 German Traffic Sign Recognition Benchmark

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 3

Computer Vision

 Programs that process images as input

 Gain understanding of images or video

 Mimic performance of human visual system

 Typical tasks

 Object detection

 Object segmentation

 Image registration

 Pose estimation

 Face recognition

 Egomotion

 Optical Flow

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 4

Computer Vision

 Programs that process images as input

 Gain understanding of images or video

 Mimic performance of human visual system

 Typical tasks

 Object detection

 Object segmentation

 Image registration

 Pose estimation

 Face recognition

 Egomotion

 Optical Flow

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 5

Computer Vision

 Programs that process images as input

 Gain understanding of images or video

 Mimic performance of human visual system

 Typical tasks

 Object detection

 Object segmentation

 Image registration

 Pose estimation

 Face recognition

 Egomotion

 Optical Flow

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 6

Computer Vision

 Programs that process images as input

 Gain understanding of images or video

 Mimic performance of human visual system

 Typical tasks

 Object detection

 Object segmentation

 Image registration

 Pose estimation

 Face recognition

 Egomotion

 Optical Flow

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 7

Computer Vision

 Programs that process images as input

 Gain understanding of images or video

 Mimic performance of human visual system

 Typical tasks

 Object detection

 Object segmentation

 Image registration

 Pose estimation

 Face recognition

 Egomotion

 Optical Flow

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 8

Deep Learning

Popular computer vision technique

 2012 ImageNet Challenge significantly improved by a new

method called AlexNet

 Building on technique from 1999 (LeCun)

 That builds on technique from 1980 (Fukushima)

 Let the computer figure out itsself how to solve a problem

 Very successful in nearly all areas of computer vision

 Defining state-of-the-art

 Prerequisites / reasons for hype

 Lots of data for a problem

 Fast parallel architectures (GPUs)

 New powerful libraries

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 9

Image Classification

 Given an image tell me what it depicts

 One of a fixed number of exclusive choices

 Image depicts one uniquely identifiable

object

 Image may only depict a certain set of

objects

 Distinguishable object choices are called

classes

 Correct class of an image is called label

 A classification problem with only two classes is

called binary

Image
Classifier

(cat vs dog)
{cat,dog}

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 10

Image Classification Challenges

 Object may be depicted with different acquisition

techniques

 Different view angles (geometry)

 Intraclass variation

 Illumination

 Deformation

 Occlusion

 Background clutter

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 11

Representation of images in Python

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 12

Representation of images in Python

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 13

Representation of images in Python

 Each picture element (pixel) is composed of

three values

 R for the red component

 G for the green component

 B for the blue component

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 14

Representation of images in Python

 Each picture element (pixel) is composed of

three values

 R for the red component

 G for the green component

 B for the blue component

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 15

Representation of images in Python

 Each picture element (pixel) is composed of three

values

 R for the red component

 G for the green component

 B for the blue component

 Images are often represented in matrix structures

 Unclear where pixel (0,0) or (1,1) is

 Unclear which direction is given first

 Watch your data type (OpenCV is picky)

 uint8 [0,255] (OpenCVs favorite)

 short [-32768, 32767]

 float32 (for visualizing)

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 16

Image Classification

 Linear classifier (choice today) finds hyperplane

to seperate sets of points

 Transform images to point representation

 i.e. Feature Extraction

 Low-dimensional

 Compact representation

Linear
Classifier

{cat,dog}

Feature Extraction

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 17

Image Classification

 Linear classifier (choice today) finds hyperplane

to seperate sets of points

 Transform images to point representation

 i.e. Feature Extraction

 Low-dimensional

 Compact representation

 Evaluation

 Error rate:

Percentage of wrongly classified images

 Confusion matrix:

Error for each pair of classes

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 18

Convolution

 Basic image processing operation: Transforms image to image

 Task: Computer similarity of each pixel with given template (kernel)

 1/10

*
1

10
∙ 4 +

1

10
∙ 3 +

1

10
∙ 2 +

1

10
∙

6 +
2

10
∙ 2+

1

10
∙ 4 +

1

10
∙ 3 +

1

10
∙ 5 +

1

10
∙ 3

1/10 1/10

2/10 1/10 1/10

1/10 1/10 1/10

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 19

Convolution

 Basic image processing operation

 Task: Compute similarity of each pixel with

given template (kernel)

 Pay attention to range of kernel and image!

1/10

*

1/10 1/10

2/10 1/10 1/10

1/10 1/10 1/10

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 20

Convolution

 Basic image processing operation

 Task: Compute similarity of each pixel with

given template (kernel)

 Pay attention to range of kernel and image!

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 21

Convolution

 Basic image processing operation

 Task: Computer similarity of each pixel with

given template (kernel)

 Pay attention to range of kernel and image!

