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Schedule 

Today 

 Computer Vision and Deep Learning 

 Image Classification 

 Representation of images in Python 

 Feature extraction 

 Evaluating an image classifier 

 Convolution 

 German Traffic Sign Recognition Benchmark 
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Computer Vision 

 Programs that process images as input 

 Gain understanding of images or video 

 Mimic performance of human visual system 

 

 Typical tasks 

 Object detection 

 Object segmentation 

 Image registration 

 Pose estimation 

 Face recognition 

 Egomotion 

 Optical Flow 
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Deep Learning 

Popular computer vision technique 

 2012 ImageNet Challenge significantly improved by a new 

method called AlexNet 

 Building on technique from 1999 (LeCun) 

 That builds on technique from 1980 (Fukushima) 

 Let the computer figure out itsself how to solve a problem 

 Very successful in nearly all areas of computer vision 

 Defining state-of-the-art 

 Prerequisites / reasons for hype 

 Lots of data for a problem 

 Fast parallel architectures (GPUs) 

 New powerful libraries 
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Image Classification 

 Given an image tell me what it depicts 

 One of a fixed number of exclusive choices 

 Image depicts one uniquely identifiable 

object 

 Image may only depict a certain set of 

objects 

 Distinguishable object choices are called 

classes 

 Correct class of an image is called label 

 A classification problem with only two classes is 

called binary 

Image 
Classifier 

(cat vs dog) 
{cat,dog} 
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Image Classification Challenges 

 Object may be depicted with different acquisition 

techniques 

 Different view angles (geometry) 

 Intraclass variation 

 Illumination 

 Deformation 

 Occlusion 

 Background clutter 
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Representation of images in Python 
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Representation of images in Python 

 Each picture element (pixel) is composed of 

three values 

 R for the red component 

 G for the green component 

 B for the blue component 
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Representation of images in Python 

 Each picture element (pixel) is composed of three 

values 

 R for the red component 

 G for the green component 

 B for the blue component 

 Images are often represented in matrix structures 

 Unclear where pixel (0,0) or (1,1) is 

 Unclear which direction is given first 

 Watch your data type (OpenCV is picky) 

 uint8 [0,255] (OpenCVs favorite) 

 short [-32768, 32767] 

 float32 (for visualizing) 
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Image Classification 

 Linear classifier (choice today) finds hyperplane 

to seperate sets of points 

 Transform images to point representation 

 i.e. Feature Extraction 

 Low-dimensional 

 Compact representation 

Linear 
Classifier 

 
{cat,dog} 

Feature Extraction 
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Image Classification 

 Linear classifier (choice today) finds hyperplane 

to seperate sets of points 

 Transform images to point representation 

 i.e. Feature Extraction 

 Low-dimensional 

 Compact representation 

 Evaluation 

 Error rate:  

Percentage of wrongly classified images 

 Confusion matrix: 

Error for each pair of classes 
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Convolution 

 Basic image processing operation: Transforms image to image 

 Task: Computer similarity of each pixel with given template (kernel) 
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Convolution 

 Basic image processing operation 

 Task: Compute similarity of each pixel with  

given template (kernel) 

 Pay attention to range of kernel and image! 
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given template (kernel) 
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Convolution 

 Basic image processing operation 

 Task: Computer similarity of each pixel with 

given template (kernel) 

 Pay attention to range of kernel and image! 

 Pad borders with zeros 

 Stride 
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Convolution 
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German Traffic Sign Recognition Benchmark 

 38,000 images from (German) traffic signs 

 Vienna Convention 

 43 classes 

 Over 1,000 different traffic signs instances 

 Variance 

 Illumination 

 Motion Blur 

 Clutter 

 Dirt / Graffiti / Stickers 

 Occlusion 

 Angle 



INTRODUCTION TO DEEP LEARNING FOR COMPUTER VISION 24 

German Traffic Sign Recognition Benchmark 

 Filename structure 

 0000CC/00XXX_00YYY.ppm 

 CC = class index 

 XXX = instance of class index 

 YYY = image of instance index 

 e.g. 00003/00004_00024.ppm  

 Class 3: speed limit 60 

 Instance 4 

 Image 24 

 Border of at least 5 pixel 

 Border of around 10% of traffic sign size 
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German Traffic Sign Recognition Benchmark 

 Best human: 1.16% error rate 

 Best machine classifier (2011): 0.54% error rate 
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Hands-On Python: Numpy 

 https://docs.scipy.org/doc/numpy-dev/user/quickstart.html 

 “Matlab for Python“ 

 Matrix / Tensor manipulation (numeric) 

 Fundamental library for nearly all of scientific computing in Python 

 Tensorflow (Day 3 and 4) corresponds in large parts to Numpy 

 

