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Human motor control

human movement is highly compliant… 

Q



Is posture “controlled”?

the elbow does not behave like a 
passive mechanical system with a free 
joint at the elbow: 

where J is inertial moment of 
forearm (if upper arm is held fixed) 

Instead, the elbow resists, when 
pushed => there is active control= 
stabilization of the joint 

J ✓̈ = 0 Q

=>experiment



Anatol Feldman 
has figured out, 
what the 
macroscopic 
description of this 
stabilization is

the invariant 
characteristic

the mass spring model 

Q

force applied

L�L�

L�L�



the mass-spring model

this is an elastic force (because it is 
proportional to position)

there is also a viscous component 
(resistance depends on joint velocity)

J ✓̈ = �k(✓��)�µ✓̇

active torques generated by the muscle



agonist-antagonist action

one lambda per 
muscle 

tested on muscles 
detached at one end 

co-contraction 
controls stiffness

Q

force applied

LL
agonist

antagonist

L�L�

L
L




stiffness

the stiffness, k, can be 
measured from 
perturbations

the viscosity “mu” is 
more difficult to 
determine
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the simulated perturbation trials and the regression technique at movement end to levels comparable with those at the
onset of movement.described by Gomi and Kawato (1996) (see APPENDIX B),

we calculated joint stiffness and viscosity matrices for each Using the empirically derived joint-stiffness and viscosity
matrices, Gomi and Kawato (1996) compute a hypotheticalof the nine points in time at which perturbations were ap-

plied. equilibrium trajectory (see APPENDIX B). Their calculations
are based on the assumption that joint torques can be repre-Hand stiffness matrices were computed from the estimated

joint stiffness matrices R using the Jacobian transformation sented with the following linear equation
(see Gomi and Kawato 1995 for details) , and hand-stiffness

tin Å R(qeq 0 q) 0 Dqh (7)
ellipses were used to visualize limb stiffness at the hand.

where R and D are stiffness and viscosity matrices derivedFigure 2, top, shows hand-stiffness ellipses estimated during
from the perturbation procedure, tin are the calculated jointthe simulated movement. The size and orientation of the
torques (see APPENDIX B), qeq is the equilibrium trajectory,ellipses are comparable with those reported by Gomi and
and q and qg are the unperturbed movement position andKawato (1996), and likewise are larger than the correspond-
velocity, respectively.ing ellipses during statics (see Fig. 9) .
To show that the Gomi and Kawato (1996) results canFigure 2, bottom, shows the elements of the estimated

be predicted using simple control signals, we used their pro-joint-stiffness matrices for the arm model during movement.
cedure to compute a hypothetical equilibrium trajectory us-The terms of the joint-stiffness matrix, R, relate joint torques
ing the stiffness and viscosity estimates from our simula-at the shoulder due to shoulder motion (Rss ) , torques at the
tions. The trajectory that results from this calculation isshoulder due to elbow motion (Res ) , and so on. The basic
shown in Fig. 3. The top panel shows the equilibrium trajec-form of the matrices is similar to those reported by Gomi
tory used to generate the movement based on the l modeland Kawato (1996), even though the equilibrium trajectory
(rrr) , the simulated movement trajectory ( – – – ), and thewe used to generate the simulated movement was simple in
hypothetical equilibrium trajectory derived using Gomi andshape. At the beginning of movement onset the shoulder

term, Rss , increases sharply from Ç18 to Ç40 Nrm/rad, Kawato’s equations ( ) , plotted in hand space. Figure
3,middle, shows the horizontal components of these trajecto-then decreases in the middle of movement to Ç20 Nrm/

rad, increases again around movement end to 40 Nrm/rad, ries plotted against time, and Fig. 3, bottom, shows the tan-
gential velocities of the hand trajectories plotted againstand finally decreases after the end of movement to Ç15

Nrm/rad. The other three terms in the stiffness matrix follow time.
The hypothetical equilibrium trajectory computed usingroughly the same form but show a less pronounced decrease

in the middle of the movement. The elbow term, Ree increases Gomi and Kawato’s procedure is ‘‘complex’’ in shape and
does not resemble the simulated movement, which is smooth,from Ç5 Nrm/rad at movement start to 20–25 Nrm/rad

during movement, and the two double-joint terms, Rse and relatively straight and looks like the movements made by
subjects in the Gomi and Kawato (1996) study. Nor does itRes , increase from Ç2 Nrm/rad at movement start to Ç7–

10 Nrm/rad during movement. Ree , Res , and Rse all decrease resemble the equilibrium trajectory that was used to generate
the movement—the equilibrium trajectory used in the simu-
lations is a simple constant-rate monotonic shift from one
position to another. Gomi and Kawato’s hypothetical equi-
librium trajectory first leads then lags the simulated move-
ment. The tangential velocity of the hypothetical equilibrium
trajectory has multiple peaks and does not resemble the ve-
locity profile of the simulated movement, which is smooth
and bell-shaped. We suggest that the discrepancy between
the equilibrium trajectory based on the l model and the
trajectory computed using Gomi and Kawato’s equations
arises from their use of a simplified model of force-genera-
tion (see DISCUSSION).
A number of additional points should be noted. Direct

estimates of joint viscosity are not provided by Gomi and
Kawato (1996). However, the present estimates correspond
to values reported elsewhere. Specifically, the simulated esti-
mates of joint viscosity have maximum values of Ç2.5–3.0
Nms/rad, which is in the range of 5–7% of corresponding
maximum joint stiffness. This is comparable with the rela-
tion between joint viscosity and stiffness during cyclical one-
joint movements (Bennett et al. 1992) and with values for
multijoint stiffness and viscosity in statics (Gomi and Osu
1996; Tsuji et al. 1995). It also should be noted that the
simulations reported above have been based on constant-rate