 Pad borders with zeros

 Stride

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 22

Convolution

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 23

German Traffic Sign Recognition Benchmark

 38,000 images from (German) traffic signs

 Vienna Convention

 43 classes

 Over 1,000 different traffic signs instances

 Variance

 Illumination

 Motion Blur

 Clutter

 Dirt / Graffiti / Stickers

 Occlusion

 Angle

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 24

German Traffic Sign Recognition Benchmark

 Filename structure

 0000CC/00XXX_00YYY.ppm

 CC = class index

 XXX = instance of class index

 YYY = image of instance index

 e.g. 00003/00004_00024.ppm

 Class 3: speed limit 60

 Instance 4

 Image 24

 Border of at least 5 pixel

 Border of around 10% of traffic sign size

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 25

German Traffic Sign Recognition Benchmark

 Best human: 1.16% error rate

 Best machine classifier (2011): 0.54% error rate

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 26

Hands-On Python: Numpy

 https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

 “Matlab for Python“

 Matrix / Tensor manipulation (numeric)

 Fundamental library for nearly all of scientific computing in Python

 Tensorflow (Day 3 and 4) corresponds in large parts to Numpy

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 27

Numpy: ndarray

import numpy as np

A = np.array([[0, 1, 2], [2, 3, 4]]) # 2x3 matrix

A.shape # (2, 3)
A.size # 6 (numel in Matlab)
A.dtype.name # ´int64´

B = [[0, 1, 2], [2, 3]] # ok
A_ = np.array([[0, 1, 2], [2, 3]]) # error

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 28

Numpy: Initialization

A = np.array([[0, 1, 2], [2, 3, 4]]) # 2x3 matrix

B = np.zeros((2, 3))
2x3 matrix

C = np.ones((2, 3, 4), dtype = np.int16)
2x3x4 tensor, created with data type
C_ = np.zeros_like(C)

D = np.empty((2, 3))
2x3 matrix, uninitialized, np.random.rand, np.random.randn

E = np.arange(0, 2, 0.3)
array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])

F = np.linspace(0, 2, 9)
array([0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2.])

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 29

Numpy: Operations
operations usually work element-wise (even *)

a = np.array([20,30,40,50])
b = np.arange(4) # array([0, 1, 2, 3])

a – b # array([20, 29, 38, 47])

b**2 # array([0, 1, 4, 9])

10*np.sin(a) # [9.12945251, -9.88031624, 7.4511316 , -2.62374854]

a<35 # array([True, True, False, False], dtype=bool)

np.logical_and(a < 35, b > 0) # [False, True, False, False]
(a < 35) & (b > 0) # brackets are necessary !

a.dot(b.transpose()) # matrix product (matmul)

a.astype(np.uint8) # np.float32, np.int32, np.int16

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 30

Numpy: Dimension manipulation

import numpy as np

A = np.arange(0, 20)

A = A.reshape([4, 5]) # 4 rows, 5 columns
A.ravel () # back to np.arange(0, 20)

A.min() # smallest element
A.min(axis = 1) # shape = (4,), iterate along the columns (rowwise minimum element)
max, sum, mean, var, cumsum

B = np.arange(0, 24).reshape([2, 3, 4])

C = B.sum(axis = 1) # shape = (2, 1, 4)
C = C.squeeze() # shape = (2, 4)

C = np.expand_dims(C, axis=1) # shape = (2, 1, 4)

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 31

Numpy: Indexing

import numpy as np

A = np.arange(0, 5) # [0, 1, 2, 3, 4]

A[0] = 5 # [5, 1, 2, 3, 4]

A[2:3] = 4 # [5, 1, 4, 3, 4]
A[-2] = 4 # [5, 1, 4, 4, 4], A.shape[0] – 2 = 5 – 2 = 3

A[1:4:2] = 0 # [5, 0, 4, 0, 4], start with 1, stepwidth 2, stay below 4
A[1:-1:2] = 0 # [5, 0, 4, 0, 4], start with 1, stepwidth 2, stay below A.shape[0] – 1 = 5 - 1
A[1::2] = 0 # [5, 0, 4, 0, 4], start with 1, stepwidth 2, stay below A.shape[0] = 5

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 32

Numpy: Indexing

import numpy as np

A = np.arange(0, 6).reshape([2, 3]) # [[0, 1, 2], [3, 4, 5]]

A[0, 1] = -1 # [[0, -1, 2], [3, 4, 5]]

A[1, :] = -1 # [[0, -1, 2], [-1, -1, -1]]

A[1, 1:] = 6 # [[0, -1, 2], [-1, 6, 6]]

A[np.array([[True, False, True][True, True,False]], dtype=bool)] = 1 # [[1, -1, 1], [1, 1, 6]]

A[A > 1] = -1 # [[1, -1, 1], [1, 1, -1]]

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 33

Numpy: Concatenating

import numpy as np

a = np.array([[1, 2], [3, 4]]) # [[1, 2], [3, 4]]
b = np.array([[5, 6]]) # [5, 6]

np.concatenate((a, b), axis = 0) # [[1, 2], [3, 4], [5, 6]], same as np.hstack((a,b))
np.concatenate((a, b.transpose()), axis = 1) # [[1, 2, 5], [3, 4, 6]], same as np.vstack((a,b.transpose())

INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 34

Hands-On Python: OpenCV

 see the handout for some important functions

 OpenCV can work with numpy-arrays

 But: Be careful about data types

 Use uint8 if working in OpenCV

 Rather receive wrong results than errors

QUESTIONS?

 EXERCISES.