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
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Numpy: ndarray 

import numpy as np 
 
A = np.array( [[ 0, 1, 2], [2, 3, 4]] ) # 2x3 matrix 
 
A.shape   # (2, 3) 
A.size   # 6 (numel in Matlab) 
A.dtype.name  # ´int64´  
 
B = [[0, 1, 2], [2, 3]]    # ok 
A_ = np.array([[0, 1, 2], [2, 3]] )  # error 
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Numpy: Initialization 

A = np.array( [[ 0, 1, 2], [2, 3, 4]] ) # 2x3 matrix 
 
B = np.zeros( (2, 3) )  
# 2x3 matrix 
 
C = np.ones( (2, 3, 4), dtype = np.int16 )  
# 2x3x4 tensor, created with data type 
C_ = np.zeros_like(C) 
 
D = np.empty( (2, 3) )  
# 2x3 matrix, uninitialized, np.random.rand, np.random.randn 
 
E = np.arange( 0, 2, 0.3 )  
# array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8]) 
 
F = np.linspace( 0, 2, 9 )  
# array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ]) 
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Numpy: Operations 
# operations usually work element-wise (even *) 
 
a = np.array( [20,30,40,50] )  
b = np.arange( 4 )  # array([0, 1, 2, 3]) 
 
a – b   # array([20, 29, 38, 47])   
 
b**2  # array([0, 1, 4, 9]) 
 
10*np.sin(a)  # [ 9.12945251, -9.88031624, 7.4511316 , -2.62374854] 
 
a<35  # array([ True, True, False, False], dtype=bool) 
 
np.logical_and(a < 35, b > 0 )   # [False, True, False, False] 
(a < 35) & (b > 0)     # brackets are necessary ! 
 
a.dot(b.transpose())  # matrix product (matmul) 
 
a.astype( np.uint8 ) # np.float32, np.int32, np.int16 
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Numpy: Dimension manipulation 

import numpy as np 
 
A = np.arange( 0, 20 ) 
 
A = A.reshape( [4, 5] ) # 4 rows, 5 columns 
A.ravel ( )   # back to np.arange( 0, 20 ) 
 
A.min()   # smallest element 
A.min(axis = 1) # shape = (4,), iterate along the columns (rowwise minimum element) 
# max, sum, mean, var, cumsum 
 
B = np.arange(0, 24).reshape( [2, 3, 4] ) 
 
C = B.sum(axis = 1)   # shape = (2, 1, 4) 
C = C.squeeze()  # shape = (2, 4) 
 
C = np.expand_dims( C, axis=1 ) # shape = (2, 1, 4) 
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Numpy: Indexing 

import numpy as np 
 
A = np.arange( 0, 5 )  # [0, 1, 2, 3, 4] 
 
A[0] = 5   # [5, 1, 2, 3, 4] 
 
A[2:3] = 4   # [5, 1, 4, 3, 4] 
A[-2] = 4   # [5, 1, 4, 4, 4], A.shape[0] – 2 = 5 – 2 = 3 
 
A[1:4:2] = 0  # [5, 0, 4, 0, 4], start with 1, stepwidth 2, stay below 4 
A[1:-1:2] = 0  # [5, 0, 4, 0, 4], start with 1, stepwidth 2, stay below A.shape[0] – 1 = 5 - 1 
A[1::2] = 0  # [5, 0, 4, 0, 4], start with 1, stepwidth 2, stay below A.shape[0] = 5 
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Numpy: Indexing 

import numpy as np 
 
A = np.arange( 0, 6 ).reshape( [2, 3] )  # [[0, 1, 2], [3, 4, 5]] 
 
A[0, 1] = -1   # [[0, -1, 2], [3, 4, 5]] 
 
A[1, :] = -1   # [[0, -1, 2], [-1, -1, -1]] 
 
A[1, 1:] = 6   # [[0, -1, 2], [-1, 6, 6]] 
 
A[ np.array([[True, False, True][True, True,False]], dtype=bool) ] = 1 # [[1, -1, 1], [1, 1, 6]] 
 
A[ A > 1 ] = -1   # [[1, -1, 1], [1, 1, -1]] 
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Numpy: Concatenating 

import numpy as np 
 
a = np.array([[1, 2], [3, 4]])     # [[1, 2], [3, 4]] 
b = np.array([[5, 6]])    # [5, 6] 
 
np.concatenate( ( a, b ), axis = 0 )  # [[1, 2], [3, 4], [5, 6]], same as np.hstack( (a,b) ) 
np.concatenate( ( a, b.transpose() ), axis = 1 ) # [[1, 2, 5], [3, 4, 6]], same as np.vstack( (a,b.transpose() ) 
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Hands-On Python: OpenCV 

 see the handout for some important functions 

 OpenCV can work with numpy-arrays  

 But: Be careful about data types  

 Use uint8 if working in OpenCV 

 Rather receive wrong results than errors 

 



QUESTIONS? 

 EXERCISES. 