FIG. 2. Simulated hand-stiffness ellipses and joint-stiffness matrices for
shifts in the hand equilibrium position. We also have carried

the arm model during multijoint movement. Constant-rate equilibrium shifts
out these simulations using constant-rate shifts in l space.and constant cocontraction commands were used to produce the simulated

movements. The time-varying form and the magnitudes of joint-stiffness
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neural basis of EP model: 
spinal reflex loops

alpha-
gamma 
reflex loop 
generates 
the stretch 
reflex

[Kandel, Schartz, Jessell, Fig. 37-11]



spinal cord: reflex loops

the stretch reflex acts as a negative feedback loop

37-12

[Kandel, Schartz, Jessell, Fig. 31-12]



spinal cord: coordination

Ia inhibitory interneuron 
mediates reciprocal 
innervation in stretch 
reflex, leading to 
automatic relaxation of 
antagonist on activation 
of agonist

[Kandel, Schartz, Jessell, Fig. 38-2]



Movement entails change of 
posture

that equilibrium point is shifted during movement so 
that after the movement, the postural state exists 
around a new combination of muscle lengths/joint 
configurations

joint angle, Q

force

L�

L�

equilibrium
point



Movement entails change of 
posture

most models account for movement in terms of 
generation of joint torques….

=> the shift of the EP is the single most overlooked fact 
in control models of movement generation 

joint angle, Q

force

L�

L�

equilibrium
point



Does the “motor command” 
specify force/torque?

no! Because the same descendent neural command 
generates different levels of force depending on the 
initial length of the muscle

joint angle, Q

force

L�

L�

equilibrium
point



Virtual trajectory

shifting the equilibrium point is necessary, but is it also 
sufficient? 

first answer: yes… simple ramp-like trajectories of the “r” 
command (“virtual trajectories”) shift the equilibrium 
point smoothly in time… 

joint angle, Q

force

L�

L�

equilibrium
point



Pilon, Feldman, 2006

first answer: yes… simple ramp-like trajectories of the “r” 
command (“virtual trajectories”) shift the equilibrium point 
smoothly in time… 

e.g. Pilon, Feldman, 2006

they are applied before the onset (Fig. 6a, b) or after the
offset of fast movement (c, d).

In all simulations shown in Figs. 4, 5 and 6, EMD=0
was used. Figure 7 shows the effect of EMD that ini-
tially was 40 ms but gradually (with time constant of
100 ms) decreased to 10 ms after the onset of muscle
activation. Thus, the electromechanical delay influences
the latency, rather than stability of posture and move-
ment.

Discussion

Threshold control is a multifaceted phenomenon that
seems to play a major role in the control of posture and
movement, expediently solves the problem of the rela-
tionship between these two components of motor ac-
tions, and is essential in the organization and
modification of spatial frames of reference in which
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Fig. 5 When threshold control is accomplished in the presence of
intrinsic muscle elasticity (j>0) the system remains stable for
delays as high as 100 ms. a, b Simulated (solid lines) and
experimental fast movements (dotted lines) practically match each
other, as estimated by correlation coefficient (Rc

2). The movement
extent is practically the same but peak velocity is greater in (b) than

in (a) and a small overshoot is present in (b). c With delay of
100 ms, the simulated kinematic patterns are still in the range of
those characteristic of natural elbow movements. d Delays higher
than 100 ms produce atypical movement patterns characterized by
long-lasting terminal oscillations
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Shifting the equilibrium point is 
necessary, but is it also sufficient?

such simple ramp-like trajectories of the “r” 
command (“virtual trajectories”) may be 
sufficient when movements

are sufficiently slow

interaction torques/mechanical conditions unchallenging 

but is this generally true? 



Limit case: velocity dependent force field 

after adapting to a velocity dependent force field the 
hand reproduces the “natural” path, but must generate 
compensatory forces on the way
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left workspace right workspace 

Figure2. Configurations of a model two-joint arm, representing typical 
kinematics of the human arm, at two workspace locations where reach- 
ing movements were performed. Typical shoulder and elbow angles at 
these two workspaces were 15” and 100” at right and 60” and 145” at 
left, using coordinates defined in Figure 1. 

domly chosen from the set (O”, 45”,. . ., 315”) and at a distance of 10 
cm was presented. After the subject had moved to the target, the next 
target, again chosen at a random direction and at 10 cm, was presented. 
A target set consisted of 250 such sequential reaching movements. All 
targets were kept with in the confines of the 15 x 15 cm workspace. 
The targets represented a pseudorandom walk. 

In some cases, the manipulandum was programmed to produce forces 
on the hand of the subject as the subject performed reaching movements. 
These forces, indicated by the vectorf, were computed as a function of 
the velocity of the hand: 

f= B%, (1) 
where X was the hand velocity vector, and B was a constant matrix 
representing viscosity of the imposed environment in end-point coor- 
dinates. In particular, we chose B to be 

B= -10.1 -11.2 
-11.2 11.1 1 N. set/m. 

Using this matrix, the forces defined by Equation 1 may be shown as 
a field over the space of hand velocities (Fig. 3A). For example, as a 
subject made reaching movements in this field, the manipulandum pro- 
duced forces shown in Figure 3B (here we have assumed that the move- 
ments are minimum jerk, as specified by Flash and Hogan, 1985, with 
a period of 0.5 set). 

Note that in the field defined by Equation 1, forces that act on the 
hand are invariant to the location ofthe workspace in which a movement 
is done; that is, the forces are identical in the left and right workspaces 
of Figure 2. Therefore, we say that the force field defined in Equation 
1 is translation invariant in end-point coordinates. 

In some cases, a different kind of a force field was produced by the 
manipulandum, one that was not translation invariant in end-point 
coordinates. This field was represented as a function of the velocity of 
the subject’s shoulder and elbow joints during the reaching movements: 

1= wq, (2) 
where 7 was the torque vector acting on the subject’s shoulder and elbow 
joints, 4 was the subject’s joint angular velocity, and W was a constant 
matrix representing viscosity of the imposed environment in joint co- 
ordinates of the subject. We say that the field described by Equation 2 
is translation invariant in joint coordinates. Indeed, note that the torque 
field in Equation 2 is equivalent to the following force field (i.e., forces 
acting on the hand): 

f= (JW-’ w  43 (3) 
where J(q) = dx/aq is the configuration-dependent Jacobian of the con- 
figuration mapping from q to x, and the superscript T indicates the 
transpose operation. Because the Jacobian changes as a function of the 
angular position of the limb,fvaries depending on the workspace where 
a reaching movement is performed. In particular, we chose W so that 
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Figure 3. An environment as described by the force field in Equation 
1. A, The force field. B, Forces acting on the hand during simulated 
center-out reaching movements. Movements are simulated as being 
minimum jerk with a period of 0.5 set and amplitude of 10 cm. 

the force field that resulted from Equation 3 at the right workspace was 
almost identical to the field produced by Equation 1. To accomplish 
this, the matrix W was calculated for each subject as 

W = J;BJo, 
where J,, is the Jacobian evaluated at the center of the right workspace. 
For a typical subject, we derived the following W matrix: 

IV= [i:zi -~:~:]N.m~sec/rad 

When the above joint-viscosity matrix was used to define an environ- 
ment, the resulting force field depended upon the position of the work- 
space where movements were being made. At the right workspace, this 
field (Eq. 3) was almost identical to that produced by Equation 1 (a 
correlation coefficient of0.99; see Appendix). However, at the left work- 
space, the forces produced by Equation 3 were substantially uncorrelated 
(nearly orthogonal) to that of Equation 1. The force field produced by 
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Figure 6. Typical hand trajectories at the right workspace in a null 
force field during no-visual feedback conditions. Dots are 10 msec apart. 

centripetal forces that make up the G matrix can be derived from the 
inertia tensor; cf. Slotine and Li, 199 1, p 400). For example, the dif- 
ferential equation describing the dynamics of the arm and the controller 
for movements in the force field of Equation 1 were 

kd 4 + G(a 4) + JW B J(q) 4 = C(a 4. t). (11) 
where Cis defined in Equation 9. Values for joint stiffness and viscosity 
(K and IJ’) were chosen based on measurements of Mussa-Ivaldi et al. 
(1985) and Tsuji and Goto (1994). The desired trajectory q*(t) was 
assumed to be minimum jerk in hand-based coordinates lasting 0.65 
sec. Values used for these variables are summarized in Table 1. 

Results 
Reaching movements were made while the hand interacted with 
a mechanical environment. This environment was a program- 
mable force field implemented by a light-weight robot mani- 
pulandum whose end-effector the subject grasped while making 
reaching movements. When the manipulandum was producing 
a force field, there were forces that acted on the hand as it made 
a movement, changing the dynamics of the arm. When the 
manipulandum’s motors were turned off, we say that the hand 
was moving in a “null field.” 

Hand trajectories before adaptation 
Our first objective was to determine how an unanticipated ve- 
locity-dependent field affected the execution of reaching move- 
ments. The forces in the field (e.g., Eq. 1, as shown in Fig. 3.4) 
vanished when the hand was at rest, that is, at the beginning 
and at the end of the movement. However, as shown in Figure 
4B, a significant force was exerted midway, when the hand 
velocity was near maximum. How would this force influence 
the execution of a movement? Would subjects follow a pre- 
planned trajectory that was scarcely influenced by this pertur- 
bation or would they modify the movement and the final po- 
sition in response to the perturbing force? To answer this question, 
we compared reaching movements in the null field with those 
in a force field. Trajectories in the null field are shown in Figure 
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Figure 7. Performance during initial exposure to a force field. Shown 
are hand trajectories to targets at the right workspace while moving in 
the force field shown in Figure 3. Movements originate at the center. 
All trajectories shown are under no-visual feedback condition. Dots are 
10 msec apart. 

6. As observed in previous reports (Morasso, 1981; Flash and 
Hogan, 1985), the hand path was essentially along a straight 
line to the target. The velocity profile (see Fig. 1OA) had one 
peak, with approximately equal times spent to accelerate and 
decelerate the hand. 

Once our subjects were familiar with the task of reaching 
within the null field, we began to introduce a force field in 
random trials. Note that subjects could not anticipate the pres- 
ence of the field before the onset of the movement because the 
force field was not effective when the hand was at rest and no 
other clues were available. Furthermore, during the movement, 
the cursor indicating hand position was blanked, eliminating 
visual feedback. Figure 7 shows the hand trajectories ofa typical 
subject when the movements were executed under the influence 
of the field shown in Figure 3A (Fig. 10B shows the tangential 
velocity of hand trajectories in this field). This field was designed 
to have opposing effects along two directions. At approximately 
30” and 210” the field produced resisting forces that opposed 
movement as a viscous fluid would do. At approximately 120” 
and 300” the forces assisted the movement, thus producing a 
destabilizing effect. 

Note that the effect of the field on the hand trajectory was 
quite significant and may be divided into two parts. In the first 
part, the hand was driven off course by the field and forced 
toward the unstable direction of the field. Movements to targets 
at o”, 225”, 270”, and 3 15” are pulled toward the unstable region 
at 300”, while movements to the remaining targets are pulled 
toward the unstable region at 120”. At the end of this first part, 
the field had caused the hand to veer off the direction of the 
target and the hand decelerated and stopped before making a 
second movement to the target. The pictorial effect of these two 
parts of the hand trajectory appeared as a “hook” that was 
oriented either clockwise or counterclockwise. The orientation 
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a reaching movement, with practice the subjects tended to con- 
verge upon this straight-line trajectory. This recovery of the 
original unperturbed response constitutes a clear example of an 
adaptive behavior. 

Further evidence of motor adaptation is offered by the sig- 
nificant change that occurred in the hand velocity profile at the 
onset of exposure to the force field, and after completion of the 
practice trials. Figure 10A shows the hand tangential velocity 
traces obtained when the hand was moving in a null field (cor- 
responding to the hand position traces of Fig. 6). Consistent 
with previous studies (cf. Flash and Hogan, 1985) these velocity 
traces are approximately along straight lines and symmetric in 
time. The hand velocity traces at the initial stage of practice in 
the force field (corresponding to the hand position traces of Fig. 
7) are shown in Figure 1 OB. In Figure 1 OC we have the velocity 
traces near the end of the practice trials (corresponding to the 
hand position traces of Fig. 9D). Although the average velocity 
of the hand trajectory is now larger (as compared to Fig. lOA), 
the velocity trace for each target has essentially the same pattern 
as that observed for movements in a null field. 

practiced in the force field. This comparison was made through 
computation of a correlation coefficient between pairs of tra- 
jectories (see Appendix). We found that the average correlation 
between a trajectory in the null field and one in the force field 
increased with the amount of practice movements performed 
by the subject in the force field. The computed correlation co- 
efficients for trajectories performed by all subjects are shown in 
Figure 11. Remarkably, all the subjects displayed a strictly 
monotonic evolution of the correlation coefficient. 

Our subjects did not seem to be aware of the process of ad- 
aptation and of the change in their performance. The only sub- 
jective indication that some adaptive change had occurred was 
given by a reduction in the sense of effort associated with the 
task: during the first batch of 250 movements within the force 
field, some subjects reported an intense sense of effort. Para- 
doxically, this sense of effort diminished drastically after about 
500 movements. At the end of the training period many com- 
mented that they were “not feeling” the field anymore. 

Aftereffects 
In order to quantify the time course of adaptation, we studied One way-although by no means the only way-for the subjects 

how the hand trajectories evolved as compared to those ob- to recover the initial motor performance (what we have called 
served in the null field. For each subject, we compared the the desired trajectory) after the exposure to the test field was by 
trajectories in the null field to those obtained as the subject developing an internal model of this field. This internal model 

i -. 
: =. Figure 9. Averages 5 SD of hand tra- 
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l ‘* jectories during the training period in 
: 
f 

% 

0 
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the force field of Figure 3: performance 
plotted during the first (A), second (B), 
third (C), and final (D) 250 targets. All 

5cm 
trajectories shown are under no-visual 
feedback condition. 

[Shadmehr, Mussa-Ivaldi, 1994]

center-out movements
before force-field 
adaptation

velocity dependent 
force-field = zero at rest center-out movements 

at four stages during 
force-field adaptation 



Shifting the equilibrium point is 
necessary, but is it also sufficient?

=> r-command must still shift from initial to final 
posture, but must also generate the forces to 
compensate for the force field during the 
movement 

that probably takes the form of non-monotonic, 
“complex” time courses… 

are such temporally complex (e.g,. non-monotonic) 
r-commands necessary during unperturbed 
movement



two joint limb with 6 muscles

= 2 pairs of mono-articulatory m.

+ 1 pair of bi-articulatory m.

BIARTICULAR MUSCLES

MONOARTICULAR SHOULDER
JOINT MUSCLES

MONOARTICULAR ELBOW
JOINT MUSCLES

ENDEFFECTOR

Figure 3.1: Schematic sketch of the arm model. The model comprises a two joint
arm with two monoarticular elbow joint muscles (red), two monoarticular shoul-
der muscles (blue) and two biarticular muscles that span elbow and shoulder joint
(black).

3.1.1 Modeling of Muscle Lengths

In general, muscles span along joints and stretch or contract to change the angle-
configuration and thus induce a movement. Thus, the muscles resting length and
the angle configuration determine the actual length of a muscle. We modeled the
muscle length l as a first-order polynomial depending on the elbow and the shoulder
angle ✓e and ✓s :

li = ci + c
0
i,s✓s + c

0
i,e✓e i 2 [1, 6]. (3.1)

The values for ci and c
0
i indicate the resting length and the moment arms of the

corresponding muscles and can be found in table 3.1. The resting lengths are taken
from [Winters andWoo] and the moment arms from [Kistemaker et al., 2006]. Equa-
tion 3.1 is a slightly simplified version of the second order polynomial introduced in
[Kistemaker et al., 2006]. The simplification is reasonable, because within the range
of the reproduced movements, the appearing e↵ects are negligible. Corresponding
to table 3.1, the velocity of muscle lengthening and shortening is

l̇i = ci + c
0
i,s✓̇2 + c

0
i,e✓̇1 i[1, 6]. (3.2)

13

muscle length link to joint angles

The minimal reference command

Figure 2: The model includes shoulder and elbow joints in the horizontal plane,
articulated by two monoarticular elbow joint muscles (red), two monoarticular
shoulder muscles (blue) and two biarticular muscles that span elbow and shoul-
der joint (green). The illustrated geometry leaves muscle lever arms invariant across
workspace.

where ci is the passive resting length of the muscle and the factors f1 to f4 and
k were adjusted to reproduce the results of (Gribble et al., 1998) (values listed in
Appendix A).

The active joint torques, ~T , are obtained from the muscle forces, Fi, taking the
moment arms into account:

~T =

✓
Te

Ts

◆
=

✓
c01,eF1 + c02,eF2 + c05,eF5 + c06,eF6

c03,sF3 + c04,sF4 + c05,sF5 + c06,sF6

◆
(8)

3.1.3 Reference command and reflex model

The activation, Ai, of each muscle is assumed to reflect the descending reference
command, �i, that acts as the threshold of a reflex loop modeled as:

Ai = [li � �i + µ l̇i]
+ (9)

where [·]+ signifies a semi-linear threshold function, and µ is a parameter that reflects
the sensitivity of muscle spindles to the rate of muscle length change (Gribble et al.,
1998).

8

[Ramadan, Hummert, Jokeit, Schöner, under revision]



Neuro-muscular 
model based on 
Gribble, Ostry et 
al., 98… 
consistent with EP 
hypothesis 

2.2.1 Gribble’s muscle model
In this thesis I will use the muscle model described in [Gribble et al., 1998]
with a few alterations which will be explained in the third chapter. Gribble’s
model of force generation takes into account muscle length, the dependence of
force on velocity of muscle lengthening, graded force development and passive
stiffness. How these components work together is shown in figure 2.2. The
graphic shows that the resulting muscle force has three input variables, the
central command, which consists of the descending R- and C-commands, the
muscle length l and the rate of change of length, which is the velocity of
muscle lengthening l̇. The calculations of the individual boxes are given in
the formulas of the muscle model below.

The parameters of Gribbles model are listed in table 2.1 and 2.2. Table
2.1 lists all parameters that Gribble that are the same for all muscles and
are not changed in our monoarticular new model. In the tables 2.2 and 2.3
the muscle specific constants from Gribble and our monoarticular model are
listed.

Most of the model parameters are empirical measurements of muscle prop-
erties from former studies or scaled and fitted estimates from empirical data.
To ensure the validity of the parameters Gribble included a sensitivity anal-
ysis of all parameters with respect to stiffness and viscosity. The parameters
µ and ⌧ , which both alter the damping of the system are set to values that
achieve a critically damped system. The parameter µ from equation 2.4 can
be chosen more freely than other parameters as it can be set by the central
nervous system [Feldman et al., 1990], while the cutoff-frequency ⌧ of the
calcium filter of equation 2.7 is chosen to produce a model behaviour that
fits empirical results.

Figure 2.2: The mechanism of force generation as used by Gribble. Each
box represents one equation of the msucle model. Picture taken from
[Gribble et al., 1998]
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muscle moment arm at moment arm at length
shoulder (in m) elbow (in m) (in m)

monoarticular elbow flexor 0.000 -0.014 0.287
monoarticular elbow extensor 0.000 0.025 0.246
monoarticular shoulder flexor -0.030 0.000 0.216
monoarticular shoulder extensor 0.030 0.000 0.191
biarticular flexor -0.030 -0.016 0.333
biarticular extensor 0.030 0.030 0.312
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upper arm lower arm
length (in m) 0.3348 0.2628
mass (in Kg) 2.1 1.2
inertia (in Nm) 0.0244 0.0076

Table 3.2: Biomechanical parameters of the body [Winters et al., 2012].

3.1.2 Generation of Muscle Force

Each of the six muscles is modeled separately and in the following way: The activa-
tion of a muscle is proportional to the length di↵erence between the actual muscle
length li and the length of the descending signal �i. Furthermore it is proportional
to the rate of length change l̇i of the muscle.

Ai = [li � �i + µ · l̇i]+ (3.3)

with

[x]+ =

(
x, if x > 0

0, if x  0
.

The parameter µ relates the muscles threshold length to its velocity and is a damp-
ing factor representing the strength of proprioceptive feedback.

The actual force of a muscle M̃i is approximated by an exponential function

M̃i = ⇢i · (esAi � 1). (3.4)

The factor s is constant for all muscles and is estimated from empirical data of the
cat’s gastrocnemius muscle [Feldman and Orlovsky, 1972]. The factor ⇢i represents
the muscles ability of force-generation and is assumed to vary in proportion to the
physiological cross-sectional area (PCSA). Thus, every muscle has its individual ⇢
value [Winters et al., 2012]. The exponential relation between muscle force and mus-
cle activation with constant s and ⇢ values is shown in [Feldman and Orlovsky, 1972].
The used values of s and ⇢ can be found in table 3.3. The computation of the ⇢

values from the corresponding PCSA was realized by scaling the PCSA by a factor
of 1 N cm�2.
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muscle PCSA
(in cm2)

⇢1 2.10
⇢2 4.52
⇢3 4.52
⇢4 3.87
⇢5 1.29
⇢6 3.87

Table 3.3: PCSA of the six modeled muscle groups. The ability of force generation
can be calculated by multiplying the PCSA with N cm�2. The values are taken from
[Winters et al., 2012]

The Calcium kinetics acts like a low pass filter on the muscle force development
[Gribble et al., 1998] and is thus modeled by a critically damped second order low
pass filter with a single parameter ⌧ :

⌧
2
M̈ + 2⌧Ṁ +M = M̃ (3.5)

Here, M̃i is the actual muscle force obtained in equation 3.4 and Mi is the graded
muscle force. The value for ⌧ is taken from [Gribble et al., 1998] and chosen such
that the response of the muscle corresponds to the empirical findings. The value of
⌧ can be found in table 3.4.
There is strong evidence for a sigmoidal relation between muscle force and muscle
lengthening and shortening [Joyce et al., 1969]. Furthermore we assume a passive
force linearly depending on the di↵erence between the actual muscle length and the
resting length ci of the muscle. The resulting force Fi yields:

Fi = Mi[(f1 + f2 · arctan(f3 + f4 · l̇i)] + k(li � ci). (3.6)

Mi is the graded force from equation 3.5. The factors f1, f2, f3, f4 and k are taken
from [Gribble et al., 1998] and then adjusted such that they reproduce the results
of [Gribble et al., 1998]. The adjusted parameters can be found in table 3.4.

Parameter Value
f1, - 0.82
f2, - 0.57
f3, - 0.43

f4, s/m 58
⌧ , s 0.015
k, - 17.35

c, 1/m 112

Table 3.4: The parameters were taken from [Gribble et al., 1998] and adjusted such
that the results of [Gribble et al., 1998] are reproduced.
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Biomechanical dynamics…  
standard…

The passive force FR = k(l � r) added to the resulting force is assumed
to be linearly dependent on the difference between the current muscle length
l and the muscle resting length lr, which is the length to which the muscle
relaxes in absence of external forces. The passive force is shown figure 2.7,
where can be seen that over the course of movement the passive force does
not change more than 5 N and remains constant for the elbow muscles.
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Figure 2.7: The passive force FR is plotted against the time for a simple
point-to-point movement. Note that the passive force of the elbow muscles
are constant, while the force of the shoulder muscles changes gradually during
the ramp duration with delay of approximately 0.1 sec

To model arm movement the muscle force is used to calculate the torque
at each joint, which can then be integrated to derive the new arm position.

T = �H · F (2.9)

with H defined as

H =
@l

@✓
=

✓
@l

@✓1

@l

@✓2

◆
(2.10)

The torque T is defined as the cross product of the moment arm H, which
is listed in table 2.4 and the force F . The in table 2.4 listed moment arms
are constant for the monoarticular model, as the calculation of the muscle
length is simplified to equation 2.19 and the joint angles thus are lost in the
differentiation of the muscle length in equation 2.10.
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shoulder moment arm [m] elbow moment arm [m]
Gribble constant level arm Gribble constant level arm

mef -0.03 ·0.2 -0.014 - 0.0079202 ✓2 -0.02
mee 0.03 ·0.2 0.025 -0.0043202 ✓2 0.02
msf -0.03 -0.03 -0.023 ·0.2
mse 0.03 0.03 0.023 ·0.2
bef -0.03 -0.016 - 0.01146 ✓2
bee 0.03 0.03 - 0.00636 ✓2

Table 2.4: Muscle moment arm H for the six lumped muscles.

In the equation of motion the torque is used to calculate the acceleration
✓̈ from the external torque, which is here set to zero, the coriolis force C and
the inertia matrix I [Gomi and Kawato, 1996].

✓̈ = I�1(T � Text � C ✓̇) (2.11)

The Coriolis force is a force that acts in a direction perpendicular to the
rotation axis, which is the axis aligned with the arm in this case. The Coriolis
matrix combines the centrifugal and centripetal forces that act on the joint
and is calculated from the arm constants (center of mass, segment length and
segment mass) and the joint angles, thus changing with the position of the
arm [Zatsiorsky, 2002]. The magnitude of the Coriolis forces does not exceed
0.06 N and is thus small in comparison to the force of the muscles.

The angles of the arm are calculated by numerically integrating (see sec-
tion 2.2.2) the acceleration of the joints ✓̈ and then transferred to end-effector
space as

x = cos(✓1) · l1 + cos(✓1 + ✓2) · l2 (2.12)
y = sin(✓1) · l1 + sin(✓1 + ✓2) · l2 (2.13)

2.2.2 Numerical Integration
The integration of M̃ in the calcium filter and ✓̈ in the equation of motion
can be done with different numerical methods. Both equations are delayed
differential equations of second order and can thus be rewritten as a system
of differential equations, as done for the equation of motion from equation
2.11 in 2.14.

ẏ1 = y2

y2 = ✓̈ (2.14)
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back to muscle: 

BIARTICULAR MUSCLES

MONOARTICULAR SHOULDER
JOINT MUSCLES

MONOARTICULAR ELBOW
JOINT MUSCLES

ENDEFFECTOR

Figure 3.1: Schematic sketch of the arm model. The model comprises a two joint
arm with two monoarticular elbow joint muscles (red), two monoarticular shoul-
der muscles (blue) and two biarticular muscles that span elbow and shoulder joint
(black).

3.1.1 Modeling of Muscle Lengths

In general, muscles span along joints and stretch or contract to change the angle-
configuration and thus induce a movement. Thus, the muscles resting length and
the angle configuration determine the actual length of a muscle. We modeled the
muscle length l as a first-order polynomial depending on the elbow and the shoulder
angle ✓e and ✓s :

li = ci + c
0
i,s✓s + c

0
i,e✓e i 2 [1, 6]. (3.1)

The values for ci and c
0
i indicate the resting length and the moment arms of the

corresponding muscles and can be found in table 3.1. The resting lengths are taken
from [Winters andWoo] and the moment arms from [Kistemaker et al., 2006]. Equa-
tion 3.1 is a slightly simplified version of the second order polynomial introduced in
[Kistemaker et al., 2006]. The simplification is reasonable, because within the range
of the reproduced movements, the appearing e↵ects are negligible. Corresponding
to table 3.1, the velocity of muscle lengthening and shortening is

l̇i = ci + c
0
i,s✓̇2 + c

0
i,e✓̇1 i[1, 6]. (3.2)
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determine the “minimal” motor command that 
changes all lamda’s the least possible:  

do not determine the graded force of each muscle but limits the space of possible
combinations of the individual muscles.
The second class of boundary conditions are the upper and lower bounds on the
state vector. To produce realistic movements, joint angle and joint angle velocity
are restricted to a biologically plausible range:

~✓(t) < ~✓max,

~̇✓(t) < ~̇✓max.

(3.19)

This not only prevents unrealistic angles and angle velocities but also unrealistic
muscle lengths, length changes and hence forces.
The third class of boundary conditions are upper and lower bounds for the control
signals ~�. Within the given model, control signals are defined as equilibrium muscle
length and should therefore always have positive values. In addition equation 3.3
shows that if the activation A is zero, a growing ~� does not have an e↵ect on the
activation. Thus, upper and lower bounds for ~� were introduced:

�min  ~�(t)  �max t 2 [t0, tf ]. (3.20)

The listed boundary conditions constrain the state-vector ~X(t) such that the an
end-e↵ector moves from an start state ~X0 to a predefined target state ~Xf within
biomechanical limits.
However, there is an infinite number of control sequences ~�(t) and resulting state
trajectories ~X(t) that fulfill the boundary conditions. Empirical studies show that
movements mostly occur in a similar way [Morasso, 1981]. This suggests that the
CNS systematically choses one of the possible movement trajectories. Since we state
that the choice of the control sequence ~�(t) is the result of an evolutionary optimiza-
tion with respect to a biologically relevant optimization criterion, the question of
an reasonable optimization criterion arises. Natural movements tend to produce
smooth characteristics in path, velocity and acceleration [Morasso, 1981]. Further-
more, we assume that evolution favors to generate simple signals. We choose the
minimization of the rate of change of the control signal as the optimization criterion:

min
~�
 (~�) =

Z tf

0

~̇�(t)2 dt. (3.21)

A decreasing rate of change ~̇�(t) causes smoother ~�(t)s since it penalizes strong
changes in the control trajectories. Within the treated model, muscle length time-
courses are the damped manifestation of the descending signals. Smooth control
signals provide smooth muscle length changes and generate smooth movements as
a result.
Dynamic equations, boundary conditions and optimization criterion together define
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given that the EP shifts: with boundary conditions

and define the time integration of the ODE-system as the state vector ~X:

~X =

0

BBB@

~M

~̇M

~✓

~̇✓

1

CCCA
. (3.12)

Here, ~M contains the six graded forces due to the Calcium kinetics and ~̇M the cor-

responding rates of change. ~̇✓ and ~✓ stand for the angle velocity and the angle of the
two joints. Both are two-dimensional vectors each. Thus, the state vector ~X is a
16-dimensional vector including the states of 6 muscles and two joints. A movement
is fully described through the state trajectory ~X(t) which is the time course of the
state vector.
The goal of the optimization is to find a sequence of the control signals ~�(t) that
steer the modeled arm from an initial state ~X0 to an final state ~Xf and reproduce
characteristics of natural movements. For this purpose we impose boundary con-
ditions for the state vector ~X(t) and boundary conditions of the optimization for
the control sequence ~�(t). These boundary conditions guarantee that the desired
movement from ~X0 to ~Xf is executed in a biologically plausible range of ~X(t) and
~�(t). The selection of appropriate boundary conditions for a movement depends on
how detailed the description of the movement should be. In the scope of this project
boundary conditions were divided into three classes. The first class are conditions
for the state vector at the beginning and at the end of the movement. The first
condition is, that the joints should start at the initial state and end at the final
state:

~✓(t0)� ~✓start = 0, (3.13)

~✓(tf )� ~✓final = 0. (3.14)

Furthermore, the velocity at the beginning of the movement and at the end of the
movement should be zero:

~̇✓(t0) = 0, (3.15)

~̇✓(tf ) = 0. (3.16)

The third condition of this class is, that the joint angle acceleration at the beginning
and at the end of the movements should be zero:

~̈✓(t0) = 0, (3.17)

~̈✓(tf ) = 0. (3.18)

The angle acceleration does no explicitly appear in the state vector ~X but is strongly
depended on it. Equation 3.10 describes the angle acceleration. It depends on the

angle velocity ~̇✓, which is directly contained in ~X and on the joint torques ~T . Joint
torque arises as a consequence of interacting muscle forces which directly depend on
the graded force (see sec. 3.1). It is important to note that conditions 3.17 and 3.18
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that the choice of the control sequence ~�(t) is the result of an evolutionary optimiza-
tion with respect to a biologically relevant optimization criterion, the question of
an reasonable optimization criterion arises. Natural movements tend to produce
smooth characteristics in path, velocity and acceleration [Morasso, 1981]. Further-
more, we assume that evolution favors to generate simple signals. We choose the
minimization of the rate of change of the control signal as the optimization criterion:
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 (~�) =

Z tf

0

~̇�(t)2 dt. (3.21)

A decreasing rate of change ~̇�(t) causes smoother ~�(t)s since it penalizes strong
changes in the control trajectories. Within the treated model, muscle length time-
courses are the damped manifestation of the descending signals. Smooth control
signals provide smooth muscle length changes and generate smooth movements as
a result.
Dynamic equations, boundary conditions and optimization criterion together define
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minimization of the rate of change of the control signal as the optimization criterion:
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A decreasing rate of change ~̇�(t) causes smoother ~�(t)s since it penalizes strong
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Why “lambda” rather than R?

Figure 3: For a symmetric pair of muscles (thin black lines), their threshold lengths,
�1, and �2 uniquely determine the equilibrium posture of joint, Rsym = �✓,2 � �✓,1

irrespective of co-contraction. (Note that threshold lengths are transformed from
length space to joint space by �✓,i = (�1)i(�i � ci)/c0i for i = 1, 2). At non-zero
co-contraction, the equilibrium posture, Rasym, of an asymmetrical muscle pair (fat,
red lines) depends on the level of force generated.

3.4 Estimating the virtual attractor trajectory

At any moment in time, the reference command defines a stable state of the complete
model. The time course of this stable state in terms of the physical variables, joint
angles or hand position, represents the attractor trajectory (Hodgson & Hogan,
2000). The attractor state corresponds to an equilibrium posture, in which all muscle
forces are balanced. When opposing muscles di↵er in strength, that equilibrium
posture is not, in general, determined by the reference lengths of the opposing
muscles alone. Unless co-contraction is exactly zero, the equilibrium posture also
depends on muscle force as illustrated in Figure 3.

This is why attractor trajectories may be physically more meaningful than the
reference command itself. In the model, estimating the attractor trajectory is triv-
ial. At every moment in time we compute the joint angles (and associated muscle
lengths) at which the torques contributed by all muscles sum up to zero, given the
current levels of the reference commands, ~�(t), and the current levels of the rates
of change of muscle lengths, d~l(t)/dt. Attractor trajectories in joint space can be
transformed to attractor trajectories in hand position space by the kinematic model.
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Paths exp-model

4 Results

4.1 Experimental results

4.1.1 Movement time

The movement times of the eight di↵erent movements performed at two instructed
durations are listed in Table 1. Mean movement time across all movements and
participants was 0.779 s in the slow condition and 0.445 s in the fast condition with
standard deviations of 0.032 s and 0.022 s, respectively.

Movement 1 2 3 4 5 6 7 8

slow
T [sec] 0.798 0.791 0.809 0.755 0.717 0.694 0.809 0.855

TSD [sec] 0.025 0.018 0.030 0.023 0.018 0.019 0.019 0.019
fast

T [sec] 0.455 0.448 0.460 0.443 0.400 0.495 0.482 0.479
TSD [sec] 0.025 0.018 0.030 0.023 0.018 0.019 0.019 0.019

Table 1: Movement time (T ) and its standard deviation (TSD) across participants
for each of the eight movements in the two movement conditions, slow vs. fast.
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Figure 4: EEF path for the simulations (black) and the experiment (blue) for the
slow condition (800ms). The paths are labeled according to the movement numbers
(same conventions as in figure 1).

4.1.2 Kinematics

There is nothing new or surprising about the kinematics of these standard move-
ment data: Hand paths are relatively straight, hand velocity profiles (absolute value
of velocity along the movement path as a function of time) are bell-shaped, joint
trajectories and joint velocity profiles are smooth (Morasso, 1981). The hand paths
(means across participants) are plotted in Figure 4 together with the paths from the
simulations. Because participants have di↵erent segment lengths and were not all
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Minimal lambda trajectories
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Minimal lambda trajectories
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Do the time courses of lambda matter? 

making a slow ramp (in hand space) fast

an underlying invariant representation of the reference command, from which timed
movement can be obtained by scaling.

The kinematic or quasi-postural conception of the reference command amounts
to postulating such an invariant. The implied scaling law is a linear rescaling of
time, in which fast movements can be obtained from slow reference commands by
a linear time compression, and slow movements can be obtained from fast reference
commands by linear time dilation. Figures 14 and 16 illustrate that this scaling law
fails for ramps and for the minimal reference commands.

First, we constructed a ramp with constant rate of change in end-e↵ector space,
which we simply gave a very short duration of 0.1 s, shorter than the fast ramps
we found for the minimal reference commands. Does such a short ramp lead to a
faster movement? Figure 14 shows that this is not the case: the movement that
is produced is, in fact, slower than the fastest movements we modeled with the
minimal reference command. In the simulation shown, co-contraction was set to 50
N. Increasing co-contraction further did not make the movement faster.
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Figure 14: Results for a linear Ramp in end-e↵ector space from [0.0m, 0.3m] to
[0.0m, 0.55m] scaled to a ramp duration of 0.1 s. Left: Hand path. Middle: Elbow
(solid red) and shoulder (solid blue) joint angle trajectories, whose target angles are
shown as dashed lines. Right: Reference commands for bi-articular (black), shoulder
(blue) and elbow (red) muscles.

Why does this scaling of the ramp to faster movements fail? This can be under-
stood by looking at the attractor trajectory implied by a short (0.1 s) ramp (Figure
15). Notice how at the end of the short ramp, the attractor trajectory sharply re-
verses and as a result acts to decelerate the joint, slowing down the movement. This
reversal is due to the contribution of the rate of change of muscle length both at the
level of muscle activation (Eq. 9) and of muscle force (Eq. 7).
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Do the time courses of lambda matter? 

attractor (dashed) and real (solid) trajectory from fast ramp
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Figure 15: Attractor (dashed) and real trajectory (solid) for the two joint angles
(shoulder, blue; elbow red) that emerge from the 0.1 s ramp in end-e↵ector space
(Fig. 14).

Second, we probed the reverse scaling in which we took the minimal reference
command obtained for fast movement of 0.4 s movement time and rescaled it lin-
early by a factor of two, nominally for a movement time of 0.8 s. Figure 16 shows
the resulting path, joint trajectories, and reference commands. The hand’s path
is clearly unrealistic in shape for slow movements with an extraneous hook at the
end of the movement. This is reflected by the joint angles’ overshooting their tar-
gets. Essentially, at this slow rate, the joint angles track the N-shaped reference
commands! So, clearly, slow movements are not scaled down fast movements.

Figure 16: Results for a reference command obtained for a fast movement (movement
time 0.4 s) that is linearly dilated by a factor of two (nominal movement time 0.8
s). Left: Hand path. Middle: Elbow (solid red) and shoulder (solid blue) joint
angle trajectories, whose target angles are shown as dashed lines. Right: Reference
commands for bi-articular (black), shoulder (blue) and elbow (red) muscles.
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Do the time courses of lambda matter? 

slowing down lambda of a fast movement 

Figure 15: Attractor (dashed) and real trajectory (solid) for the two joint angles
(shoulder, blue; elbow red) that emerge from the 0.1 s ramp in end-e↵ector space
(Fig. 14).

Second, we probed the reverse scaling in which we took the minimal reference
command obtained for fast movement of 0.4 s movement time and rescaled it lin-
early by a factor of two, nominally for a movement time of 0.8 s. Figure 16 shows
the resulting path, joint trajectories, and reference commands. The hand’s path
is clearly unrealistic in shape for slow movements with an extraneous hook at the
end of the movement. This is reflected by the joint angles’ overshooting their tar-
gets. Essentially, at this slow rate, the joint angles track the N-shaped reference
commands! So, clearly, slow movements are not scaled down fast movements.
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Figure 16: Results for a reference command obtained for a fast movement (movement
time 0.4 s) that is linearly dilated by a factor of two (nominal movement time 0.8
s). Left: Hand path. Middle: Elbow (solid red) and shoulder (solid blue) joint
angle trajectories, whose target angles are shown as dashed lines. Right: Reference
commands for bi-articular (black), shoulder (blue) and elbow (red) muscles.
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=> CNS needs to solve the “optimal control” 
problem = generating the right time course of 
motor commands so that the effector arrives at 
the target in the desired time with zero velocity 
(and has some desired smooth temporal shape).

Optimal control


